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a b s t r a c t

Oxide glasses viscosity exhibits a large temperature dependence from viscous fluid to fully hard solid,
requiring several complementary experimental methods to measure this parameter over the wide tem-
perature range involved during forming. As a matter of fact, the accuracy of any glass forming process
simulation depends on these data. This paper mainly focuses on the development of an analytical method
that allows to extend the validity of the cylinder compression test (squeeze flow) over higher tempera-
tures, using experimental data from an optical contactless instrumentation. The accuracy of the method
is discussed by comparing the results to the bibliographical data concerning the studied borosilicate glass
rheology. The method provides a full field strain and strain rate tensors evaluation and also allows to
monitor the test and especially contact conditions between the sample and the compression plates even
for intermediate strains. A numerical modeling of the experiment shows that identified elastic and vis-
cous parameters allow a proper agreement with experiment even for large strains.

1. Introduction

Pyrex! borosilicate glass is widely used to produce dishes and
other items for cookware or chemical applications because of its
high resistance to chemicals and to thermal stresses. Glass hollow
parts are formed by squeezing a glass gob between two molds [1].
These molds are often made of stainless steels and are subjected to
mechanical loading by the shaping of the gob and to thermal stres-
ses by cooling the glass from 1300 "C down to temperatures lower
than its glass transition temperature (598 "C [2]).

During the forming process, the glass viscosity increases dra-
matically from 102 to 1010 Pa!s due to the high temperature depen-
dence of viscosity [2] in the temperature range involved in the
process (1350–650 "C [3]). In order to obtain reliable results using
numerical simulation, accurate knowledge of glass thermo-
mechanical behavior over a large temperature, strain and strain
rate range is then required. In order to accurately model the pro-
cess, it is further necessary to conduct a fundamental study of
the behavior of the glass in conditions close to those involved in
the actual glass pressing process, i.e. not only with shear test, but
also in elongation condition.

Glass cylinder compression tests are used to perform equibiax-
ial elongation viscosity measurements [4,5] of glasses at interme-

diate temperatures from 108 to 1012 Pa!s [2]. Biaxial elongation
without shear is achieved uniformly if there is perfect slip at the
plates and otherwise only in the symmetry plane. Other tests are
based on shear viscosity measurement by rotation methods such
as cone and plate rheometer or Couette rheometer in the lower vis-
cosity ranges: 104–106 Pa!s [6] for the former two and 1–104 Pa!s
[7] for the latter. Finally fiber elongation method [8,9] is best suited
from 106 to 1011 Pa!s [10] and to measure high elongation viscosity
of glass under high strain rate.

The literature provides some Pyrex! viscosity values (Fig. 1) ob-
tained by compression tests performed between 620 and 680 "C
(1011.85–108.79 Pa!s [2]), by Couette rheometry performed between
900 and 1520 "C (105.11–101.63 Pa!s [2]) and by fiber elongation
method performed between 545 and 645 "C (1013.6–1010.9 Pa!s
[9]). The temperature range from 680 to 900 "C (105–108 Pa!s),
above glass transition and within the forming temperature range,
has not yet been investigated by these usual methods. Glass viscos-
ity is indeed too high to be measured by rotation methods, but low
enough to allow the sample to creep under its own weight while
heating before squeezing, hence making squeeze test performing
difficult.

This lack of data is usually fulfilled by fitting the experimental
data with mathematical models to evaluate the viscosity values
over the whole temperature range involved in the process. The
empirical Vogel–Tammann–Fulcher equation [11] is the most
widely used in the simulation of glass forming processes [12–14].
The Adam Gibbs theory [15] which considers the configurational
entropy to describe the temperature dependence of glasses
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viscosity is more commonly used by physicists, for example to
study geological melts [16,17].

Squeeze test is widely used to measure high viscosities by
pressing a cylindrical sample between two parallel plates. The lit-
erature provides a large number of experimental and theoretical
works related to this method and its application to rheometry
[18]. It is particularly well suited to perform characterization of
viscoplastic materials [19] or yield-stress fluids such as suspen-
sions of spheres [20] or fibers [21] often modeled by Bingham
law [22]. Many test conditions are available [18] (constant force
or speed rate, constant squeezed section or volume, various aspect
ratios) and experiments are performed easily. Moreover analytical
solutions exist for viscous fluid behavior (Newtonian or power law
viscosity [18]) currently assumed for glass rheology while forming
at high temperature. At intermediate temperature elasticity mani-
fests itself and the method is then a very useful tool to study glass
creeping flow, relevant for forming simulation. Nevertheless the
modeling of the test depends strongly on boundary conditions
and especially on sample-plates contact conditions which are not
uniform in the contact area.

This paper details a squeeze test improved by contactless opti-
cal instrumentation and an associated analytical method, both
aiming at enlarging the range of the glass rheology measurement
using compression test up to 900 "C and with larger strains than
usual. The local analytical modeling proposed does not necessitate
to model sample-plates contact condition to evaluate the viscosity
(calculation of strain field at the maximal radius plane). The viscos-
ity data obtained are used to validate the existing fitting models
over their whole range of validity. The data accessed optically also
provide information about the contact conditions (sticking, perfect
slip). Numerical simulations of the tests are performed to validate
elastic and viscous parameters values obtained by comparison
with the experiment.

2. Experimental procedure

2.1. Material and sample preparation

The investigated material is a borosilicate glass designed for
cookware applications (resistant to thermal stresses thanks to an
expansion coefficient lower than 3.10"6 K"1 up to 300 "C) known
under its commercial designation Pyrex!. The composition of very
similar borosilicate glasses is available in the literature as given in
Table 1 [2,23–25]. According to Sipp et al. [2], its glass transition
temperature is 598 "C, relevant with data by Ota et al. [24],
depending on sample heat treatment.

The tested cylindrical samples dimensions are 30 mm diameter
and 20 mm height. They were machined in a 22 mm thick plate
using a diamond hole saw with water cooling and lubrication.
The two flat faces were grinded parallel. Height/diameter ratio
about 2 is usually chosen in literature in order to reduce the con-
tact area with the compression plates and then minimize the

friction contribution [4]. In the present case, the friction is not ne-
glected and the sample is subjected to creep under gravitational ef-
fect while heating up to testing temperature, and an aspect ratio of
2/3 was chosen to minimize its variation while creeping. The
resulting residual stresses are neglected afterwards.

2.2. Experimental setup and optical measurements

Cylinder compression tests are performed with a 50 kN MTS
810 servohydraulic universal testing machine. The samples are
squeezed at constant crosshead displacement rate between two
polished compression plates made out of alumina and lubricated
with boron nitride to avoid sample sticking on the plates [26].
The setup is heated in a resistive furnace as shown in Fig. 2. Com-
pression load and crosshead displacement are measured by the
way of the testing machine acquisition setup (50 kN MTS
661.20F-62 load cell). According to the stiffness of the setup, about
177 kN!mm"1, and the maximal load applied, lower than 25 kN,
the relative error on the effective sample deformation using the
crosshead displacement is lower than 1.5%.

The test temperature ranges from 650 to 900 "C, and the cross-
head displacement rate from 0.0833 to 2 mm!s"1. At high temper-
ature, the crosshead displacement has to be fast enough to
overcome the creep under gravity of the specimen. Stresses, strains
and strain rates are deduced from measured loads, displacements
and displacement rates and are reported in Table 2. Stresses lower
than 20 MPa have been applied, involving no shear thinning effect
according to Sipp et al. [2].
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Fig. 1. Temperature range of the different set of bibliographical data [2,9].

Table 1
Chemical composition of Pyrex! borosilicate glasses [2,8,9,23–25].

Oxides mol.%
[23]

wt.%
[2]

wt.%
[8,9,25]

wt.%
[24]

SiO2 82.57 81.10 81.00 80.00
B2O3 10.81 12.30 12.60 13.00
Al2O3 1.23 2.05 2.40 2.25
Na2O 5.13 5.20 3.90 3.50
K2O 0.13 0.20 – 1.15
CaO 0.05 0.05 – –
MgO 0.05 0.03 – –
TiO2 0.02 0.02 – –
FeO 0.01 0.01 – 0.05

Fig. 2. Glass squeezing test experimental setup.



The mechanical measurements are completed by a contactless
instrumentation consisting of a 8-bit Qimaging! Qicam CCD digital
camera (resolution: 1360 # 1024 pixels, lens: Nikkor Nikon 50 mm
f1.8) and a computer performs the data logging at a maximum rate
of 10 Hz. Image processing provides the coordinates of any point
on the sample external surface while squeezing. Typical magnifica-
tion factors are 22.2 pixels/mm. The origin of the optical measure-
ment is the top plate that remains fixed during the test. The
samples surface does not exhibit any texture at high temperature,
and it is therefore very difficult to track with the camera several
points independently. Consequently it is impossible to follow the
trajectory of a material point located on the profile of the sample
as it is currently done at room temperature [27]. The Lagrangian
description of the profile is then impossible to monitor, conse-
quently the Eulerian description of the radius of the sample is used
in Section 3. The procedure used to extract the data from the image
acquisition is described in next section.

2.3. Image processing procedure

The exact dimensions of the sample at room temperature being
known, a first image is acquired before any preheating of the sam-
ple to calibrate the magnification factor from the mean values of
sample diameter and height. The apparent diameter measured in
pixel on the picture is related to the exact diameter of the sample
but is not exactly the same. The relative error in neglecting this
projection effect is lower than 0.12%. The corresponding bias is
lower than 0.035 mm, which is smaller than the pixel size.

The sample profile is extracted using the image processing soft-
ware, Gimp! (Fig. 3). The diameters are measured in a direction
parallel to the upper plate and the heights are measured perpen-
dicularly. The coordinates of six points of the profile are measured,
including the sample/plates contact points. The diameter measure-
ment resolution, corresponding to the thickness of the extracted
profile, is of two pixels (about 0.09 mm) thanks to an optimization

of the contrast between sample profile and background. The sam-
ple height measurement is less accurate because of the weak depth
of field, the perspective effect and a bad contrast between sample
and compression plates.

3. Analytical modeling of squeeze test

3.1. Usual method

Viscosities measured by compression tests are usually deduced
with the assumption that the friction between the sample and the
compression plates is negligible [28–30]. For example, this is
achieved with alumina plates covered with a 50 lm thick platinum
foils [4]. The strain rate is evaluated from the height of the sample
measured with a LVDT sensor, and the stress is the ratio between
the applied load and the sample section, supposed to remain cylin-
drical after deformation (small strains). The viscosity is estimated
by the ratio between stress and strain rate as derived from Newto-
nian fluid equation in a one-dimensional case.

However compression tests implies a 3D state of stress and
could not be reduced to a 1D model [29,31]. In the investigated
temperature range (above glass transition), creep occurs during
the tests but also before due to gravitational effect. Moreover con-
tact without friction cannot actually be achieved and shear stresses
while squeezing [29] cannot be fully avoided, leading the specimen
to take a barrel shape geometry (barrel effect). It is therefore nec-
essary to take into account the actual sample shape during testing
to determine the viscosity. It has been made possible by the use of
contactless instrumentation described in the previous section.

3.2. Squeezing problem representation

The sample is assumed to be a continuous medium X of the
space mapped by a cylindrical coordinate system (er,eh,ez). Function
f provides a Lagrangian description of the sample deformation that
associates at any point M0 (r0,h0,z0) of the initial medium X0, a
point Mt (rt,ht,zt) of the deformed medium Xt at time t (Fig. 4).
The boundary of X in the r-axis is described at any time by the pro-
file of the sample defined as a material field R, written RL under its
Lagrangian form and RE under its Eulerian form. The medium is as-
sumed to be axisymmetric around ez all along the test, and for sake
of simplicity R(z0,0) is written R0(z0). Subscript 0 denotes initial
values.

3.3. Strain and strain rate evaluation

In this subsection, the relationships between Lagrangian and
Eulerian descriptions of the problem geometrical variables are de-
scribed. This step is mandatory to obtain the Lagrangian field (re-
lated to material properties) from the Eulerian field, which is
accessed from shape measurement on nontextured samples. Fur-

Table 2
Temperature, stress, strain and strain rate range for each test.

Sample
n"

Temperature
("C)

Crosshead
displacement
rate (mm!s"1)

Max
stress
(MPa)

Max
strain
(%)

Strain rate
(10"2!s"1)

Min Max

1 650 0.02 16.3 19.3 0.123 0.141
2 700 0.00833 1.13 51.7 0.0512 0.0696
3 700 0.02 8.56 70.5 0.123 0.262
4 700 0.1 15.8 51.5 0.429 0.786
5 700 0.2 18.8 41.2 0.620 1.470
6 760 0.0333 0.604 50.8 0.205 0.276
7 750 0.2 7.28 69.4 1.23 2.51
8 800 0.2 0.255 27.5 0.629 1.48
9 800 2 8.67 62.3 8.48 20.9

10 850 2 1.69 63.5 5.88 23.0
11 900 2 0.605 48.2 0.290 21.3

Fig. 3. The steps toward profile extraction: image (a), contour extraction (b), colors inversion (c) and contrast increase (d).



ther details about this modeling are available in reference [32]. The
following assumptions have been made.

(1) Strain and strain-rate induced stresses dominate over all
others, specifically gravity, inertia and surface tension. The
sample is assumed to be in a rest state at the beginning of
the squeezing.

(2) The retaining plates remain parallel and coaxial during each
experiment and the rate at which they approach is imposed.
The plates do not rotate.

(3) The system, including the deforming sample, remains
axisymmetric.

(4) Only the position of the free surface of the deforming sample
can be monitored, so that the entire time-dependent flow
field within the sample has to be derived from a knowledge

of the temporal history of this free surface and of the plate
positions.

(5) Thin plane slices of the sample, parallel to the plates, remain
parallel throughout the deformation, so that the velocity
vector, and the strain and strain-rate tensors, within the
sample can be deduced, on the basis that the sample is
incompressible. Without this assumption, a fully general
two-dimensional time-dependent flow field would arise; in
the present case the problem is simplified by the z-velocity
(vertical) being independent of radial position for any z-
position.

(6) A rheological model is then assumed to apply. In the early
part of phase I (see Fig. 5), the material is assumed to behave
as an elastic solid with fixed modulus. In phase II, it is
assumed to behave as a viscous Newtonian fluid. This in
principle allows the stress state to be obtained throughout
the sample at the relevant times. This behavior is modeled
by a CREEP law which in 1D is equivalent to a linear visco-
elastic Maxwell model under quasi-monotonic state of stress
(slow monotonic loading are applied here, implying a very
low Deborah number, about 5. 10"3).

(7) The model does not need to assume friction law. However, to
evaluate the stress tensor at the glass-plate interface, the
slip distance is assumed to be proportional to radial coordi-
nate, as derived from Eq. (1). Slip is then assumed to occur
over the entire contact surface.

(8) Uniform isothermal conditions are assumed.
(9) Initial and subsequent symmetry about a central plane in the

sample are also assumed.

These kinematical assumptions lead to Eq. (1). Taking into ac-
count continuum mechanics theory [18], this set of assumptions
allows to express the deformation gradient F, defined as the
Lagrangian gradient of f (Eq. (2)). Note that the assumption has
not been made, that the sample initial shape is cylindrical.

rt ¼ r0
RL

R0
ð1Þ

FðtÞ ¼

RL
R0

0 r0
R0

@RL
@z0
" RL

R0

@R0
@z0

! "

0 RL
R0

0

0 0 @zt
@z0

#########

#########

ð2Þ

In the case of an incompressible material at constant temperature,
mass conservation is equivalent to volume conservation, then
detF = 1, that implies Eq. (3). The link between Eulerian and
Lagrangian gradient of R, Eq. (4), leads to Eq. (5) for F [32]. The
strain rate tensor D (see Eq. (6)) is deduced from F and its temporal

Fig. 6. Comparison of the quadratic fit (white line) with sample profile (sample 9).

Fig. 4. Sample coordinates over time for test analytical model.

Fig. 5. Experimental stress–strain curve (sample 9) and identification ranges.



derivative _F . In Eqs. (5) and (6) respectively, Fand D are only func-
tions of the Eulerian description of R and its derivatives, whose
determination from optical measurements is described in Section 2.
Any strain tensor can be derived from Eq. (5).
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In the symmetry plane, the radius is maximal (dRE/dz = 0). The
Eqs. (5) and (6) can then be simplified. This assumption leads to
diagonal expressions of F and D, Eqs. (7) and (8), depending only
on the initial and current maximum radius and its temporal
derivative.
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0 0
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ð8Þ

These expressions are very useful for the identification of con-
stitutive laws because it means that the strain and strain rate field
is uniform in the symmetry plane, as well as stress tensor for most
of constitutive laws linking stress to strain or strain rate. Moreover,
the evaluation is less sensitive to friction with the plates because it
uses the local variable RE, instead of using the sample height, a glo-
bal variable. Small strains tensor reduces in this case to Eq. (9).

e ¼

RE
R0
" 1 0 0

0 RE
R0
" 1 0

0 0 R0
RE

! "2
" 1

#########

#########

ð9Þ

3.4. Stress tensor evaluation for a Newtonian fluid

The Newtonian fluid law relates deviatoric stress tensor to
strain rate tensor, through viscosity g. In the present case, this rela-
tion simplifies according to Eqs. (10) and (11).

rzz " rrr ¼ 3gDv
zz ð10Þ

rzr ¼ 2gDv
zr ð11Þ

Eqs. (6) and (11) show that it is possible to evaluate shear stres-
ses at any point of the sample if viscosity value is known, using
profile monitoring data.rzz integration over a horizontal sample
section provides squeezing load whose experimental value is avail-

able. Nevertheless its calculation thanks to Eqs. (10) and (6) is not
immediate as rrr is unknown. Dynamic equilibrium in an axisym-
metric problem reduces, in a cylindrical coordinate system along r
and z axis, to Eqs. (12) and (13).

q @
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@rrr
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@zt
ð12Þ

q @
2zt
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rt
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ð13Þ

Eq. (12) can be integrated along the radial axis in the symmetry
plane (where shear components have been demonstrated to be
zero) between current and final radius. The radial stress component
is deduced, Eq. (14), and then rzz, Eq. (15), thanks to Eqs. (8) and
(10). Squeezing load is then accessed through integration of Eq.
(15) over the sample symmetry plane section.
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Eq. (13) reduces to Eq. (16) for an incompressible Newtonian fluid,
thanks to Eqs. (6) and (11). The new equation can be numerically
integrated along z axis between symmetry plane and current z-
coordinate to provide the expression of rzz in the whole sample
and especially at sample/plate contact.
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Because of low constant crosshead displacement rate, accelera-
tion components are estimated about 1 Pa from Eq. (12) and exper-
imental results, and can be neglected compared to squeezing
contribution, higher than 200 kPa. Moreover normal stresses are
zero at the edge of the sample if atmospheric pressure and surface
tension contributions are neglected. Using a surface tension value
of 0.27 N!m"1 and assuming half height and maximal radius of
the sample as principal curvature radii, the contribution to radial
stress is lower than 200 Pa. Finally gravity contribution is also
small compared to squeezing contribution. Vertical stress in the
symmetry plane and normal and tangential stresses at sample/
plate interface reduce then to Eqs. (17)–(19) respectively.
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3.5. Identification of a CREEP law

A CREEP law describes the behavior of a material exhibiting elas-
ticity as well as viscosity loaded under quasi-static conditions. The
total strain rate is divided into a viscous and an elastic component.

The viscous component is supposed to be Newtonian (Eqs. (10)
and (11)) and the elastic one is described by the generalized
Hooke’s law. In our tests, it has been verified that the radial stress
component could be neglected compared to axial ones. The total
strain rate axial component is then given by (Eq. (20)).



Dtotalv
zz ¼ Delastic

zz þ Dviscous
zz ¼ 1

E
_rzz þ

1
3grzz ¼ "2

_RE

RE
ð20Þ

The viscous and elastic parameters are identified by minimizing
using a least square criterion, the discrepancy between analytical
and experimental strain rate. The axial stress and its temporal
derivative are assumed to be independent on radial coordinate
(consistent with the kinematical assumptions made above) and
are imposed.

4. Results

4.1. Phenomenological description of the squeezing process

The sample profile is fitted using a quadratic polynomial in or-
der to facilitate the evaluation of geometrical parameters (height,
RE

max, dRE/dz. . .) as seen in Fig. 6. Stress (Eq. (17)) is plotted as a
function of strain from squeezing load measurement (Fig. 5). The

collected data allow to divide the squeezing sequence into four
steps (Figs. 5 and 7). The first step (small strains) involving linear
behavior due to instantaneous elastic response of the material, is
followed by relaxation phenomena. The second step is defined by
a slow stress increase until 20% strain due to viscous flow.

The trajectories of five points of the initial profile are plotted on
Fig. 8 as well as radius RE and profile slope dRE/dz as a function of
strain. During the second step, sliding with friction occurs as shown
by linear radius increase (Fig. 8b) combined with nonlinear profile
slope increase (Fig. 8c). Sliding was also investigated by post mortem
sample observations, and it was found that no slip occurs above
800 "C. In fact the sliding distance depends strongly on temperature
(Fig. 7). Above 800 "C, sliding amplitude is reduced (radius increase
lower than 7%) and it can be neglected as it is currently the case in
glass forming modeling [14] (sticking conditions).

During the third step, radius increases exponentially, as well as
stress, whereas the slope increases almost linearly as a result of
sticking (Fig. 8). The fourth step takes place above 45% strain: the

Fig. 7. Contact conditions evolution during the tests (photograph of sample 7).

a b c

Fig. 8. Experimental data processing results: trajectories and profiles (at 1, 2, 3, 4, 5, 6, 6.5 s), radius R and profile slope dR/dz evolution with strain (sample 9, 800 "C,
2 mm!s"1) of five profile points.



initial free lateral face close to the compression plates begins to
stick on them. The data processing procedure, assuming slices
method hypothesis, is no more valid in the two last steps.

4.2. Experimental verification of hypothesis

The sample volume is evaluated at any time by integration of
the measured sample profile. Relative volume variation (volume
variation/initial volume) during the tests is plotted in Fig. 9a. It
could be observed that the quasi-linear decrease of the volume is
quite small during the test (less than 5%), and validates the incom-
pressibility assumption.

Eqs. (7)–(9) assume that the maximal radius is located at the
symmetry plane. This is verified for most of the tests, as reported
in Fig. 9b where the trajectories of the maximum radius point is
plotted and compared to the middle of the two plates (continuous
line). Both curves follow each other consistently, except at low
temperature. At the beginning of the tests, the sample is cylindrical
and the maximal radius point is not well defined. Nevertheless, it
does not generate significant error because the radius is constant
all along the profile and then its gradient is negligible. It can also
be observed that the maximum radius point z-coordinate de-
creases when the temperature increases due to the creep of the
sample while preheating.

The strain rate Dzz along the squeezing axis has been evaluated
from radius measurement using Eq. (8) and compared to the usual
evaluation from height measurement (ratio between velocity and
height) [4]. Fig. 9c shows that, in the present case, significant dif-
ferences are observed (over 17%): strain rate from height data is
under evaluated at low strain level (where the actual radius in-
crease is higher due to barrel effect) and over evaluated at high
strain level. The proposed method allow a more accurate identifi-
cation since local input data are used.

4.3. Elastic modulus determination

As described in Section 4.1, the stress initially increases linearly
with strain as a result of instantaneous elastic response of the
material. In this small strain range, loading is assumed to be unidi-
rectional. The elasticity modulus is identified using (Eq. (20)) at the
same time as viscosity (Fig. 5). Fig. 10 shows its evolution with
temperature above glass transition (600 "C). A rapid decrease is ob-
served until the modulus tends toward zero at elevated tempera-
ture. If the curve trend matches bibliographical data, the values
are significantly lower than those reported from ultrasonic mea-
surement [5] (about 30 GPa at 700 "C). Nevertheless the results re-
ported here are identified in situation close to processing condition
and provide relevant test simulation results (cf. Section 5).

4.4. Viscosity determination

From Eq. (20), squeezing stress is expressed for a CREEP law as a
function of viscosity and measured parameters. It is then possible
to identify the viscosity value that minimizes the bias between
model and experiment. Nevertheless glass behavior is not strictly
viscous and elastic deformation occurs as observed in Section 4.1.
Moreover the assumptions about bi-axial flow are not valid any
more for high strains. It is therefore important to define an identi-
fication strain range where elasticity could be neglected and flow
assumptions are still valid. This is achieved in stage II between
10% and 20% strain, where experimental curves are very properly
fitted (Fig. 5) by the model. The viscosity values identified for each
test are plotted as a function of temperature (Fig. 11) and fitted by
a Vogel–Tamman–Fulcher law [11], Eq. (21) where g is the viscos-
ity, T the temperature, AVTF, BVTF and TVTF are material constants.

log g ¼ AVTF þ
BVTF

T " TVTF
ð21Þ

Fig. 11a reports the values of the viscosities evaluated in the
present work using image processing and those given in the liter-
ature (Sipp et al. [2] and Simmons et al. [9] for a close composition
glass, and Arc International Cookware internal data for the same
composition). In the identification range (650–900 "C), viscosity

. . . .

Fig. 9. Relative evolution of sample volume while squeezing (a), trajectory of the maximum radius point while squeezing (b) and comparison of strain rate evaluated from
height and radius data (sample 9).

Fig. 10. Elasticity modulus evolution with temperature.



values reported here (our experimental data) show a good agree-
ment with the bibliographical data, and fill the gap between pre-
existing experimental results. Moreover these values are in conti-
nuity with Arc International Cookware data at higher and lower
temperatures as shown by the Vogel–Tamman–Fulcher model
(Fig. 11b).

4.5. Friction coefficient evaluation

As reported in Section 4.1, during the second step of the tests,
sliding occurs and viscous flow is predominant. The stress tensor
components can be evaluated in this strain range, and especially
tangential and normal stresses at sample/compression plate inter-
face from Eqs. (18) and (19). Fig. 12 shows the results for rzr and
for rzz, i.e. the shear and normal contact stresses. After an initial
linear increase of both components, the tangential stress increases
more slowly until a maximal value. In the linear range, the ratio be-
tween tangential and normal stresses was evaluated to be close to
0.8 under glass pressing conditions. This value can be compared to
those reported in the literature for glass gob sliding conditions in
the delivery system and ranging from 0.4 to 0.8 [33] ; these values
are depending on glass temperature and materials in contact under
conditions where metallic substrate and glass are not at the same
temperature and contact time is very short.

5. FEM modeling of sample squeezing

The FEM modeling of the tests aims at providing a validation of
the material parameters identification process by comparing
experimental results to simulation.

5.1. Abaqus creep model

The modeling of viscous materials can be carried out with the
CREEP law available in Abaqus commercial software [34], associ-
ated to a generalized Hooke’s elasticity law. This power law, Eq.
(22), relates the uniaxial equivalent creep strain rate _!ecr , the uniax-
ial equivalent deviatoric stress ~q (here Mises equivalent stress) and
time t when ‘‘time hardening’’ option is selected.

a b

Fig. 11. Viscosity results: (a) measurement using contactless instrumentation compared to literature (Sipp et al. [2], Simmons et al. [9] and Arc International Cookware
internal data, referred to as AIC) and (b) Vogel–Tamman–Fulcher fitting of different sets of viscosity data.

Fig. 12. Tangential stress as a function of normal stress at sample/plate interface in
the viscous flow range, step II (sample 9).

Fig. 13. Scheme of the computed numerical modeling of the squeezing test.



_!ecr ¼ A~qntm

_!ecr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ecr
: _ecr

q

~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2 S : S

q
ð22Þ

In Eq. (22), _ecr is the creep strain rate tensor and S is the devia-
toric stress tensor. A, n and m are model parameters. Total strain
tensor e is defined as a sum of an elastic eel and a creep ecr strain
tensors, Eq. (23).

e ¼ eel þ ecr ð23Þ

To model Newtonian viscous flow, n is set to 1 and m to 0 and
the parameter A is linked to the viscosity g according to Eq. (24),
(deduced from the Mises stress calculation for a Newtonian fluid).

A ¼ 1
3g ð24Þ

5.2. Input data and calculation processing

A quarter of the section of the axisymmetric sample is modeled
by a 15 # 10.4 mm2 rectangle (exact dimensions of sample n"9)
and meshed with 988 quadrangular linear elements as depicted
in Fig. 13. A symmetry axis is imposed on a vertical edge, number
1, and a symmetry plane on an horizontal edge, number 2, of the
mesh. The second vertical edge, number 3, is free whereas the sec-
ond horizontal edge, number 4, is in contact with a rigid plane sim-
ulating the compression plate. Sticking conditions between sample
and plate are defined on edge 4 as it could be assumed above

Table 3
Computation input data.

Viscosity CREEP law Elasticity

g (Pa!s) A (Pa"1!s"1) m n E (MPa) m
106.92 4.15 10"8 1 0 280 0.499

Fig. 14. Comparison between simulated and experimental squeezing load and sample profile.



800 "C from experimental observations (Section 4). A constant
crosshead displacement rate is modeled by setting half the com-
pression velocity on the rigid plane.

Input data required for the computation are listed in Table 3.
Poisson’s ratio, m, is set to 0.499 to approximate an incompressible
flow without numerical instability. Calculation duration is less
than one minute (2.6 GHz processor, 3 Go RAM) and is performed
without remeshing until the end of the test.

5.3. Results and comparison to experiment

The computation results are compared to experimental data in
order to validate the parameter identification methodology pro-
posed in Sections 2 and 3. The data available for this comparison
are the load evolution while squeezing and the deformed sample
profile. Fig. 14 shows that the profile of the sample is very properly
predicted despite the strong contact assumption. A very good
agreement between computed and experimental squeezing load
(relative error lower than 5% until 30% strain) is observed even
for strains over the viscosity identification range. The experimental
steps I and II described in Section 4.1 are perfectly reproduced, as
well as the beginning of the third step. For very high strains how-
ever (end of the third step and fourth step) the computed load is
overestimated (arising 160% at the end of the test) probably due
to sliding at the contact points during experiment, but also shear
thinning effect under high stresses. Moreover numerical errors
may occur in this strain range because of elements distortion.

6. Conclusion

An analytical method is proposed to process elasticity and vis-
cosity data of glassy materials from contactless instrumented high
temperature squeeze tests. Specific measurement methods such as
video measurement of specimen shape are required to check the
validity of the assumptions and feed in the identification method-
ology with data. Values of elasticity modulus and viscosity are pro-
vided even above glass transition by taking into account barrel
effect. Pyrex! borosilicate viscosity values were compared to bib-
liographical data and where found to fill properly the gap between
the values reported for lower temperature (compression tests) and
higher temperatures (shear tests). Contactless instrumentation
also provides sample/plate contact data useful to understand the
test phenomenology. Moreover the feasibility of friction factor
evaluation during squeezing was verified using this method.
Numerical simulation has shown that elastic and viscous parame-
ters, despite a simplified identification, provide relevant data for
the modeling of the glass viscous and elastic behavior using a creep
model.
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