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Balancing the distribution of flow through a die to achieve a uniform velocity distribution is the primary
objective and one of the most difficult tasks of extrusion die design. If the manifold in a Coat-hanger die
is not properly designed, the exit velocity distribution may be not uniform; this can affect the thickness
across the width of the die. Yet, no procedure is known to optimize the coat hanger die with respect
to an even velocity profile at the exit. While optimizing the exit velocity distribution, the constraint
optimization algorithm used in this work enforced a limit on the maximum allowable pressure drop in
the die; according to this constraint we can control the pressure in the die. The computational approach
incorporates three-dimensional finite element simulations software Rem3D! and includes an optimiza-
tion algorithm based on the global response surfaces with the Kriging interpolation and SQP algorithm
within an adaptive strategy of the search space to allow the location of the global optimum with a fast
convergence. The optimization results which represent the best die design are presented according to the
imposed constraint on the pressure.

1. Introduction

The design of dies for polymer extrusion often involves trial and
error corrections of the die geometry to achieve uniform flow at the
exit. If the repartition channel in a flat die is not designed properly,
the velocity at the exit of the flat die may not be uniform [1], and
leads to a variation in the sheet thickness across the width of the die.

Often, the number of the involved variables and their interactions
prevent any optimization according to the trial and error corrections,
because the number of evaluations needed may become very high.
Design of experiment, in particular the Taguchi method [2], allows
obtaining invaluable information on the important variables of the
process in order to achieve the required goals. The effects of the var-
ious factors can be represented on graphs to support the discussion
and to lead to identify the most sensitive to minimize the defects.
Within this framework, we canmention Chen et al. [3]. They showed,
using the Taguchi method, that the operating conditions, the type of
materials, and the geometry of the die have a great influence on the
exit velocity distribution on the die.

Prior works in sheet die optimization have involved the use of
lubrication approximations of the momentum equations [4,5]. If the

∗ Corresponding author. Tel.: +33329421821; fax: +33329421825.
E-mail addresses: lebaal_nadir@yahoo.fr, nadhir.lebaal@insic.fr (N. Lebaal).

geometry is more complex, a flow channel can be approximated with
simple geometric sections [6]. Smith et al. [7,8] modeled Newtonian
and non-Newtonian isothermal flow in a coat hanger die using a
generalized Hele–Shaw (HS) approximation, and optimized the die
by minimizing pressure drop subject to exit flow uniformity being
within a tolerance set. The sensitivities analysis needed for the se-
quential quadratic programming (SQP) algorithm was calculated by
direct differentiation and the adjoint method are compared, and si-
multaneous minimization of velocity dispersion subject to residence
time variations is added using Broyden Fletcher Goldfarb Shanno
(BFGS) algorithm and penalty function. The same author [9] in order
to optimize the shape of the extrusion die for two different mate-
rials at various temperatures, used and compared two optimization
algorithms with constraint based on SQP and sequential linear pro-
gramming (SLP). The optimization problem consists in minimizing
the pressure loss in the die, with an imposed constraint so that a
homogeneous velocity distribution is obtained on the outlet side of
the die within an imposed tolerance. Network algorithms have been
developed to optimize die designs [10] but they are difficult to ap-
ply to arbitrary shapes. Michaeli et al. [11] have used a combination
of finite element analysis for isothermal flow and flow analysis net-
work to accelerate the iterative optimization process for the design
of profile extrusion dies. To optimize the die geometry, they used,
respectively, the evolution strategy algorithm and network theory.
Sun et al. [12] optimize a flat die using BFGS algorithm. A penalty



Nomenclature

a, m, !, A1, A2 material constants
â" coefficients vectors
# weight coefficient
A, B, C, D optimization variables
c dilation parameter
di distance from a discrete node xi to

a sampling point x
E velocity dispersion
E0 initial velocity dispersion
$(v) strain rate tensor
$̃ tolerance
F(x) responses from the function
g constraint function
˙̄% shear rate
& fluid viscosity (dependent of the

temperature T, pressure p, and of
the strain rate tensor $(v) through
the shear rate ˙̄%)

&0(T) thermal dependency

J normalized objective function
J̃(x) objective or constraint interpolate

function
k number of the basis function in re-

gression model
N number of nodes at the die exit
P pressure
P0 initial pressure in the die
p̂(x) basis function
R correlation matrix
rw radius of support domain
S1, S2, S3 surfaces
T temperature
Tref references temperature
v velocity
vi exit velocity
v average exit velocity
wi(x) weight function of Gaussian type
x design variables
Z(x) random fluctuation

function was introduced to enforce a limit on the maximum allow-
able pressure drop in the die.

The optimization algorithm must be carefully chosen when one
single analysis using three-dimensional software requires several
hours of CPU time. Non-deterministic or stochastic methods such as
Monte Carlo method and genetic algorithm [13] can obtain global
minimum but they need a lot of evaluations for the functions to
converge. Gradient methods [7–10,12,14] require the computations
of the gradients of the functions; the computation of gradients by
finite difference is time consuming and depends on the perturbed
parameters. For the above reasons we decided to chose a response
surface method (RSM) [15].

The ultimate goal of this work is to optimize the coat hanger sheet
die geometry (Fig. 1) in a way that a uniform velocity distribution is
obtained at the die exit with an imposed nonlinear constraint so that
the pressure loss in the die must decrease compared to the initial die.

For this end, we developed an automatic optimization algorithm
based on SQP algorithm and a RSM together with Kriging interpo-
lation and several strategies to permit to obtain a precise global
optimum with a fast convergence. A preliminary study based on
Taguchi's design of experiments method [3] was conducted, in or-
der to identify the most sensitive design variables. To compute a 3D
flow in extrusion dies we used FEM software (REM3D!) [16]. This
software takes into account strain rate and temperature dependence.

2. Modeling and simulation

The extrusion simulation is carried out using the 3D computation
software by finite elements REM3D! [16].

The flow equations are derived from the Navier–Stokes incom-
pressible equations. A mixed finite element method for incompress-
ible viscous flow is used. The flow solver uses tetrahedral elements
with a linear continuous interpolation of both the pressure and the
velocity and a bubble enrichment of velocity.

The mass, momentum and energy conservation equations, are
used to follow the material behavior, from which the velocity, pres-
sure and temperature fields are determined.

⎧
⎪⎪⎨

⎪⎪⎩

∇(2&( ˙̄%)$̇(v)) − ∇p = 0

∇ · v⃗ = 0

'ĉ
dT
dt

= −∇ · q + ( : $̇(v)

(1)

The behaviors laws used in Rem3D! give an expression of the
viscosity in function of the shear rate and temperature. In this paper,
the geometry of a flat die is optimized for an acrylonitrile butadiene
styrene (ABS, Astalac EPC 10000). The rheological parameters of the
ABS are given in Table 1. Carreau Yasuda/WLF viscosity model is used
to characterize the temperature and shear rate dependence [17]. It
is written as

& = &0(T)

[

1 +
(

&0(T)
˙̄%
!s

)#]m−1/#

(2)

In this model, a, m, ! are material constants, whereas &0(T) estab-
lishes the thermal dependency, given by the WLF model:

&0(T) = &0(Tref ) exp

[
A1(Tref − Ts)

A2 + (Tref − Ts)
− A1(T − Ts)

A2 + (T − Ts)

]

(3)

where A1, A2 are material constants, and Tref is the references tem-
perature.

A flow of 50000mm3/s was imposed on the entry with a tem-
perature of 240 ◦C, and the temperature of the die is constant and
equals to 230 ◦C.

3. Formulation of the optimization problem

3.1. Objective and constraint functions

This optimization problem consists in determining an optimal ge-
ometry to homogenize the velocity distribution through the die exit,
which corresponds to the minimum of the velocity dispersion (E).
While preventing that the pressure “pressure loss” increases more
than the pressure obtained by the initial geometry. We can also
impose a more severe constraint on the pressure; this condition is
translated by a constraint function (g).
⎧
⎪⎪⎨

⎪⎪⎩

min J()) = E
E0

such that g = P − (# ∗ P0)
(# ∗ P0)

!0
(4)

where (J), the normalized objective function, the velocity dispersion
(E), is defined as

E =

⎛

⎝ 1
N

N∑

i=1

( |vi − v|
v̄

)⎞

⎠ (5)
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Fig. 1. Geometry of the flat die.

Table 1
Rheological parameters

&0 (Pa s) m #0 !s (Pa)

716.997 0.15862 1 224063

A1 A2 (K) Ts (K) Tref (K)

20.4 101.6 397.7 524.7

where E0 and P0 are, respectively, the velocity dispersion and the
pressure in the initial die, N is the total number of nodes at the die
exit in the middle plane, vi is the velocity at an exit node, and v is
the average exit velocity, is defined as

v = 1
N

N∑

i=1

vi (6)

The constraint function (g) is selected in a way that it is negative
if the pressure is lower than the imposed pressure, if not it will be
positive. If # = 1; the pressure should not increase compared to the
initial pressure. If # < 1; the pressure must be even lower compared
to the initial pressure.

3.2. Design variables

The design of a flat die is based on the values of various geometri-
cal parameters; the optimization variables (A, B, C and D) correspond
to the geometry of the coat hanger die. The first variable A represents
the depth of the channel repartition, the second variable B represents
the opening of the channel repartition, the third one C represents the
channel thickness and the fourth variable D represents the thickness
of the relaxation zone (Fig. 1). During the optimization process the
variables A, B, C and D vary in a limited field. Each variable has its
geometrical limitations which are, respectively, 30 ! A ! 110mm,
50 ! B ! 140mm, 5 ! C ! 45mm and 6.7 ! D ! 15mm.

Initially, the four geometrical variables of the die are A = 36.5mm,
B = 112.6mm, C = 25mm and D = 6.7mm.

Surface (S1)

Surface (S2)

Surface (S3)

Ni (xi yi zi)

Fig. 2. Procedure for the change of the geometry.

During the optimization process, we developed a Matlab!-based
program which, allows us to treat the CAD and to change the geom-
etry of the die automatically. In the first stage, in order to change
the geometry we make a surfaced mesh. Since we know the nodes
position, we seek to determine the coordinates of all the nodes (Ni),
belonging to both surfaces S1, S2 and S3 (Fig. 2). For this, we use the
diffuse approximation [14] with a linear interpolation.

To change the geometry of the channel repartition we define the
new surface (S1k), which corresponds to the new optimization pa-
rameters Ak, Bk, and Ck. After that, we carry out a change of coordi-
nates for all nodes which belong to the surface S1, so that they will
be relocated on to the new S1k surface which represents the new ge-
ometry. For S2 and S3 surface, a simple translation of the following
nodes is applied there. The same procedure is applied on the other
side of the die.

3.3. Optimization procedure

The objective and constraint function (Eq. (4)) are implicit com-
pared to the optimization parameters and its evaluation need a com-
plete numerical analysis of the extrusion process, which requires
a large computation times. To need the optimum parameters with
low cost and with a good accuracy, the RSM is adopted and cou-
pled with an auto adaptive strategy of the research space Fig. 3.
The RSM consists in the construction of an approximate expression
of objective and constraint function starting from a limited num-
ber of evaluations of the real function. In order to obtain a good
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Fig. 3. The flowchart of the adopted optimization strategy.

approximation, we used a Kriging interpolation described in next
section. In this method, the approximation is computed by using the
evaluation points by composite design of experiments.

Once the approximation of the objective function and the con-
straint function are built for each iteration. Since the successive eval-
uation of the approximate function does not take much computing
time, we use the SQP algorithm to obtain the optimal approximate
solution which respects the imposed nonlinear constraints. To avoid
the fact of falling into a local optimum, and to respect the imposed
nonlinear constraint, we use an automatic procedure which allows
the launch of the SQP algorithm starting from each point of our ex-
perimental design (Fig. 3). We take then the best approximate so-
lution among those obtained by the various optimizations. Then,
another approximate function is built by taking into account the
weight function of Gaussian type which allows to slightly change the
interpolation and makes the approximation more accurate locally
(centred around the best minimum). Next, another minimization is
carried out by the SQP algorithm with the initial point which rep-
resents the best optimum The iterative procedure stops when the
successive points of the approximate function are superposed with
a tolerance $̃=10−6. Finally, another evaluation is carried out to ob-
tain the real response in the optimization iteration.

An adaptive strategy of the search space is applied to allow the
location of the global optimum and, then, to readjust the research
space by decreasing it by 1

3 . A new design of experiment is automati-
cally launched around the optimum. An enrichment of the interpola-
tion is made by recovering responses already calculated, and which
are located in the new research space. The iterative procedure stops
when the successive points are superposed with a tolerance $̃=10−3.

3.4. Kriging interpolation

The Kriging interpolation [18,19], makes it possible to present the
complexes function effectively. This method is applied in our work
to represent the response surface in an explicit form, according to

the variables of optimization. The approximate explicit relationship
of the objective and constraint function, can be expressed as follows:

J̃(x) = p̂T(x)â + Z(x) (7)

with p̂(x) = [p̂1(x), . . . , p̂k(x)]
T, where k denotes the number of the

basis function in regression model, â = [â1, . . . , âk]
T is the coefficient

vector the, x is the design variables, J̃(x) is the unknown objective or
constraint interpolate function, and Z(x) is the random fluctuation.
The term p̂T(x)â in Eq. (7) indicates a globalmodel of the design space,
which is similar to the polynomial model in a moving least squares
(MLS) approximation. The second part in Eq. (7) is a correction of
the global model. It is used to model the deviation from p̂T(x)a so
that the whole model interpolates response data from the function

The construction of a Kriging model can be explained as follows:
The output responses from the function are given as

F(x) = {f1(x), f2(x), . . . fn(x)} (8)

From these outputs the unknown parameters â can be estimated:

â = (P̂TR−1P̂)−1P̂TR−1F (9)

where P̂ is a vector including the value of p̂(x) evaluated at each of the
design variables and R is the correlation matrix, which is composed
of the correlation function evaluated at each possible combination
of the points of design:

R =

⎡

⎢⎣

R(x1, x1) · · · R(x1, xn)
...

. . .
...

R(xn, x1) · · · R(xn, xn)

⎤

⎥⎦

+

⎡

⎢⎢⎢⎣

w(x − x1) 0 · · · 0
0 w(x − x2) · · · 0
...

...
...

...
0 0 · · · w(x − xn)

⎤

⎥⎥⎥⎦
(10)

Rij = (|xi − xj|) (11)

A weight function of Gaussian type with a circular support is
adopted for the Kriging interpolation. It takes the form

wi(x) =

⎧
⎪⎨

⎪⎩

(

1 − e−(di/c)
2

− e−(rw/c)2

1 − e−(rw/c)2

)

si di! rw

1 si di" rw

(12)

where di =
√∑n

J=1(xJ − xJ(i))
2 is the distance from a discrete node xi

to a sampling point x in the domain of support with radius rw, and
c is the dilation parameter. c = rw/4 is used in computation.

The second part in Eq. (7) is in fact an interpolation of the residuals
of the regression model p̂T(x)â. Thus, all response data will be exactly
predicted; is given as

Z(x) = rT(x)" (13)

where rT(x) = {R(x, x1), . . . ,R(x, xn)}.
The parameter " is defined as follows:

" = R−1(F − P̂â) (14)

4. Result and discussion

4.1. Design sensitivity analysis

A Taguchi's design of experiments method [3] is used to investi-
gate the sensitive analysis of the design variables. This preliminary
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Fig. 4. Effect of the variables on the objective function.
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Fig. 5. Effect of the variables on the constraint function.

study was conducted, by considering four geometrical parameters
(A, B, C and D), in order to identify the most sensitive ones on the
objective and the constraint function.

For this, we have calculated the effect of each variable over all
the field of research by studying the contribution of each variable on
the variation of the response “velocities distribution and pressure”.
The effects of the various variables are represented on graphs to
support the discussion and to lead to the identification of those
influencing to minimize the defects.

We note in Fig. 4 that the variable with less influence on the
objective function is the variable D which represents the thickness
of the relaxation zone. On the other hand, the variable C has the
greatest effect on the velocity distribution at the die exit.

We observe in the seam figure that if the variables “A, B, and
C” are in the lowest level (1), the global relative variation is more
important which implies a bad velocity distribution at the die exit.
On the other hand, if the variables are in the highest level (2), the
global relative variation of velocity at the die exit is less important
compared to their lowest level.

For the variable “C”, it is even weaker at the average level, and
for the variable “D”, it is noted that it has a very weak effect over
the velocity distribution at the die exit.

From Fig. 5 we note that the effect of the variables B and D on the
constraint function (pressure) is weak. We note that the more the
variables “A, C and D” are in the lower level the more the pressure
increases. On the other hand, the pressure is lower at their highest
level. For the variable B, the variation of the pressure is very weak.

Fig. 6. Convergence history during an optimization process on the objective functions.

Table 2
Summary of the results

Results of optimization Initial die (A) Result 1 Result 2
# = 0.5 (B) # = 0.35 (C)

“J” 1 0.049 0.09
Improvement (%) − 95 91
“g” 1 0.48 0.38
Profit of pressure (%) – 52 62
Variable A (mm) 36.5 96.6 103.08
Variable B (mm) 112.6 76.15 72.74
Variable C (mm) 25 25.47 31.4

Since the prime objective in the design of the extrusion dies is
to obtain at the exit a perfectly homogeneous product, it was noted
that the variable D has the least important effect on the velocity
distribution at the die exit. This study enables us to limit the number
of variables and three sensitive geometrical parameters are selected
and considered as design variables to be optimized (A, B and C).

4.2. Optimization results

The optimization strategy described previously is applied to op-
timize the die geometry in order to obtain a homogenous exit ve-
locities distribution. According to the imposed constraint on the
pressure, two optimization cases are formulated:

Case 1: A constraint on the pressure is imposed for which the
pressure in the optimal die must be lower or equals 0.5∗P0 (# = 0.5).

Case 2: The constraint imposed on the pressure is more severe.
The pressure in the optimal geometry must be lower or equals
0.35∗P0 (# = 0.35).

A representative convergence history during an optimization pro-
cess on the objective functions (J) is represented in Fig. 6. After three
iterations, the objective function fell below the cutoff of 10−3 and
the simulation stopped.

Given the fixed geometry constraints of the die, the rheological
parameters of the ABS resin, and the process conditions, the optimal
solution is obtained starting from the second iteration for both cases.
The objective function is then reduced to 95% of its initial value
for the first case (# = 0.5) and 91% for the second case (# = 0.35).
The optimization strategy clearly showed its capacity to obtain an
optimal solution with a very fast convergence. A summary of the
optimization results obtained for the two cases, is reported in Table 2.



We notice that the objective function for both cases has strongly
decreased in the first iteration, because of the precision of the Krig-
ing interpolation. Nevertheless, to respect the constraint while en-
suring a homogeneous distribution of velocity, we observe that case
1 offer the best minimum, because of the less severe constraint on
the pressure compared to case 2.

We have represented the relative velocity dispersion obtained
in the initial geometry and after optimization, for both results in
Fig. 7. We see that the objective function obtained by imposing a
severe constraint on the pressure (# = 0.35) is slightly higher of the
objective function obtained with a less severe constraint (# = 0.5).

Fig. 7. Velocity dispersion with initial and optimal die.

Fig. 8. Velocity distribution in initial and optimal dies.

For a qualitative comparison it is obvious that velocity distribu-
tion in the initial geometry (Fig. 8A) is not homogeneous. We notice
that in the middle of the die, velocities are lower about 35% of varia-
tion compared to the average. On the other hand, in both parts close
to the end of the die, we observe an increase of velocities until 50%
(Fig. 7), only in the small regions near the end of this die, the exit
velocity reduces to zero to satisfy the no slip condition at the walls.
After optimization, we notice that velocities became homogeneous
all over the width at the die exit. For both optimization results, see-
ing, respectively, Fig. 8B and C.

Fig. 9. Convergence history of the constraint functions during an optimization run.



Fig. 10. Pressure distribution in initial and optimal dies.

Fig. 11. Temperature distribution in mid plane in initial and optimal dies.

The constraint on the pressure is represented on Fig. 8, in a form
of (P/P0) for both cases. We observe that the constraint function is
weaker with a more severe constraint (# = 0.35).

This optimization problem was formulated in a way to find the
best velocity distribution at the die exit while avoiding the increase
of pressure compared to an imposed pressure, which is respected by
both results (Fig. 9). The pressure drop in the design of the initial die
is 4.42MPa (Fig. 10A). It should be noted that the pressure decreases
during the iterations of optimization for the different results. In the
first case, the pressure decreases by 52% which gives a pressure of
2.14MPa (Fig. 10B). In the results of the second case, we note that
the pressure has decreased by 62% because of the imposed constraint
(Fig. 9), which gives a pressure of 1.69MPa (Fig. 10C). We notice
that the gradient pressure in the initial die is not parallel, which
results on a non-uniform flow. Nevertheless, in the optimized dies

the gradient pressure is parallel; furthermore, it denotes a uniform
flow distribution for both cases.

It is noted thatmore the polymer runs towards the border because
of the heating by shearing, the temperature is lower in the middle
of the die and higher close to the border (Fig. 11A). By comparison,
the distribution of the temperatures is uniform in the optimal die
(Fig. 11B and C), because of the homogeneous velocities distribution
(due to the heating by shearing) at the die exit for the optimal ge-
ometries.

5. Conclusion

The design of polymer extrusion dies is complicated by the non-
linear relationship between the resin viscosity, shear rate and tem-
perature. The first study based on the sensitive analysis enabled us
to decrease the number of variables by analyzing their effects on the
pressure and the velocity distribution at the die exit. The numerical
optimization algorithm presented in this work shows its robustness
as a tool for extrusion die design. The applied optimization method
with the various strategies proves its ability of predicting optimal die
geometry with satisfactory computing time for three-dimensional
finite element calculation.

The obtained results with the two optimization examples show
that our optimization strategy is well adapted to the nonlinear con-
straints. The use of the different constraints on the pressure allowed
us to compare the various results obtained after optimization. The
optimal die gives a good exit velocity distribution while minimizing
the pressure for the same flow. A qualitative comparison enables us
to note that we were able to obtain with the optimal geometry a
95% profit of homogeneity compared to the initial geometry with
a decrease of pressure of 52% (results obtained with a less severe
constraint on the pressure). The algorithm of optimization clearly
showed its robustness and its capacity to obtain an optimal solution
with a fast convergence.

Future research will involve experimental verification of the al-
gorithm and the optimization of complex helicoidally dies.
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