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FREE BOUNDARY PROBLEMS INVOLVING SINGULAR

WEIGHTS

JIMMY LAMBOLEY, YANNICK SIRE, AND EDUARDO V. TEIXEIRA

Abstract. In this paper we initiate the investigation of free bound-

ary minimization problems ruled by general singular operators with A2

weights. We show existence and boundedness of minimizers. The key

novelty is a sharp C1+γ regularity result for solutions at their singular

free boundary points. We also show a corresponding non-degeneracy

estimate.
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1. Introduction

We study local minimizers of singular, discontinuous functionals of the
form

J(u,Ω) =

∫
Ω

(
ω(x)|∇u|2 + χ{u>0}

)
dx −→ min, (1.1)
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where Ω is a bounded domain of Rd, d ≥ 2, and ω(x) is a measurable,
singular A2 weight in the sense that 0 ≤ ω ≤ +∞, both ω and ω−1 are
locally integrable, and(∫

Br(z0)
ω

)(∫
Br(z0)

ω−1

)
≤ Cr2d,

for all balls Br(z0) ⊂ Ω. Thus, ω may become zero or infinity along a
lower-dimensional subset of Ω, hereafter denoted by:

Λ0(ω) := ω−1(0), Λ∞(ω) := ω−1(+∞).

If will also be convenient to denote Λ(ω) := Λ0(ω) ∪ Λ∞(ω). The class of
A2 weight functions was introduced by Muckenhoupt [13] and is of central
importance in modern harmonic analysis and its applications. A canonical
example of an A2 function is |x|α with −d < α < d — having an isolated
singularity at the origin. Recent results, see for instance [3], show A2 weights
play an important role in the theory of non-local diffusive problems. In
particular, when ω(x) = |x1|β, −1 < β < 1, and the axis {x1 = 0} is a
subset of ∂Ω, then (1.1) falls into the case studied in [2], where fractional
cavitation problems are considered.

The mathematical analysis of free boundary cavitation problems goes
back to the pioneering work Alt and Caffarelli [1], corresponding to the
case ω ≡ 1 in (1.1). In the present work, we start the investigation of free
boundary problems of the type (1.1), for possibly singular weights, that is
Λ∞(ω) 6= ∅. Similarly, we can treat the degenerate case, i.e. when Λ0(ω) 6=
∅. However, for didactical purposes, in this paper we shall restrict the
analysis to singular weights.

We show existence of a local minimizer u, and analyze analytic and weak
geometric properties of the free boundary ∂ {u > 0} ∩Ω. The latter task is,
in principle, a delicate issue. For instance, one notices, for singular weights,
the existence of two distinct types of free boundary points:

(1) ∂ {u > 0} ∩ Λ∞ = ∅;
(2) ∂ {u > 0} ∩ Λ∞ 6= ∅.

Case (1) refers to a non-homogeneous version of the Alt-Caffarelli prob-
lem, [1], as, away from the singular set, the weight is uniformly elliptic, see
for instance [4, 5, 9, 15]. Case (2) is rather more delicate, and in particular,
a central result we prove in this current work classifies the geometric behav-
ior of a local minimizer near a free boundary point z0 ∈ ∂{u > 0} ∩ Λ∞,
in terms of its singularity rate near z0 — a pure analytic information of
the problem. Indeed, we show local minimizers are precisely C1+γ smooth
along their corresponding free boundaries, where γ is half of the geometric
blow-up rate of ω as it approaches the singular set Λ∞; see condition (H3)
for precise definitions.
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The paper is organized as follows. In Section 2 we formally present the
minimization problem we shall study. A brief description of the initial math-
ematical tools required in the investigation of A2-singular free boundary
problems is also delivered in that section. In Section 3 we discuss existence
and L∞ bounds for minimizers, whereas in Section 4 we establish various
compactness properties for family of minimizers. In Section 5 we prove the
key novel result of the paper, namely that solutions to A2 cavitation prob-
lems are C1+γ regular at their singular free boundary points, where γ is
a sharp prescribe value. In particular, if z0 is a free boundary point and
ω(z0) < +∞, that is it is non-singular, then γ(z0) = 0 and we recover the
classical Alt-Caffarelli Lipschitz regularity estimate for cavitation problems.
Finally in Section 6 we obtain a quantitative non-degeneracy estimate for
solutions near its singular free boundary points.

2. Mathematical set-up

In this section we give a precise description of the minimization problem
considered in this article and gather some of the main known results about
elliptic equations involving A2 weights, required in our study.

Given an open set Ω ⊂ Rd, we denote by M(Ω) the set of all real-valued
measurable functions defined on Ω. A nonnegative locally integrable func-
tion ω : Ω → R is said to be an A2 weight if ω−1 is also locally integrable
and

sup
B⊂Ω

( 1

|B|

∫
B
ω
)( 1

|B|

∫
B
ω−1

)
≤ C1, (2.1)

holds for a constant C1 > 0 and any ball B ⊂ Ω. Two weights are said to
belong to the same A2 class if condition (2.1) is verified for both functions
with the same constant C1.

Fixed an A2 weight ω and 1 ≤ p <∞, we define

Lp(Ω, ω) =

{
f ∈M(Ω)

∣∣ ‖f‖Lp(Ω,ω) :=

(∫
Ω
|f(x)|pω(x)dx

)1/p

<∞

}
.

Accordingly, we define the weighted Sobolev space as

W 1,p(Ω, ω) :=
{
u ∈ Lp(Ω, ω)

∣∣ Diu ∈ Lp(Ω, ω), for i = 1, 2, · · · d
}
,

and, by convention, we write W 1,2(Ω, ω) as H1(Ω, ω).
An A2 weight ω gives raise to the degenerate/singular elliptic operator

Lω(·) = div(ω∇·),

which acts on H1(Ω, ω). In a series of three papers, [6, 7, 8], Fabes, Jerison,
Kenig, and Serapioni developed a systematic theory for this class of opera-
tors: existence of weak solutions, Sobolev embeddings, Poincaré inequality,
Harnack inequality, local solvability in Hölder spaces, and estimates on the
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Green’s function. Below we state four results from [6], supporting, directly
or indirectly, the framework developed in this present article.

Theorem 1 (Solvability in Sobolev spaces). Let Ω ⊂ Rd be a smooth
bounded domain, h = (h1, ..., hn) satisfy |h|/ω ∈ L2(Ω, ω), and g ∈ H1(Ω, ω).
Then, there exists a unique solution u ∈ H1(Ω, ω) of Lωu = −div h in Ω
with u− g ∈ H1

0 (Ω, ω).

Theorem 2 (Local Hölder regularity). Let Ω ⊂ Rd be a smooth bounded
domain and u a solution of Lωu = −div h in Ω, where |h|/ω ∈ L2(Ω, ω).
Then, u is Hölder continuous in Ω with a Hölder exponent depending only
on d and the A2 class of ω.

Theorem 3 (Harnack inequality). Let u be a positive solution of Lωu = 0
in B4R(x0) ⊂ Rd. Then, supBR(x0) u ≤ C infBR(x0) u for some constant C
depending only on d and the A2 class of ω — and in particular, independent
of R.

Theorem 4 (Poincaré inequality). There is as positive constant C such that
for all Lipschitz continuous function u defined on BR, the following holds( 1

ω(BR)

∫
BR

|u−AR|2ω
)
≤ CR

( 1

ω(BR)

∫
BR

|∇u|2ω
)

where ω(BR) =
∫
BR

ω and AR is either 1
ω(BR)

∫
BR

u(x)ω(x) dx or
∫
BR

u(x) dx.

Let us now turn to the mathematical description of the problem to be
studied in the present article. Given a nonnegative boundary datum f ∈
H1(Ω, ω) ∩ L∞(Ω), we consider the minimization problem

J(ω, u,Ω) =

∫
Ω

(
ω(x)|∇u|2 + χ{u>0}

)
dx −→ min, (2.2)

among functions u ∈ H1
f (Ω, ω) := f + H1

0 (Ω, ω), where χO stands for the
characteristic function of the set O and ω is an A2 weight.

We are mostly interested in local geometric properties of local minima
near a singular free boundary point. Henceforth, as to properly carry out
the analysis, it is convenient to localize the problem into the unit ball B1 and
assume the origin is a free boundary point, i.e., 0 ∈ ∂{u > 0}. In addition
we shall assume throughout the paper the following structural condition on
the weight ω:

(H1) The weight ω belongs to A2, and 0 < τ0 ≤ ω ≤ +∞ a.e. in Ω.

It turns out that (H1) prescribes minimal condition under which one
can develop an existence and regularity theory for corresponding singular
cavitation problem.

We comment that we have chosen to develop the analysis of problems
involving singular weights, rather than degenerate ones. In turn, we consider
strictly positive weights that may blow-up along its singular set Λ∞(ω). We
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could similarly treat bounded, degenerate weights of order & rσ, for some
σ < 2.

A number of physical free boundary problems fall into the above mathe-
matical set-up. Typical examples of weight functions we have in mind are

ω(x) = |x′|α,

where x = (x′, xm+1, · · · , xd), for 0 ≤ m < d and −m < α ≤ 0. More
generally, if N is an m-dimensional manifold properly embedded in Rd,
0 ≤ m < d, we are interested in weights of the form

ω(x) = dist(x,N )α,

for some −m < α ≤ 0. This class of weight functions gives raise to the
analysis of free boundary problems ruled by diffusion operators with an
m-dimensional singular set. Anisotropic weights of the form

ω(x) :=
d∏
i=1

|xi|αi ,

also fall under the hypothesis considered in this work. In this case, condition
(H1) is verified as long as −1 < αi ≤ 0.

We are further interested in weights with possible distinct behaviors along
sets of different dimensions, say

ω(x) = |(x1 · x2 · · ·xm)|α1 · |(xm+1 · · ·xd)|α2 ,

where −m < α1 ≤ 0, −d + m < α2 ≤ 0. In this model, 0 is a singular
free boundary point of degree |α1 + α2|, as we shall term later. If we label
the cones C1 := {Πm

i=1xi = 0} and C2 :=
{

Πd
i=m+1xi = 0

}
, then any free

boundary point in C1 \ C2 is singular of degree |α1| and similarly, a point
in ∂{u > 0} ∩ (C2 \ C1) is singular of degree |α2|. Any other free boundary
point z ∈ ∂{u > 0} \ (C1 ∪ C2) is a free boundary point of degree 0.

Notice that no continuity assumption has been required on ω. In partic-
ular, we are interested in the analysis of free boundary problems in possibly
random media. Given a measurable function 0 < c0 ≤ θ < c−1

0 defined on
the unit sphere Sd−1, 0 ≤ m < d− 2 and −m < α ≤ 0, we can always define
an α-homogeneous, A2 weight function ω in B1 \ {0} as

ω(x) := |x′|α · θ
(
x

|x|

)
,

where, as above, x = (x′, xm+1, · · · , xd). This is another important example
of weights we have in mind as to motivate this work.

We conclude this section by setting a nomenclature convention: hereafter
any constant that depends only upon dimension, d, and ω will be called
universal.
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3. Existence and local boundedness

In this preliminary section, we discuss about existence and local bound-
edness of minimizers. We also comment on the Euler-Lagrange equation
satisfied by a local minimum. The proofs follow somewhat classical argu-
ments, thus we simply sketch them here for the sake of completeness.

Fixed a nonnegative boundary datum f ∈ H1(Ω, ω), one can consider a
minimizing sequence vj ∈ H1

f (Ω, ω). Clearly,

C > J(vj) ≥
∫

Ω
ω(x)|∇vj |2dx.

Thus, up to a subsequence, vj → u weakly in H1(Ω, ω), for some function
u ∈ H1

f (Ω, ω). By compactness embedding, vj → u in L2(Ω, ω) and vj → u

a.e. in Ω. Passing to the limit as j →∞ (see [1, Section 1.3] to handle the
term χ{vj>0}), one concludes

J(u) ≤ lim inf
j→∞

J(vj) = min J.

This shows the existence of a minimizer. To verify that u is nonnegative,
one simply compares u with u+ in the minimization problem. Also, if the
boundary datum f is assumed to be in H1(Ω, ω) ∩ L∞(Ω), then for each
|t| � 1, the function u+t (‖f‖∞ − u)− competes with u in the minimization
problem. Standard computations yield {u > ‖f‖∞} has measure zero, that
is, {0 ≤ u ≤ ‖f‖∞} has total measure in Ω.

Now, if ϕ is a nonnegative test function in C∞0 (Ω), then u+ ϕ competes
with u in the minimization problem. As {u+ϕ > 0} ⊃ {u > 0}, there holds,

−2

∫
Ω
ω(x)∇u · ∇ϕdx = J(u+ ϕ)− J(u)−

∫
Ω

(
χ{u+ϕ>0} − χ{u>0}

)
dx ≥ 0.

This shows div (ω(x)∇u) defines a nonnegative measure ν. If Bδ(x0) ⊂ {u >
0}, then given a test function ϕ ∈ C∞0 (Bδ(x0)), for 0 < |t| � 1, u + tϕ is
also positive in Bδ(x0), thus we conclude ν ≡ 0 in the interior of {u > 0}.

Let us gather the information delivered above and state as a theorem for
future reference.

Theorem 5. Let ω be any A2 weight and f ∈ H1(Ω, ω) nonnegative. Then
there exists a minimizer u ∈ H1(Ω, ω) to problem (2.2) such that u = f
on ∂Ω, in the trace sense. Furthermore, u is nonnegative, ‖u‖L∞(Ω) ≤
‖f‖L∞(Ω), and there exists a non-negative Radon measure ν, supported on
its free boundary ∂{u > 0}, such that

div (ω(x)∇u) = ν

is verified in the distributional sense.
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4. Compactness

In this section we discuss several compactness properties pertaining to
the problem. In particular, we will show that bounded local minima are
(universally) locally Hölder continuous, thus any family of bounded local
minima is pre-compact in the uniform convergence topology.

We start with a lemma reminiscent of Caccioppoli inequality.

Lemma 6. Let u be a bounded local minimizer of (2.2) in B1, y ∈ B1/2

and r < 1/12 be fixed. Denote by m := ‖u‖L∞(B1) and let h be the unique
solution of {

div (ω(x)∇h) = 0 in B2r(y)
h = u on ∂B2r(y).

Then there exist universal constants 0 < µ < 1 and C > 0, such that∫
Br(y)

ω(x)|∇h|2dx ≤ Cm2 · rd−2+2µ. (4.1)

Proof. Following standard Caccioppoli type methods, one easily reaches∫
Br(y)

ω(x)|∇h|2 ≤ C

r2

∫
B5r/4(y)

ω(x)
(
u−

∫
B5r/4(y)

u
)2
.

By (H1), along with Reverse Hölder inequality for A∞ weights, see for in-
stance [14], we know ω ∈ Lq for some q > 1. Applying Hölder inequality∫

B5r/4(y)
ω(x)

(
u−

∫
B5r/4(y)

u
)2

≤
(∫

B5r/4(y)
ωq(x)

)1/q(∫
B5r/4(y)

(u−
∫
B5r/4(y)

u)2q/q−1
)(q−1)/q

≤ C
(∫

B5r/4(y)
(u−

∫
B5r/4(y)

u)2q/q−1
)(q−1)/q

Invoking Campanato theory in the last previous line, and denoting by µ the
Hölder exponent of h (recall that h is Hölder continuous by Theorem 2), one
has ∫

B5r/4(y)
ω(x)

(
u−

∫
B5r/4(y)

u
)2
≤ Cm2rd+2µ,

hence the result. �

Theorem 7 (Local C0,τ ). Let u be local minimizer of (2.2) in B1. There
exist universal constants 0 < τ � 1 and C > 1 such that u ∈ C0,τ (B1/2)
and

‖u‖C0,τ (B1/2) ≤ C‖u‖L∞(B1).
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Proof. Let u be a local minimizer of (2.2) in B1, y ∈ B1/2 and r < 1/12 be
fixed. Let h be as in Lemma 6. Since h competes with u in the minimization
problem, we can estimate∫

B2r(y)
ω(x)

(
|∇u|2 − |∇h|2

)
dx ≤ cdrd. (4.2)

From the PDE satisfied by h, we have∫
B2r(y)

ω(x)∇h · ∇(h− u)dx = 0, (4.3)

hence,∫
B2r(y)

ω(x) |∇u−∇h|2 dx =

∫
B2r(y)

ω(x)
(
|∇u|2 − |∇h|2

)
dx. (4.4)

Combining (4.1), (4.2), (4.3), and (4.4), together with the triangle inequality,
yields

‖∇u‖L2(Br(y),ω) ≤ ‖∇(u− h)‖L2(B2r(y),ω) + ‖∇h‖L2(Br(y),ω)

≤ cd · r
d
2 +
√
Cm · r

d
2
−1+µ.

(4.5)

By Hölder inequality and (H4), we can further estimate,∫
Br(y)

|∇u|dx ≤

(∫
Br(y)

ω−1(x)dx

) 1
2

·

(∫
Br(y)

ω(x)|∇u|2dx

) 1
2

≤ τ
−1/2
0 r

d
2 ·
(
cd · r

d
2 +
√
Cm · r

d
2
−1+µ

)
≤ C4r

d−1+µ,

(4.6)

for a constant C4 > 0 depending only on universal parameters. Local Hölder
continuity of u follows now by Morrey’s Theorem, see [12]. �

Homogenization. We now turn our attention to limiting free boundary
problems arising from homogenization. That is, hereafter we assume

(H2) Let 0 be a free boundary point. There exists −d < α ≤ 0 such that,
as λ→ 0+,

ωλ(x) := λ|α|ω(λx),

converges locally in L1 to a weight ω0(x) ∈ A2.

The weight ω0 is the homogenization limit, as it verifies ω0(tx) = tαω0(x),
for all t > 0. Of course, should the original weight ω be homogeneous, then
(H2) is immediately verified.

The examples discussed at the end of Section 2 are, essentially, α–homogeneous.
In addition to classical homogenization procedures, condition (H2) further

contemplates perturbations of those by terms g(x) = o(|x|−|α|) as |x| → 0,
and products by bounded, positive functions θ(x) ∈ VMO. So typical, we
have in mind weights of the form

ω(x) = θ(x)ω0(x) + g(x),
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where ω0 is α-homogeneous (as in the examples from Section 2), θ ∈ VMO

verifying 0 < λ0 < θ(x) < λ−1
0 , and |x||α|g(x)→ 0 as |x| → 0.

Before we continue, let us make a comment on the scaling of the free
boundary problem (2.2), which further substantiates (H2).

Remark 8. Let u be a local minimizer of

J(ω, u,Ω) :=

∫
Ω
ω(x)|∇u(x)|2 + χ{u>0}dx.

Given 0 < λ < 1, define

β = 1− α

2
, uλ(x) = λ−βu(λx), and ωλ(x) = λ|α|ω(λx),

then change of variables yields

J(ω, u,Ω) =

∫
Ω/λ

[
ω(λy)|∇u(λy)|2 + χ{u(λy)>0}

]
λddy

=

∫
Ω/λ

[
λαωλ(y)λ2(−1+β)|∇uλ(y)|2 + χ{uλ(y)>0}

]
λddy

= λdJ(ωλ, uλ,Ω/λ).

That is, uλ is a local minimizer of functional Jλ, ruled by an approximation
of the homogenizing medium.

We start off with a weak compactness result.

Proposition 9 (Weak compactness in W 1,d+). Let λk be any sequence con-
verging to zero and uk local minima of Jk = J(ωk, v,Ω), with ωk(x) :=

λ
|α|
k ω(λkx). There exists µ > 0 such that {∇uk}k≥1 is locally weakly pre-

compact in Ld+µ(Ω).

Proof. We revisit the proof of Theorem 7, for ω = ωλk , u = uk as to reach
the corresponding of (4.6), namely∫

Br(y)
|∇uk|dx ≤ Crd−1+τ , (4.7)

for positive constants C and τ > 0 independent of k. Fixed Ω′ b Ω, by
standard applications of Hölder inequality, we can bound {|∇uk|}k∈N in

L
d

1−τ (Ω′), uniformly in k. We choose µ > 0 such that d(1 − τ)−1 = d + µ,
and the result follows since Ld+µ is a reflexive space. �

In the sequel we indeed show that local minima of the functional Jλ con-
verge to a minimizer of the singular homogenized problem ruled by ω0.

Theorem 10. Assume 0 is a free boundary point and that ω satisfies H1-
H2. Let λk be any sequence converging to zero and uk local minima of

Jk = J(ωk, v,Ω), with ωk(x) := λ
|α|
k ω(λkx). Then, up to a subsequence, uk

converges locally uniformly to a local minimum of J(ω0, v,Ω).
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Proof. From Theorem 7 along with Proposition 9, up to a subsequence, uk →
u locally uniformly in Ω and locally weakly in W 1,d+µ. By minimization,

ω
1/2
k |∇uk| is bounded in L2. Also, from (H2), ω

1/2
k → ω

1/2
0 strongly in L2,

and thus

ω
1/2
k ∇uk ⇀ ω

1/2
0 ∇u,

locally in the weak topology of L2. Lower weak semicontinuity of norm along
with Fatou’s Lemma imply, for any fixed subdomain Ω′ b Ω, there holds

J(ω0, u0,Ω
′) ≤ lim inf J(ωk, uk,Ω

′). (4.8)

Now, fix a ball B := Br(x0) b Ω and let ϕ be a smooth function in B
satisfying ϕ = u0 on ∂B. For ε > 0 small, consider

ψ(y) :=
|y − x0| − r

εr

and define ϕεk : Ω → R to be the linear interpolation between uk and ϕ
within B(1+ε)r(x0), that is:

ϕεk(y) =


ϕ(y), if |y − x0| ≤ r
uk(y), if |y − x0| ≥ (1 + ε)r
(1− ψ(y))u0(y) + ψ(y)uk(y), if r < |y − x0| < (1 + ε)r.

(4.9)

Since uk is a local minimizer of Jk over B̃ := B(1+ε)r(x0), we have

J(ωk, uk, B̃) ≤ J(ωk, ϕ
ε
k, B̃),

that is

J(ωk, uk, B̃) ≤ J(ωk, ϕ,B) + J(ωk, ϕ
ε
k, B̃ \B). (4.10)

On the transition region, r < |y − x0| < (1 + ε)r, taking into account (4.9),
we estimate for a.e. y,

|∇ϕεk(y)| ≤ |∇u0(y)|+ |∇uk(y)|+ C

ε
|uk(y)− u0(y)|. (4.11)

Consequently, from (4.9), (4.10) and (4.11), taking into account that |B̃ \
B| ∼ ε and that ωk(y)|∇uk|2 is bounded in L1+δ(B̃), for some δ > 0, we
obtain, for some 0 < β � 1,

J(ωk, uk, B̃) ≤ J(ωk, ϕ,B) + Cεβ + ε−2+βo(1), (4.12)

as k →∞. Finally, letting k →∞, taking into account (4.8), we obtain

J(ω0, u0, B) ≤ J(ω0, ϕ,B) + Cεβ.

Since ϕ and ε > 0 were taken arbitrary, we conclude the proof of the Theo-
rem. �
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5. C1+γ regularity at the free boundary

In the previous section we showed minimizers are locally Hölder contin-
uous, which, in particular, yields a rough oscillation control of u near the
free boundary. The heart of the matter, though, is to describe the precise
geometric behavior of a local minimizer at free boundary points. Roughly
speaking, solutions to singular free boundary problems should adjust their
vanishing rate based upon the singularity of the medium. More precisely, in
this section we shall work under the following assumption:

(H3) For some −d < α ≤ 0, there exists L > 0 such that∫
Br(0)

ω(x)dx ≤ Lrα.

Recall, for notation convenience, we have localized 0 as a free boundary
point, thus, condition (H3) prescribes, in a way, the maximum blow-up
rate of ω at a free boundary. In this case, we will say 0 is a singular free
boundary point of degree |α|. In particular, regular free boundary points
from classical study of cavitation problems, that is such that ω(0) is finite,
represent (singular) free boundary points of degree zero.

While there is no hope to obtain an estimate superior than Hölder con-
tinuity of local minima, at any other point, in this section we show that
u behaves as a C1+γ function around a singular free boundary point. As
usual, this implies higher order differentiability of u at free boundary points.
In particular, if 1 + γ = N is an integer, then u ∈ CN−1,1, in the sense it
is N − 1 differentiable, and the Nth-Newtonian quotient remains bounded.
When 1 + γ = N + θ, for 0 < θ < 1, then solutions are CN,θ regular at free
boundary points.

This is the contents of the following key result:

Theorem 11. Assume (H1)− (H2)− (H3) and let u be a local minimizer
of (2.2) so that 0 is a free boundary point. Then

sup
Br

u ≤ Cr1+
|α|
2 ,

for a universal constant C > 0, independent of u.

The proof of Theorem 11 will be based on a geometric flatness improve-
ment technic. For that, we need a Lemma:

Lemma 12. Let u ∈ H1(B1, ω) verify 0 ≤ u ≤ 1 in B1, with u(0) = 0.
Given δ > 0, there exists ε > 0 depending only on δ and universal constants,
such that if u is a local minimizer of

Jε(u) :=

∫
B1

ωλ(x)|∇u(x)|2 + εχ{u>0}dx, (5.1)
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for any 0 < λ < 1, then, in B1/2, u is at most δ, that is,

sup
B1/2

u ≤ δ. (5.2)

Proof. Suppose, for the sake of contradiction, that the thesis of the Lemma
does not hold. This means for some δ0 > 0, one can find a sequence of
functions uj ∈ H1(B1, ωj) satisfying:

(1) 0 ≤ uj ≤ 1 in B1;
(2) uj(0) = 0;
(3) uj is a local minimizer of Jj(u) :=

∫
B1
ωλj (x)|∇u(x)|2 + 1

jχ{u>0}dx;

however,

sup
B1/2

uj ≥ δ0 ∀j ∈ N. (5.3)

From compactness estimates proven in Section 4, up to a subsequence, uj
converges locally uniformly to a function a nonnegative function u∞, with
u∞(0) = 0. Also, from similar analysis as in Theorem 10, u∞ is a local
minimizer of

J0(v) :=

∫
B1

ω0(x)|∇v(x)|2dx.

Applying maximum principle (available for minimizers of the functional J0),
we conclude u∞ ≡ 0. That is, we have proven uj converges locally uniformly
to 0. Therefore, for j � 1, we reach a contradiction with (5.3). The proof
of Lemma 12 is complete. �

Proof of Theorem 11. We will make few (universal) decisions. Initially we
set

δ? := 2
α
2
−1.

Lemma 7 assumes the existence of a positive (universal) constant ε0 > 0
such that any normalized minimizer of Jε0 , as defined in (5.1) verifies (5.2),
for δ?. Define

%0 := 2−α
√
ε0, and ũ(x) := u(%0x).

By remark 8, ũ is a local minimizer of Jε0 , and hence, from Lemma 7, there
holds:

sup
B1/2

ũ(x) ≤ 2
α
2
−1. (5.4)

Next, by induction, we iterate the previous argument as to show

sup
B

2−k

ũ(x) ≤ 2k(
α
2
−1). (5.5)

Estimate (5.4) gives the first step of induction, k = 1. Now, suppose we
have verified (5.5) for k = 1, 2, · · · p. Define

ṽ(x) := 2p(1−α
2 ) · ũ

(
2−px

)
.
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It follows from induction hypothesis that 0 ≤ v ≤ 1. Also, from scaling, we
check that ṽ is too a minimizer of Jε0 . Applying Lemma 7 to ṽ we conclude

sup
B1/2

ṽ ≤ 2
α
2
−1,

which, in terms of ũ, gives the precisely the (p+ 1) step of induction.
Now, given a (universally small) radius r > 0, choose k ∈ N, such that

2−(k+1) < %−1
0 r ≤ 2−k.

We can then estimate

sup
Br

u = sup
B
%−1
0 r

ũ

≤ sup
B

2−k

ũ

≤ 2k(
α
2
−1)

≤
(

2

%0

)1−α
2

· r1+
|α|
2

= Cr1+
|α|
2 ,

for C > 1 universal, as required. �

6. Nondegeneracy and weak geometry

In the previous section we show local minima are C1+γ smooth along the

singular free boundary, for γ = |α|
2 . In this section we prove a competing

inequality which assures that such a geometric decay is sharp. Naturally,
such an estimate requires a corresponding lower bound for the degree of
singularity of the free boundary, namely:

(H4) For some −d < α ≤ 0, there exists τ? > 0 such that

τ?r
α ≤

∫
Br(0)

ω(x)dx,

for all 0 < r � 1.

Again, we recall 0 is the localized free boundary point we are analyz-
ing, thus condition (H4) conveys the idea that the origin is a singular free
boundary point of degree at least |α|. Note that (H4) yields

inf
r>0

∫
B1

ωr(x)dx ≥ τ?,

where, as before, ωr(x) = r|α|ω(rx).

Theorem 13. Let u be a minimizer of f (2.2), 0 a free boundary point and
assume (H4). Then

sup
Br

u(x) ≥ 2 ·

√
τ?

dd

(d+ 2)d+2
· r1+

|α|
2 , ∀0 < r < 1,
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where d is dimension.

Proof. The idea of the proof is to cut a family of concentric holes on the
graph of u, compare the resulting functions with u in terms of the mini-
mization problem J, and finally optimize the cutting-hole parameter; here
are the details. Let 0 < r < 1 be a fixed radius and define vr : B1 → R as

vr(y) := r
α
2
−1u(ry).

The goal is to show that

Sr := sup
B1

vr

is uniformly bounded from below, independently of r. From Remark 8, vr
is a local minimizer of Jr over B1. Next, let us choose 0 < σ < 1, 0 < ε� 1
and craft a smooth, radially symmetric function ϕ : B1 → R satisfying:

0 ≤ ϕ ≤ 1, ϕ ≡ 0 in Bσ, ϕ = 1 on ∂B1, |∇ϕ| ≤ (1+ε)(1−σ)−1. (6.1)

In the sequel, let us consider the test function ξ : B1 → R given by

ξ(x) := min {v(x), (1 + ε)Sr · ϕ(x)} .

By construction, ξ competes with v in the minimization problem Jr, and
thus∫

B1

(
ωr(x)|∇ξ|2 + χ{ξ>0}

)
dx ≥

∫
B1

(
ωr(x)|∇v|2 + χ{v>0}

)
dx. (6.2)

We can rewrite (6.2) as an inequality of the form A ≥ B, for

A :=

∫
B1

ωr(x)
(
|∇ξ|2 − |∇v|2

)
dx,

B :=

∫
B1

(
χ{v>0} − χ{ξ>0}

)
dx.

(6.3)

As to estimate B from below we note that {v > 0} ⊃ {ξ > 0}, thus

B =

∫
B1

χ{ξ=0}dx ≥ Ln(Bσ). (6.4)

Next we estimate A from above. For that, let us define

Π :=
{
x ∈ B1

∣∣ (1 + ε)Sr · ϕ(x) < v(x)
}
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and compute∫
B1

ωr(y)
(
|∇ξ|2 − |∇v|2

)
dx =

∫
Π

ωr(x)
(
|∇ξ|2 − |∇v|2

)
dx

≤ (1 + ε)2S2
r

∫
B1

ωr(x) |∇ϕ|2dx

≤ (1 + ε)4(1− σ)−2 ·

∫
B1

ωr(x)dx

 · S2
r .

(6.5)
From the relation A ≥ B, we obtain

S2
r ≥

τ?
(1 + ε)4

σd(1− σ)2.

Letting ε→ 0 and selecting σ =
d

d+ 2
yields the optimal lower bound. The

proof of Theorem 13 is complete. �

A important consequence of Theorem 11 and Theorem 13 combined is
that, around free boundary points of same homogeneity α, a local minimum

detaches from its coincidence set, {u = 0}, precisely as dist1+
|α|
2 .

Corollary 14. Let u be a minimizer of (2.2) and assume all free boundary
points in B1/2 satisfy conditions (H1)—(H4). Then there exists a universal
constant C > 1 such that

C−1dist(x, ∂ {u > 0})1+
|α|
2 ≤ u(x) ≤ C · dist(x, ∂ {u > 0})1+

|α|
2

for any x ∈ B1/4 ∩ {u > 0}.

By standard arguments we then conclude that near free boundary points
of same homogeneity, the set of positivity {u > 0} has uniform positive
density:

Corollary 15. Let u be a minimizer of (2.2) and assume all free boundary
points in B1/2 satisfy (H1)—(H4) Then, for any 0 < r < 1

4 ,

Ln (Br ∩ {u > 0})
Ln (Br)

≥ µ,

where 0 < µ < 1 is a universal constant, independent of r.
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