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1. INTRODUCTION

For more than fifty years, lightweight composite materials have been widely used within the transport
industry, driven by the benefits of mass reduction. To be more specific, in the aerospace industry, sandwich
honeycomb core panels have been used for decades within secondary aircraft parts (e.g., trim panels) and
more recently as primary parts (Airbus A350-XWB or NHIndustries NH90 for instance, fuselage and struc-
tural elements), maximizing the stiffness-to-weight ratio. The weight reduction is however responsible for
a decrease in the panel sound transmission loss and a rise in the acoustic radiation (e.g., mass law before
the coincidence frequency),1 which has to be compensated particularly for acoustical safety and comfort.
Hence, strategies focusing on active and passive reduction of structural vibrations have been designed to mi-
nimize the radiated noise within the aircraft cabin or cockpit. The type of sandwich considered in this paper
is inspired from the trim panel, and consists of a relatively thick and lightweight honeycomb core bounded
on the sides by two thin - but sufficiently stiff - sheets (homogeneous layer or laminates). For instance, the
use of piezoelectric patches or constrained viscoelastic layers increase the structure’s stiffness and damping.
These methods are efficient but imply non-negligible additional mass. In the helicopter industry, trim panel
core cells are filled out with small elements, such as empty elastomer spheres. They are embedded in a way
that prevents a granular effect. They increase the damping at a reduced mass cost. The starting point of this
study is to select the core cells that will be filled out instead of filling all the cells. The idea is to create a
network of heterogeneities within the panel that will modify the structural wave propagation.

On one side, many studies on structural irregularities (manufacturing defaults or modifications made on
purpose) have shown specific and interesting features. Most of the time, these irregularities are arranged
following periodic patterns, as for instance in an aircraft with the ribs and stringers of fuselage frames.2 Ini-
tially, a frequency shift of the density of states (abbreviated DOS) has been observed in proteins3 between
classical - unlocalized - modes called phonons and localized fracton modes, caused by energy localization
phenomena. One-dimensional coupled mechanical oscillator studies4 have highlighted such confinement,
both experimentally and numerically. Rao et al.5 studied large amplitude flexural vibration of stiffened
plates. They used a finite element method to solved a non-linear equation and compared the first six modes
natural frequencies with other studies of the same test-cases. However, he did not investigate the overloa-
ding influence on the mode shape or on higher order modes. Recently, studies have been conducted on
fractal overloaded structures, specifically string6 and membrane.7 Experimental and numerical mode shapes
exhibited fractons with spatial localization of the transverse displacement, which has been validated by a
DOS analysis.

On the other side, acoustical aspects of architectured materials † have also been investigated. The present
study follows on from a patent by ONERA and ATECA of 2015.9 Indeed, they performed acoustic trans-
mission experiments on sandwich panels whose cores were heterogeneously overloaded. Some honeycomb
core cells were filled out by hollowed spheres (made of rigid polymer or damped elastomer), and the dis-
tribution patterns followed Vicsek and Sierpinski fractals. The experimental data suggested that the fractal
distributions not only added lumped mass but also acted as a network of heterogeneities modifying the
wave propagation among the structure and thus the acoustic radiated noise. However, no measurement of
mechanical behavior of the overloaded structures or modeling have been performed.

Furthermore, phononic (or sonic) crystals exhibit frequency band gaps or wave-guiding due to destruc-
tive interferences generated by multiple scattering and wave reflections. Phononic crystal is a larger family
that encompasses vibration in crystal lattices and phonon physics.10 These structures are built by embedding
a periodic array of scatterers in a host medium, either solid or fluid. Studies11 comparing classically ordered
networks with quasi-ordered fractal networks demonstrated that by removing some scatterers, the attenua-

†. This terminology is used by many, as for instance Hasby.8 It is also referred as “hierarchical materials”.
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tion band gaps can be broadened and dropped to lower frequencies. Nouh et al. proposed meta-structures,
as beams12 and plates.13 They were made of aluminum which were drilled to create multiple holes, filled
with a viscoelastic membrane, surmounted by small masses. These local resonators acted as absorbers that
dropped the band gaps towards lower frequencies, which cannot be reached only with the periodicity of the
structure. The propagation surfaces were simulated by studying an elementary cell and considering the plate
as infinite, ignoring the boundary conditions. Band gaps occurred and they achieved reduction of the struc-
tural vibrations in these bands. However, their structures suffered from a loss in the mechanical strength,
due to the manufacturing process.

To summarize, the spatial localization of vibration mode shapes due to the periodic or pseudo-periodic
overloading of structures has been modeled and experimentally studied, as well as the resulting acoustic
radiation but for different purposes and in separate studies. However, to the best of the authors’ knowledge,
they do not account for the vibroacoustical coupling, neither on composite sandwich structures, nor with the
heterogeneities directly inserted within the honeycomb core and following a fractal distribution. Such study
has been performed by Derré and Simon14 in a one-dimensional structure : a beam. The results are encoura-
ging, both from a structural and an acoustical point of view. To be applied to an industrial construction, the
structural model has to be extended to two-dimensional case : a sandwich plate.
This is the purpose of the present paper, organized as follows. Section 2 describes the mechanical model of
a homogenized sandwich panel. A discrete eigenvalue problem is established and solved through a matrix
formulation. Then, section 3 validates the structural model by a comparison with theoretical analytic results.
Section 4 introduces the fractal overloading and discusses the numerical simulations of the aforementio-
ned model, overloaded by the mass fractal distribution. Finally, some concluding remarks are drawn and an
outlook of the acoustical possibilities is presented.

2. HOMOGENIZED PLATE MODEL

The first section presents the mechanical model of a non-overloaded sandwich panel, governed by ben-
ding dynamics. First, the homogenization of the material is described. Then, the simply-supported case is
fully derived, with a time-harmonic motion equation and a finite differences approximation.

A. COMPOSITE HOMOGENIZATION

A typical sandwich trim panel consists of a lightweight core material trapped between two laminates,
with several plies of glass-fiber. Herein, the core is made of Nomex R©. The purpose of such a core is to main-
tain distance between the laminates and, to some extent resist to shear deformation.15 In the modeling of
acoustic radiation created by mechanical vibration (fluid-structure interaction), bending waves have a pre-
dominant role in the sound frequency domain.1

Considering Nilsson’s simplifying assumptions,16 a low-frequency equivalent bending rigidity of the
whole structure can be derived using Huygens theorem (transport of the second moment of area from the
neutral line of a skin to neutral line of the sandwich structure). For this kind of honeycomb core, there are two
privileged bending directions L and W , linked to orthotropy due to its geometry and construction process.
Most of the time, these directions influence the sandwich layout within the system in order to maximize
their effects. In order to simplify the notations, the L and W directions are taken arbitrarily following the x
and y directions. The equivalent bending rigidities in the x−direction DL

sand and in the y−direction DW
sand

(also written Dx and Dy) are given by Eq. (1), where Ei, Ii, and hi, respectively denote Young’s moduli,
second moments of area (of the cross section), and the thickness of elements. The indexing (c) and (s) are
for the core and skin values. The skins are assumed to be made of an isotropic material. Kim and Hwang17



examined the validity conditions of the approximation used in such a model. The bending rigidity of the
skins projected to the neutral line of the sandwich is predominant. The thickness (hc + hs) confers to the
ensemble a large equivalent bending stiffness, called sandwich effect. In the rest of the paper, the structure
is considered as an orthotropic equivalent material with the bending rigidities approximated by Eq. (1).
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B. SIMPLE BENDING PLATE EQUATION

Under the classical linear hypotheses and approximations,1 a fourth-order theory is used. Considering
a thin Kirchhoff-Love plate, the time-dependency is taken as harmonic, with the corresponding angular
frequency ω. The out-of-plane transverse displacement uz(x, y) of the time-dependent plate transverse dis-
placement u(x, y, t) = uz(x, y)× exp (jωt) governs the equation of motion (2)(

D∇4 − ω2ρh
)
uz(x, y) =

(
Dx

∂4

∂x4
+Dy

∂4

∂y4
+ 2Dxy

∂4

∂2x∂y
2
− ω2ρh

)
uz(x, y) = 0 , (2)

with D, ρ, and h respectively denoting the generic term for bending rigidity (Dxy being the torsional rigi-
dity), the density of the material, and the total plate thickness.

C. FINITE DIFFERENCES APPROXIMATION

In order to use finite differences (abbreviated FD) for the approximation of the spatial derivative opera-
tors, the structure has to be discretized. The FD method is mainly motivated by its convenience of imple-
mentation and a low computing-time cost. It is also justified by the flexibility of the structure meshing for
the integration of heterogeneities at different fractal orders. Finally, it allows an easier understanding of the
results from a physical point of view.

The structure is regularly discretized with Lx = hx× (Nx + 1) and Ly = hy× (Ny + 1), as sketched in
Fig. 1. There areNpts = Nx×Ny points inside the mesh as the exterior points, meaning the edge and corner
points are considered fixed (× in Fig. 1). Indeed, the boundary conditions considered in the present study are
simply-supported on all the edges (abbreviated SSSS). The total number of points is (Nx + 2)× (Ny + 2).
The transverse displacement at position (i) is written as u(i) = u(i).

So, uz(x, y) becomes a discrete variable u(i) and the derivative operators can be approximated with FD.
A centered second-order scheme is used for the fourth-order derivative. The x-direction is taken as reference
to express the stencil support around a point x(i), which gives a classical thirteen points scheme - as sketched
in Fig. 1. Eq. (2) can be recast into a discrete finite differences equation as
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= 0 ,

(3)

with ωn the discrete pulsation. Indeed, due to the variable discretization, the number of degrees of freedom
is equal to the size of the discrete displacement vector u(i), meaning Npts.



Fig. 1: Grid mesh with axis reference and 13 points stencil (− −) for the finite differences approximation.

D. MATRIX FORMULATION

The system created by the equations (3) for the Npts discrete points u(i) is an eigenvalue problem, with
Npts unknowns. On the stencil sketch of Fig. 1, the choice of x as the main index leads to a formulation
that can be easily recast into matrices. Each line of the mesh corresponds to set of (Nx) points represented
in a (Nx)-by-(Nx) matrix. The global matrix is therefore a (Nx × Ny)-by-(Nx × Ny) matrix. The time-
dependency term

(
−ω2

n ρhu(i)
)

is integrated separately at the end of this part in Eq. (9). For a point u(i)
taken far enough from the boundaries, which are treated in the next section, five clusters of points are iden-
tified. A first group of five points (u(i-2), u(i-1), u(i), u(i+1), u(i+2)) can be integrated within a (Nx)-by-(Nx)
pentadiagonal matrix [Mc] with the main expression being
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The second and third groups are (u(i-Nx-1), u(i-Nx), u(i-Nx+1)) and (u(i+Nx-1), u(i+Nx), u(i+Nx+1)). They are
identical because of their symmetry around the central term u(i). Their main expressions can be integrated
into a (Nx)-by-(Nx) tridiagonal matrix [Mm] as in Eq. (5). The fourth and fifth groups are (u(i-2Nx)) and
(u(i+2Nx)). They are identical for the same reason and are composed of a single term on their diagonals(
Dy/h

4
y

)
, which leads to (Nx)-by-(Nx) matrix [Mext], also presented in Eq. (5).
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The global assembly matrix [Mass] of the system can therefore be expressed as Eq. (6).

[Mass] =


. . .

. . .
. . .

. . .
. . .

· · · [0] [Mext] [Mm] [Mc] [Mm] [Mext] [0] · · ·
. . .

. . .
. . .

. . .
. . .

 (6)

The boundary conditions need to be integrated and are modifying the firsts and lasts rows of these matrices.



E. BOUNDARY CONDITION INTEGRATION

In this part, the integration of one condition is presented into details. The others ones are integrated
following the same approach. The panel is considered as SSSS on all of its edges. Therefore, the trans-
verse displacements and the bending momentum are equally null on the extremities.1 The momentum is
approximated with a center FD scheme around a given position x(j), such as Eq. (7)

Mxx = Dx
∂2u

∂x2
=
Dx

h2x

(
u(j-1) − 2u(j) + u(j+1)

)
. (7)

When the global equilibrium Eq. (3) is evaluated along the (x = 0) edge, it is equal to zero with u(i) null
too. If the equation is evaluated on a position marked as (a) on Fig. 1, the point u(i-2) is an edge point,
so it is equal to zero. That leads to the removing of the left term

(
Dx/h

4
x

)
in the second row of the [Mc]

matrix of Eq. (4). If the equation is evaluated on a position marked as (b), the point u(i-2) is off-domain,
and the points u(i-1), u(i-Nx-1) and u(i+Nx-1) are equal to zero because they are on the edge. If Eq. (7) is
evaluated on an edge, it is equals to zero and the central term u(j) is null too. So, the first term u(j-1) is out
of the plate physical domain, but through the equation it is therefore equal to the opposite of the last term(
u(j-1) = − u(j+1)

)
. Thus, the previous relationship leads to

(
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)
, which substituted into the

first row of the matrix (4) gives
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Due to the symmetry of the geometry, the same expressions as the first and second rows are found for the
last and second to last rows respectively. The green six 6 of Eq. (8) corresponds to the derivative in the
y-direction, and therefore is not modified for the point (a), a case in hand taken far from the top and bottom
boundaries. The third and all the other rows are the five components rows of Eq. (4).
If the time-dependency term is reintroduced, the global matrix formulation of (6) is recast into Eq. (9)([

Mass

]
− ω2

n ρh
[
INpts

] )
(U) =

(
ΘNpts

)
(9)

with
[
INpts

]
the identity matrix and

(
ΘNpts

)
the null-vector. The vector (U) =

(
u(1) ... u(NxNy)

)T is the
displacement vector of the u(i) degrees of freedom. Eq. (9) forms an eigenvalue problem, with the solutions
of ωn giving the natural frequencies and associated mode shapes.

3. VALIDATION FOR SIMPLY-SUPPORTED PANEL

This part presents the model validation for a SSSS plate. The model wavenumbers and mode shapes are
compared with the theoretical results. The approximation precision is mainly related to the stencil size.

A. THEORETICAL SOLUTIONS

The analytic harmonic solutions of the transverse displacement (uth) of a SSSS plate under simple
bending dynamics are1

uth(x, y) =

+∞∑
l=1

+∞∑
m=1

al,m φl,m(x, y) with φthl,m(x, y) = sin
(
kthl x

)
× sin

(
kthm y

)
, (10)



where al,m is the amplitude of the mode (l,m), φthl,m(x, y) = φthl (x)×φthm(y) and
(
kth
)2

=
((
kthl
)2

+
(
kthl
)2)

of Eq. (10) being respectively the plate mode shape and the wavenumber. The rotation frequency is a func-
tion of the wavenumber as Eq. (11)

kthl =
lπ

Lx
, kthm =

mπ

Ly
, and ωth =

(
kth
)2 (

D/ρh
)1/2

. (11)

B. WAVENUMBER

The panel is uniformly discretized in (Nx = 180) and (Ny = 162) elements in each direction, leading
to (hx ' 5.6mm and hy ' 5.6mm) stencils, which lie in the standard honeycomb core cell size (for trim
panels, the usual lengths of a core cell lie in the [4.0 ; 6.4]mm range). Table 2 presents a comparison between
the wavenumbers, with kth theoretical values and k the FD model values.{

Diff. = | kth − k | , and Rel. =

(
Diff.

kth

)
× 100 . (12)

The first modes present good results, with small differences. Generally, when the mode order increases, the

Designation Lx Ly hc hs h ρ EL
c EW

c Es Nx Ny

Unit (m) (m) (mm) (mm) (mm) (kg.m-3) (MPa) (MPa) (MPa)
Value 1 0.9 9.56 0.42 10.4 264.4 1.25 0.73 625 180 162

Table 1: Quantities and values of the numerical simulations.

Mode (1,1) (1,2) (2,1) (2,2) (18,4) (28,1)

kth 4.6962 7.1877 7.6556 9.3924 58.247 88.034
k 4.6951 7.1872 7.6513 9.3898 58.023 87.171

Table 2: Comparison between the model and theoretical wavenumbers.

discrepancies between the FD model and the theory increase too. If a higher-order mode is observed, for
instance the mode (18,4), meaning approximately 19 points per wavelength, there is a relative difference of
about 0.004%, which is acceptable. If a resolution limit of 13 points per wavelength is considered, it leads in
the x-direction with Nx = 180 points to approximately fourteen wavelengths, meaning the mode 28 in that
direction. If such a mode is evaluated, for instance the mode of order (28,1), there is a relative difference
of about 0.01%, which is still acceptable. Even though the model slightly underestimates the wavenumbers,
the theoretical and FD model values are in found to be in a very good agreement.

C. MODE SHAPE

The mode shapes are compared using the Modal Assurance Criterion (abbreviated MAC). The MAC is
a measure of the degree of linearity18 between two modes, estimated from their mode shapes. In the present
paper, it is used to compare the theoretical and the FD mode shapes. The auto-MAC of FD mode shapes
has been found to be identically equal to one on the diagonal and zero elsewhere, meaning the modes are
perfectly orthogonal and the linear assumption is confirmed. The cross-MAC between the theoretical and



the FD values has also been calculated, and found with a diagonal of ones and zeros elsewhere. The modes
are orthogonal and well identified, as previously. The simply-supported FD model is considered as validated
compared to the theoretical values, in terms of wavenumbers and mode shapes.

4. OVERLOADED PANEL SIMULATIONS

This part presents how the heterogeneities are integrated within the structure and how they are modeled
in the FD model. The fractal distribution is then presented. Finally, the influence of the overloads is analyzed
through the simulations of fractal panels. The influence of the fractal mode shape is investigated, as well as
the impact on the modal frequencies.

A. INTEGRATION OF AN OVERLOAD

If a honeycomb core panel is filled out with small heterogeneities, they add mass and damping within
the structure. However, in the case where only a few core cells are filled in order to create a network of
scatterers for the structural wave, the main effect is the added mass. Indeed, it is locally creating a mechanical
impedance breakdown, due to the material differences (e.g. composition and density), giving rise to reflected
and transmitted waves. A small part of the energy can also be dissipated locally, through material damping
mechanism. This phenomena occurs mainly when the distance between the heterogeneities is proportional
to half the structural wavelength, leading to wave interferences. If the point x(k) is overloaded with a mass
Mover (in kg), Eq. (3) is modified into
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with
(
Mover

hxhy

)
being a surface density (in kg.m-2). The local overloading mass ratio αloc is defined as

Eq. (14)
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) . (14)

Eq. (13) can be expressed as
αloc

ρh

(
D∇4u
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= ω2

n u(k) , where the FD scheme is not expanded or recast into

a matrix formulation like ( 1

ρh
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n

[
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(U) =
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(15)

where [Ik,αloc ] is the identity matrix, where the term of the k-line is replaced by (αloc).

B. INTEGRATION OF FRACTAL OVERLOADED DISTRIBUTIONS

The term “fractal” † has been introduced by Mandelbrot in 1977.19 It defines a infinite curve or surface
generated by a self-similar pattern that repeats itself - or a part of itself - at different scales. A construction

†. inspired from the Latin word fractus that means broken or fractured.



generated by a finite number of iterations nfrac is called pre-fractal. In order to simplify the notation in this
paper, the considered pre-fractals are called simply fractals or nfrac-order fractals.

The distributions used in this study are inspired from the Cantor set. Its iterative construction process
for mono-dimensional structure has a homothetic ratio of three : at each iteration (order), the element is
sub-divided into three equal parts. The first three orders are presented on the top of Fig. 2a, as well as the
order zero, which is the initial structure. The distributions used are strongly inspired from this set, except
that only the extremities of the sub-sets are marked and correspond to the local overloads, sketched by black
dots (•) on the bottom of Fig. 2a. These are the patterns used for mono-dimensional structures as in previous

(a) Cantor set and overloaded beam. (b) A (2-2) order fractal.

Fig. 2: (a) Cantor set on the top and beams overloaded with fractal on the bottom, both from orders 0 up
to 3, and (b) a (2-2) order fractal distribution on a panel, the (•) representing the punctual overloads.

studies,7, 14 which has been extended here for two-dimensional panels. Figure 2b presents for instance the
example of a fractal of second-order both in the x-direction and in the y-direction, called (2-2) order fractal,
in the case of a rectangular panel of size 1m × 0.9m, with the characteristics of Table 1. In the mono-
dimensional case, the nfrac

x order fractal results in px masses calculated : px =
∑nfrac

x
i=1 2i = 2×

(
2n

frac
x − 1

)
.

The same relation can be used in the y-direction such as py = 2×
(

2n
frac
y − 1

)
. The total number of masses

pxy for a two-dimensional structure as sketched on Fig. 2b is derived by combining these two relations and
removing the first-order points which appear four times : pxy = 2px + 2py − 4 = 2× (px + py − 2) . The
pxy overloads are integrated within the system using the same procedure as described in the previous section
4.1, leading to the multiplication of the associated matrix lines by (αloc) of the matrix [Iαloc ]. For this study,
each overload is assumed to have the same mass Mover. The global total overlaoding ratio αtot is defined
such as the ratio of overloaded fractal beam mass over the non-overloaded beam mass as Eq. (16)

αtot =
(ρhLxLy + pxy ×Mover)

ρhLxLy
= 1 +

pxy ×Mover

ρhLxLy
. (16)

C. INFLUENCE OF THE FRACTAL ORDER

The plate characteristics are tabulated in Table 1. Table 3 sums up the overloading positions along a
length normalized to the unity. The inter-mass distance of order 2 is about a2 = 1/9 ' 0.1111 and of order
3 about a3 = 1/27 ' 0.037. The mode (17,5) is studied in this paper because of its wavelengths. It presents
sixteen nodes in the x-direction, if the extremities are not counted, and four in the y-direction. These nodes
are separated by a distance of λ17/2 = 0.0588m (or per cent in this case, as the length is equal to the unity).
The nodes positions are listed in (17).



Position

Frac. 2 / / 0.1111 0.2222 / / 0.3333
Frac. 3 0.0370 0.0741 0.1111 0.2222 0.2593 0.2963 0.3333

Frac. 2 0.6667 / / 0.7778 0.8889 / /
Frac. 3 0.6667 0.7040 0.7410 0.7778 0.8889 0.9260 0.9630

Table 3: Overloading positions in per cent along a direction for fractal orders 2 and 3.

X

(a) Empty panel.

X

(b) A (3-3) order panel.

Fig. 3: (17,5) mode shapes of (a) an empty panel, and (b) a (3-3) fractal panel with αtot = 1.0946 .

Node positions :
{0.0588; 0.1176; 0.1765; 0.2325; 0.2941; 0.3333; 0.3529; 0.4118; ...

0.5294; 0.5882; 0.6471; 0.7059; 0.7647; 0.8235; 0.8824; 0.9414} .
(17)

By comparing the node and mass positions, it can be seen that several nodes are very close to the overloads,
both for order 2 and 3. That is why in this case the mode shapes are modified along the fractal distribution
as in Fig. 3b. Indeed, as half the wavelength is comparable with the inter-mass distances, the bending waves
are reflected and lead to destructive interferences. This is why the amplitudes are smaller. This phenomena
occurs for all the multiples of half the wavelength. This phenomena will not happen if the masses are
positioned perfectly on the nodes, because they will be considered as fixed and will only reduce the modal
frequency due to the mass. The mode (17,5) has one of its node on a mass, but this is negligible. In the (2-2)
fractal panel of Fig. 3b, it can clearly be seen that the two lines of masses in the x-direction (at y = [0.3; 0.6])
have shown reduced amplitudes in the laterals parts, whereas the amplitude in the mid-part is less affected.

As a comparison, the mode (18,6) is quickly presented in Fig. 4, with a non over-loaded panel and a
fractal (2-2) one. There is barely no difference between the two mode shapes, even though some masses are
not perfectly on nodes. These differences explain the small discrepancies between the mode shapes.

D. EVOLUTION OF THE MODAL FREQUENCIES

The Table 4.4 presents the frequencies of the mode (17,5) for different fractal orders and overloadings.
As expected, the frequency decreases as the fractal order increasing, since the plate becomes heavier. To



X

(a) Empty panel.

X

(b) A (2-2) order panel.

Fig. 4: (18,6) mode shapes of (a) an empty panel, and (b) a (2-2) fractal panel with αtot = 1.0202 .

be more precise, for a density increase of αtot, the mode frequency is decreased by a factor
(
α
−1/2
tot

)
, from

Eq. (11). Indeed, the frequency ratio between a non-overloaded and a fractal panel can be written as Eq. (18)

f frac

fnon-o =
(k)2 (αtotD/ρh)1/2

(k)2 (D/ρh)1/2
=
(
α
−1/2
tot

)
. (18)

The mode wavelength is assumed to be the same in both cases, only the amplitude is modified by the
presence of the fractal, as it can be seen in Fig. 3 and 4. For instance, this frequency ratio between the
non-overloaded panel and the (3-3) fractal panel with an overloading (αtot = 1.0946) is (1.0431/1.0923 =
0.95501), where the theoretical value is (1.0946−1/2 = 0.9558). The relative errors between the theory and
the FD model have been calculated and found to be very small, as shown in Table 4.4. Indeed, the largest
relative difference is about 2.6% for this mode.

Fig. 5: Modal densities of the empty (•)
and of the (3-3) fractal panels (∗).

Frac. Mover αloc αtot f (kHz) Rel.

Empty / 1 1 1.0923 /

(2-2) 0.0025 0.0325 1.0202 1.0747 1.12
(2-3) 0.0025 0.0325 1.0364 1.0650 1.62
(3-2) 0.0025 0.0325 1.0364 1.0621 1.89
(3-3) 0.0025 0.0325 1.0525 1.0565 2.04

(2-2) 0.0045 0.0183 1.0364 1.0621 1.89
(2-3) 0.0045 0.0183 1.0655 1.0513 2.21
(3-2) 0.0045 0.0183 1.0655 1.0476 2.56
(3-3) 0.0045 0.0183 1.0946 1.0431 2.32

Table 4: Overloading, fractal values
for the mode (17,5).

The modal density of the plate is calculated by only taking into account the bending modes, as in the
mechanical model. Under the hypothesis of a thin flat plate (wavelengths of the considered modes much



larger than the plate thickness), an approximation1 of the modal density n(ω) is given by Eq. (19)

n(ω) =
dNb

dω
=
LxLy

4π

(
ρh

D

)1/2

, (19)

with Nb the mode-count function. It can be observed that the theoretical modal density of dispersive ben-
ding waves is constant and independent of the frequency. Figure 5 presents the modal density of the non-
overloaded panel and of the (3-3) fractal panel, with overloading αtot = 1.0946. The mean modal density
of the 400 first modes are 0.196 mode per Hz for the non-overloaded beam and 0.2 for the fractal beam.
The modal densities are not perfectly constant but still present a vertical asymptote. As the increase of den-
sity is αtot, the modal density is increased by a factor α1/2

tot , from Eq. (19). The theoretical increase can be
calculated with Eq. (20) as the ratio of modal densities of the fractal panel over the non-overloaded panel.

nfrac/nnon-o =
(
α
1/2
tot

)
. (20)

In this case study, it is equal to 1.0462. The numerical increase equals (0.2/0.196 ' 1.0204). The relative
error between the theory and the FD model is (1.0462− 1.0204) /1.0462 = 2.47%. From the previous
result, the model is able to predict the variation of the modal density.

5. CONCLUSION

The effects of a fractal distribution of masses on the mechanical behavior of sandwich plates have been
studied in this paper. The composite structure is modeled as a homogenized material under simple bending
dynamics, then discretized and approximated by a finite difference method. Heterogeneities are integrated
within the material as additional masses distributed following a Cantor-like set. The eigenvalue problem is
finally solved numerically to obtain the in vacuo modal basis. The non-overloaded model has been validated
with a comparison to the analytic results for simply-supported boundary conditions. Simulations of fractally
overloaded panels exhibit localization phenomena when the inter-mass distance is comparable to half the
structural wavelength. It has been demonstrated that half the wavelength needs to be close to this dimension
but not exactly equal, otherwise the masses are on the nodes and therefore do not modify the mode shapes.
The fractal order has been investigated and the higher is the fractal mode, the strongest is the localization.
The increase of the modal density is observed and well predicted based on the mass increase.

Future work will include computing of the acoustic radiation of such a structure, as is already done in
the mono-dimensional case14 for a beam. The current implementation is already valid for these calculations,
as the radiation efficiency can be computed using a radiation resistance matrix1 obtained from the transverse
displacements of the structure discretized in elementary radiators. Indeed, the finite difference discretization
provides elements which fulfill the hypotheses in terms of size compared to the wavelength. An extension of
the finite differences model will include a more advanced modeling of the composite dynamics, to improve
the precision of the mode shape and frequency, especially at higher frequencies. It would therefore take into
account the shear effects, and the coupling between the transverse and torsional displacements.

The major benefit of the presented paper is its ability to intrinsically model and simulate the bending dy-
namics of overloaded structures, with a reduced cost-time, compared to finite element methods for instance,
in terms of time and memory consumption. The mode shape reduction and localization due to the fractal
pattern show encouraging results for the acoustical radiation, with its application to the aerospace industry.
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