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Abstract. Polymer extrusion is one of the most important manufacturing methods used today. A flat die, is commonly 

used to extrude thin thermoplastics sheets. If the channel geometry in a flat die is not designed properly, the velocity at 

the die exit may be perturbed, which can affect the thickness across the width of the die. The ultimate goal of this work 

is to optimize the die channel geometry in a way that a uniform velocity distribution is obtained at the die exit. While 

optimizing the exit velocity distribution, we have coupled three-dimensional extrusion simulation software Rem3D®, 

with an automatic constraint optimization algorithm to control the maximum allowable pressure drop in the die; 

according to this constraint we can control the pressure in the die (decrease the pressure while minimizing the velocity 

dispersion across the die exit). For this purpose, we investigate the effect of the design variables in the objective and 

constraint function by using Taguchi method. In the second study we use the global response surface method with 

Kriging interpolation to optimize flat die geometry. Two optimization results are presented according to the imposed 

constraint on the pressure. The optimum is obtained with a very fast convergence (2 iterations). To respect the constraint 

while ensuring a homogeneous distribution of velocity, the results with a less severe constraint offers the best minimum. 

Keywords: Polymer extrusion, Response surface method, DoE, Optimization, Kriging Interpolation, Rem3D®. 

INTRODUCTION 

The design of dies for polymer extrusion often 
involves trial and error corrections of the die geometry 
to achieve uniform flow at the exit. Manual correction 
to die geometry is a time consuming and costly 
procedure. If the repartition channel in a flat die is not 
designed properly, the velocity at the exit of the flat 
die may not be uniform [1], and leads to a variation in 
the sheet thickness across the width of the die. Since a 
tight control on thickness is required for a high quality 
plastic sheet. 

Often, the number of involved variables and their 
interactions prevent any optimization according to the 
trial and error corrections, because the number of 
evaluations needed may become very high. Hurez et 
al. [2] used the trial and error corrections, to 
determine the optimal die shape which may allow to 
give a homogeneous exit flow distribution. Design of 
experiment, in particular the Taguchi method [3], 
allows obtaining invaluable information on the 
important variables of the process in order to achieve 
the required goals. The effects of the various factors 
can be represented on graphs to support the discussion 
and to lead to identify the most sensitive to minimize 

the defects. Within this framework, we can mention 
Chen et al. [4]. They showed, using the Taguchi 
method, that the operating conditions, the type of 
materials, and the geometry of the die have a great 
influence on the exit velocity distribution on the die. 

Prior works in sheet die optimization have involved 
the use of lubrication approximations of the 
momentum equations [5,6]. If the geometry is more 
complex, a flow channel can be approximated with 
simple geometric sections. Smith et al. [7,8] modeled 
Newtonian and non-Newtonian isothermal flow in a 
coat hanger die using a generalized Hele-Shaw (HS) 
approximation, and optimized the die by minimizing 
pressure drop subject to exit flow uniformity being 
within a tolerance set. The sensitivities analysis needed 
for the Sequential Quadratic Programming (SQP) 
algorithm was calculated by direct differentiation and 
the adjoint method are compared, and simultaneous 
minimization of velocity dispersion subject to 
residence time variations is added using Broyden. 
Fletcher. Goldfarb Shanno (BFGS) algorithm and 
penalty function. The same author [9] in order to 
optimize the geometry for two different materials at 
various temperatures, he use two optimization 
algorithms with constraint based on SQP and 
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Sequential Linear Programming (SLP), and are 
compared. The optimization problem consists in 
minimizing the pressure loss in the die, with an 
imposed constraint so that a homogeneous velocity 
distribution is obtained on the outlet side of the die 
within an imposed tolerance. Network algorithms have 
been developed to optimize die designs [2] but they 
are difficult to apply to arbitrary shapes. Michaeli et al 
[10] have used a combination of finite element 
analysis for isothermal flow and flow analysis network 
to accelerate the iterative optimization process for the 
design of profile extrusion dies. To optimize the die 
geometry, they used respectively the evolution strategy 
algorithm and network theory. Sun et al. [11] optimize 
a flat die using BFGS algorithm. A penalty function 
was introduced to enforce a limit on the maximum 
allowable pressure drop in the die. 

The ultimate goal of this work is to optimize the 
die channel geometry in a way that a uniform velocity 
distribution is obtained at the die exit. For this end, we 
developed an automatic optimization algorithm based 
on a response surface method together with Kriging 
interpolation. We used the REM3D® software [12] to 
compute a 3D flow in extrusion dies. This software 
takes into account strain rate and temperature 
dependence. The optimal design procedure is applied 
to a coat hanger die used to extrude thermoplastic 
sheets (Figure 1). 

Variable A 

FIGURE 1. Geometry of the flat die. 

THE OPTIMIZATION BENCHMARK 

In this paper, the geometry of a flat die is 
optimized for an Acrylonitrile Butadiene Styrene 
(ABS, Astalac EPC 10000). The extrusion simulation 
is carried out using the 3D computation software by 
finite elements REM3D®. The behaviors laws used in 
Rem3D® give an expression of the viscosity in 
function of the shear rate and temperature. The 

rheological parameters of the ABS are given in 

Table 1. Carreau Yasuda/WLF viscosity model is used 

to characterize the temperature and shear rate 

dependence [13]. It is written as: 
m-1 

A flow of 50000 mm3/s was imposed on the entry with 

a temperature of 240°C, and the temperature of the die 

is constant and equals to 230°C. 

TABLE 1. Rheological parameters. 

T]o Pa.s 

716.997 

Al 

m 

0.15862 

A2[K] 

CCo 

1 

Ts[K] 

Ts Pa 

224063 

Tref [K] 

20.4 101.6 397.7 524.7 

Design Variables 

The design of a flat die is based on the values of 

various geometrical parameters; the optimization 

variables (A, B and C) correspond to the geometry of 

the coat hanger die. The first variable A represents the 

depth of the channel repartition, the second variable B 

represents the opening of the channel repartition, the 

third one C represents the channel thickness (figure 1). 

During the process of optimization the variables A, B 

and C vary in a limited field. Each variable has its 

geometrical limitations which are respectively 

30 < ,4 < 110 mm, 50 < B < 140 mm and 

5 < C < 45 mm. 

During the optimization process, we developed a 
Matlab® based program which, allows us to treat the 
CAD and to change the geometry of the die 
automatically. In the first stage, in order to change the 
geometry we make a surfaced mesh. Since we know 
the nodes position, we seek to determine the 
coordinates of all the nodes (Ni), belonging to both 
surfaces SI and S2 (figure 2). For this, we use the 
diffuse approximation [14] with a linear interpolation. 

FIGURE 2. Procedure for the change of the geometry. 

To change the geometry of the channel repartition 

we define the new surface (Slk), which corresponds to 
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the new optimization parameters Ak, Bk, and Ck. After 

that, we carry out a change of coordinates for all nodes 

which belong to the surface SI, so that they will be 

relocated on to the new Slk surface which represents 

the new geometry. For S2 surface, a simple translation 

of the following nodes is applied there. The same 

procedure is applied on the other side of the die. 

Objective And Constraint Functions 

This optimization problem consists in determining 

an optimal geometry to homogenize the velocity 

distribution through the die exit, which corresponds to 

the minimum of the velocity dispersion (E). While 

preventing that the pressure "pressure loss" increases 

more than the pressure obtained by the initial 

geometry. We can also impose a more severe 

constraint on the pressure; this condition is translated 

by a constraint function ( g ) . 

min J(O) 

Such that g •-
P-(a*Po) 

(a*P 0 ) 

(2) 

<0 

where (J), the normalized objective function, the 

velocity dispersion (E), is defined as: 

f 
E 

\_ 

N Z 
f\ 

v 

lY\ 

v 

(3) 

J) 

where E0 and P0 are respectively the velocity 

dispersion and the pressure in the initial die, N is the 

total number of nodes at the die exit in the middle 

plane, vi is the velocity at an exit node, and v is the 

average exit velocity, is defined as: 

1 N 

(4) 

The constraint function ( g ) is selected in a way 

that it is negative if the pressure is lower than the 

imposed pressure, if not it will be positive. If a = 1; 

the pressure should not increase compared to the initial 

pressure. If a < 1; the pressure must be even lower 

compared to the initial pressure. 

Study of the effects of the variables: 

A Taguchi method [3] is used to investigate the 

effect of the design variables (A, B and C). In the 

objective and constraint function we use the response 
obtained by a central composite design (CDD) [3], 
which gives 5 levels per variable. The various levels 
are represented from 1 to 5 respectively giving the 
values of the minimum to the maximum of each 
variable. The effects of the various variables are 
represented on graphs to support the discussion and to 
lead to the identification of those influencing to 
minimize the defects. 

Figure 3, illustrates the average effect of the design 
variables on the objective function at the various 
levels. From this figure we can note that the three 
geometrical variables A, B and C have considerable 
effects on the objective function, with strongly 
nonlinear variation according to the various levels. 
This is more particularly true for the variable A. We 
notice the variable "C" which represents the thickness 
of the repartition channel, has a more important effect 
at level 1 (the minimal thickness of the repartition 
channel). This effect represents a maximum value, 
corresponding to a worst exit velocity distribution. At 
the level 2, the effect represents the minimum value 
(or best exit velocity distribution). When C is at levels 
2 to 5 the effect on the objective function is of same 
order as the other variables (A and B). It is noticed, 
from the same figure, that the variables A and B seem 
having means effects and oscillate compared to the 
various levels, which implies that a linear or quadratic 
mathematical model cannot represent effectively the 
objective function. As for their effects according to the 
various levels, we note that level 4 of variable A and 
level 5 of the variable B correspond at the minimum 
value of the objective function. 
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FIGURE 3. Effect of the variables on the objective 

function. 

Figure 4, illustrates the average effect of the 

optimization variables on the constraint function 

(pressure) at the various levels. It is also noted that the 

effect of the variable C on level 1 is most important. If 

the thickness of the repartition channel is minimal (CI) 

we need more pressure to extrude the plastic. For other 
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levels of the variable C, we note that the effect is less 
important, and that the constraint function decreases 
gradually with the increase thickness of the repartition 
channel. Concerning the variable A, we note that the 
effect on the constraint function is average, and the 
minimum of the pressure corresponds to level 5. This 
level corresponds to the maximum depth of the 
repartition channel (figure 1). For this design, the 
extruded melt undergoes less contracting on the level 
of the repartition channel and flow out more easily, 
which can explain the pressure decrease. As for the 
variable B, we can see that its effect is small on the 
pressure (constraint), particularly for the levels 1, 2, 4, 
and 5. For level 3 of variables A and B, the value of 
the average effect increased because of the taking into 
account of the maximum value of the effect of the 
variable C on level 1. 
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Level of the variables of optimisation 

FIGURE 4. Effect of the variables on the constraint 

function. 

Optimization procedure 

The response surface method consists in the 
construction of an approximate expression of objective 
and constraint function starting from a limited number 
of evaluations of the real function. In order to obtain a 
good approximation, we used a Kriging interpolation 
described in next section. In this method, the 
approximation is computed by using the evaluation 
points by composite design of experiments. 

Once the approximation of the objective function 
and the constraint function are built for each iteration. 
Since the successive evaluation of the approximate 
function does not take much computing time, we use 
the SQP algorithm to obtain the optimal approximate 
solution which respects the imposed nonlinear 
constraints. To avoid the fact of falling into a local 
optimum, and to respect the imposed nonlinear 
constraint, we use an automatic procedure which 
allows the launch of the SQP algorithm starting from 
each point of our experimental design. We take then 

the best approximate solution among those obtained by 
the various optimizations. Then, another approximate 
function is built by taking into account the weight 
function of Gaussian type which allows to slightly 
change the interpolation and makes the approximation 
more accurate locally (centred around the best 
minimum). Next, another minimization is carried out 
by the SQP algorithm with the initial point which 
represents the best optimum The iterative procedure 
stops when the successive points of the approximate 
function are superposed with a tolerance e=10"

6
. 

Finally, another evaluation is carried out to obtain the 
real response in the optimization iteration. 

An adaptive strategy of the search space is applied 
to allow the location of the global optimum and, then, 
to readjust the research space by decreasing it by 1/3. 
A new design of experiment is automatically launched 
around the optimum. An enrichment of the 
interpolation is made by recovering responses already 
calculated, and which are located in the new research 
space. The iterative procedure stops when the 
successive points are superposed with a tolerance 
e=10-3. 

Kriging interpolation 

Kriging (27, 28), is an elegant and general 
interpolation method. Its origin goes up to Krige at the 
beginning of the 50th, it was proved to be a very 
powerful interpolation technique. The Kriging, makes 
it possible to present the complexes function 
effectively (curved, surfaces...). This method is applied 
in our work to represent the response surface in an 
explicit form, according to the variables of 
optimization. 

J(x) = p
T
(x)a + Z(x) (5) 

with, p(x) = [p1(x), ..., pm(x)f, where m 

denotes the number of the basis function in regression 

model, a = fav ..., am] is the coefficient 

vector the, x is the design variables, J(x) is the 

unknown objective or constraint interpolate function, 

and Z(x) is the random fluctuation. The term 

p (x)a in Eq. (5) indicates a global model of the 

design space, which is similar to the polynomial model 

in a Moving Least Squares (MLS) approximation. The 

second part in Eq. (5) is a correction of the global 

model. It is used to model the deviation from p (x) a 

so that the whole model interpolates response data 
from the function 
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The construction of a Kriging model can be explained 
as follows: 

The output responses from the function are given as: 

F(x) = {f1(x\f2(x\-fA*)} (6) 

From these outputs the unknown parameters a can be 

estimated: 

a = (P
1
 R-'PpP

1
 R

l
F (7) 

Where P is a vector including the value of p(x) 

evaluated at each of the design variables and R is the 
correlation matrix, which is composed of the 
correlation function evaluated at each possible 
combination of the points of design: 

R 

^ ( * i ,
x

i ) • " ^ ( * i ,
x

J 

i?(xn,Xl) ... R(xn,xn) 

R 
'j 4 

(8) 

(9) 

The second part in Eq. (5) is in fact an interpolation of 

the residuals of the regression model/? (x)a . Thus, 

all response data will be exactly predicted; is given as: 

Z(x) = r
T
(x)P (10) 

Where r
T
(x)= {R(x,x1),---,R(x,xn)} 

The parameters /? are defined as fallow: 

P = R
l
(F-Pa) (11) 

R E S U L T A N D DISCUSSION 

A representative convergence history during an 

optimization process on the objective functions (J) is 

represented in figure 5. Two curves of results of the 

convergence of optimization are presented: 

Results 1: A constraint on the pressure is imposed 

for which the pressure in the optimal die must be lower 

or equals 0.5*P0 {a = 0.5). 

Results 2: The constraint imposed on the pressure 

is more severe. The pressure in the optimal geometry 

must be lower or equals 0.35*P0 (CC = 0.35). 

Our algorithm of optimization clearly showed its 

capacity to obtain an optimal solution with a very fast 

convergence. The optimal solution is obtained in two 

iterations for both cases. The objective function is then 

reduced to: 95 % of its initial value, for the first result 

a = 0.5 . And 91% of its initial value, for the second 

result a = 0.5 

TABLE 2. Summary of the results. 

Results of 
optimization 

Initial 
die 

Result 1 
or = 0.5 

Result 2 
or = 0.35 

"J" 
improvement 

"g" 
profit of pressure 

Variable A [mm] 
Variable B [mm] 

Variable C [mm] 

1 
-

1 
-

36.5 
112.6 

25 

0.049 

95% 

0.48 
52% 

96.6 

76.15 

25.47 

0.09 

91% 

0.38 
62% 

103.08 

72.74 

31.4 

0 1 2 
Iterations 

FIGURE 5. Convergence history during an optimization 
process on the objective functions. 

We notice that the objective function for both 

results has strongly decreased in the first iteration, 

because of the precision of the Kriging interpolation. 

Nevertheless, to respect the constraint while ensuring a 

homogeneous distribution of velocity, we observe that 

result 1 offer the best minimum in the first and second 

iteration, because of the less severe constraint on the 

pressure compared to results 2. 

We have represented the relative velocity 

dispersion obtained in the initial geometry and after 

optimization, for both results in figure 6. We see that 

the objective function obtained by imposing a severe 

constraint on the pressure (a = 0.35) is slightly 

higher of the objective function obtained with a less 

severe constraint ( a = 0.5). 
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FIGURE 6. Velocity dispersion with initial and optimal 

die. 

The constraint on the pressure is represented on figure 

7, in a form of (P/PO) for both results. We see that the 

constraint function is weaker with a more severe 

constraint ( a = 0 . 3 5 ) . 

o 

0 1 2 
Iterations 

FIGURE 7. Convergence history during an optimization 
run of the Constraint functions. 

CONCLUSION 

The applied method of optimization with the various 

strategies allowed us to obtain an optimal geometry in 

two iterations with a very satisfactory computing time 

for E.F calculation of the flow in three dimensions. 

The optimal die gives a good exit velocity distribution 

while minimizing the pressure for the same flow. A 

qualitative comparison enables us to note that we were 

able to obtain with the optimal geometry a 95% profit 

of homogeneity compared to the initial geometry with 

a decrease of pressure of 52% (results obtained with a 

less severe constraint on the pressure). The use of the 

different constraints on the pressure allowed us to 

compare the various results obtained after 

optimization. The results are obtained at the second 

iteration. The algorithm of optimization clearly 

showed its robustness and its capacity to obtain an 

optimal solution with a very fast convergence. Total 

CPU time is of 3 days and 16 hours on a machine 

Pentium IV, 3 GHz, 1 Go RAM. 
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