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In this paper we initiate the investigation of free boundary minimization problems ruled by general singular operators with A2 weights. We show existence and boundedness of minimizers. The key novelty is a sharp C 1+γ regularity result for solutions at their singular free boundary points. We also show a corresponding non-degeneracy estimate.

Introduction

We study local minimizers of singular, discontinuous functionals of the form

J(u, Ω) = Ω ω(x)|∇u| 2 + χ {u>0} dx -→ min, (1.1)
where Ω is a bounded domain of R d , d ≥ 2, and ω(x) is a measurable, singular A 2 weight in the sense that 0 ≤ ω ≤ +∞, both ω and ω -1 are locally integrable, and

Br(z 0 ) ω Br(z 0 ) ω -1 ≤ Cr 2d ,
for all balls B r (z 0 ) ⊂ Ω. Thus, ω may become zero or infinity along a lower-dimensional subset of Ω, hereafter denoted by: Λ 0 (ω) := ω -1 (0), Λ ∞ (ω) := ω -1 (+∞).

If will also be convenient to denote Λ(ω) := Λ 0 (ω) ∪ Λ ∞ (ω). The class of A 2 weight functions was introduced by Muckenhoupt [START_REF] Muckenhoupt | B Weighted norm inequalities for the Hardy maximal function[END_REF] and is of central importance in modern harmonic analysis and its applications. A canonical example of an A 2 function is |x| α with -d < α < d -having an isolated singularity at the origin. Recent results, see for instance [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF], show A 2 weights play an important role in the theory of non-local diffusive problems. In particular, when ω(x) = |x 1 | β , -1 < β < 1, and the axis {x 1 = 0} is a subset of ∂Ω, then (1.1) falls into the case studied in [START_REF] Caffarelli | Variational problems for free boundaries for the fractional Laplacian[END_REF], where fractional cavitation problems are considered.

The mathematical analysis of free boundary cavitation problems goes back to the pioneering work Alt and Caffarelli [START_REF] Caffarelli | Existence and regularity for a minimum problem with free boundary[END_REF], corresponding to the case ω ≡ 1 in (1.1). In the present work, we start the investigation of free boundary problems of the type (1.1), for possibly singular weights, that is Λ ∞ (ω) = ∅. Similarly, we can treat the degenerate case, i.e. when Λ 0 (ω) = ∅. However, for didactical purposes, in this paper we shall restrict the analysis to singular weights.

We show existence of a local minimizer u, and analyze analytic and weak geometric properties of the free boundary ∂ {u > 0} ∩ Ω. The latter task is, in principle, a delicate issue. For instance, one notices, for singular weights, the existence of two distinct types of free boundary points:

(1) ∂ {u > 0} ∩ Λ ∞ = ∅; (2) ∂ {u > 0} ∩ Λ ∞ = ∅.
Case [START_REF] Caffarelli | Existence and regularity for a minimum problem with free boundary[END_REF] refers to a non-homogeneous version of the Alt-Caffarelli problem, [START_REF] Caffarelli | Existence and regularity for a minimum problem with free boundary[END_REF], as, away from the singular set, the weight is uniformly elliptic, see for instance [START_REF] De Silva | Free boundary regularity for a problem with right hand side[END_REF][START_REF] Dos Prazeres | Cavity problems in discontinuous media[END_REF][START_REF] Ferrari | Regularity of the free boundary in two-phase problems for linear elliptic operators[END_REF][START_REF] Teixeira | A variational treatment for general elliptic equations of the flame propagation type: regularity of the free boundary[END_REF]. Case (2) is rather more delicate, and in particular, a central result we prove in this current work classifies the geometric behavior of a local minimizer near a free boundary point z 0 ∈ ∂{u > 0} ∩ Λ ∞ , in terms of its singularity rate near z 0 -a pure analytic information of the problem. Indeed, we show local minimizers are precisely C 1+γ smooth along their corresponding free boundaries, where γ is half of the geometric blow-up rate of ω as it approaches the singular set Λ ∞ ; see condition (H3) for precise definitions.

The paper is organized as follows. In Section 2 we formally present the minimization problem we shall study. A brief description of the initial mathematical tools required in the investigation of A 2 -singular free boundary problems is also delivered in that section. In Section 3 we discuss existence and L ∞ bounds for minimizers, whereas in Section 4 we establish various compactness properties for family of minimizers. In Section 5 we prove the key novel result of the paper, namely that solutions to A 2 cavitation problems are C 1+γ regular at their singular free boundary points, where γ is a sharp prescribe value. In particular, if z 0 is a free boundary point and ω(z 0 ) < +∞, that is it is non-singular, then γ(z 0 ) = 0 and we recover the classical Alt-Caffarelli Lipschitz regularity estimate for cavitation problems. Finally in Section 6 we obtain a quantitative non-degeneracy estimate for solutions near its singular free boundary points.

Mathematical set-up

In this section we give a precise description of the minimization problem considered in this article and gather some of the main known results about elliptic equations involving A 2 weights, required in our study.

Given an open set Ω ⊂ R d , we denote by M(Ω) the set of all real-valued measurable functions defined on Ω. A nonnegative locally integrable function ω : Ω → R is said to be an A 2 weight if ω -1 is also locally integrable and

sup B⊂Ω 1 |B| B ω 1 |B| B ω -1 ≤ C 1 , (2.1) 
holds for a constant C 1 > 0 and any ball B ⊂ Ω. Two weights are said to belong to the same A 2 class if condition (2.1) is verified for both functions with the same constant C 1 . Fixed an A 2 weight ω and 1 ≤ p < ∞, we define

L p (Ω, ω) = f ∈ M(Ω) f L p (Ω,ω) := Ω |f (x)| p ω(x)dx 1/p < ∞ .
Accordingly, we define the weighted Sobolev space as

W 1,p (Ω, ω) := u ∈ L p (Ω, ω) D i u ∈ L p (Ω, ω), for i = 1, 2, • • • d ,
and, by convention, we write W 1,2 (Ω, ω) as H 1 (Ω, ω).

An A 2 weight ω gives raise to the degenerate/singular elliptic operator

L ω (•) = div(ω∇•),
which acts on H 1 (Ω, ω). In a series of three papers, [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF][START_REF] Fabes | The Wiener test for degenerate elliptic equations[END_REF][START_REF] Fabes | Boundary behavior of solutions to degenerate elliptic equations[END_REF] 

L ω u = 0 in B 4R (x 0 ) ⊂ R d . Then, sup B R (x 0 ) u ≤ C inf B R (x 0 )
u for some constant C depending only on d and the A 2 class of ω -and in particular, independent of R.

Theorem 4 (Poincaré inequality).

There is as positive constant C such that for all Lipschitz continuous function u defined on B R , the following holds

1 ω(B R ) B R |u -A R | 2 ω ≤ CR 1 ω(B R ) B R |∇u| 2 ω where ω(B R ) = B R ω and A R is either 1 ω(B R ) B R u(x)ω(x) dx or B R u(x) dx.
Let us now turn to the mathematical description of the problem to be studied in the present article. Given a nonnegative boundary datum f ∈ H 1 (Ω, ω) ∩ L ∞ (Ω), we consider the minimization problem

J(ω, u, Ω) = Ω ω(x)|∇u| 2 + χ {u>0} dx -→ min, (2.2) 
among functions u ∈ H 1 f (Ω, ω) := f + H 1 0 (Ω, ω)
, where χ O stands for the characteristic function of the set O and ω is an A 2 weight.

We are mostly interested in local geometric properties of local minima near a singular free boundary point. Henceforth, as to properly carry out the analysis, it is convenient to localize the problem into the unit ball B 1 and assume the origin is a free boundary point, i.e., 0 ∈ ∂{u > 0}. In addition we shall assume throughout the paper the following structural condition on the weight ω:

(H1) The weight ω belongs to A 2 , and 0 < τ 0 ≤ ω ≤ +∞ a.e. in Ω.

It turns out that (H1) prescribes minimal condition under which one can develop an existence and regularity theory for corresponding singular cavitation problem.

We comment that we have chosen to develop the analysis of problems involving singular weights, rather than degenerate ones. In turn, we consider strictly positive weights that may blow-up along its singular set Λ ∞ (ω). We could similarly treat bounded, degenerate weights of order r σ , for some σ < 2.

A number of physical free boundary problems fall into the above mathematical set-up. Typical examples of weight functions we have in mind are

ω(x) = |x | α , where x = (x , x m+1 , • • • , x d ), for 0 ≤ m < d and -m < α ≤ 0. More generally, if N is an m-dimensional manifold properly embedded in R d , 0 ≤ m < d, we are interested in weights of the form ω(x) = dist(x, N ) α ,
for some -m < α ≤ 0. This class of weight functions gives raise to the analysis of free boundary problems ruled by diffusion operators with an m-dimensional singular set. Anisotropic weights of the form

ω(x) := d i=1 |x i | α i ,
also fall under the hypothesis considered in this work. In this case, condition (H1) is verified as long as -1 < α i ≤ 0.

We are further interested in weights with possible distinct behaviors along sets of different dimensions, say

ω(x) = |(x 1 • x 2 • • • x m )| α 1 • |(x m+1 • • • x d )| α 2 ,
where -m < α 1 ≤ 0, -d + m < α 2 ≤ 0. In this model, 0 is a singular free boundary point of degree |α 1 + α 2 |, as we shall term later. If we label the cones

C 1 := {Π m i=1 x i = 0} and C 2 := Π d i=m+1 x i = 0 , then any free boundary point in C 1 \ C 2 is singular of degree |α 1 | and similarly, a point in ∂{u > 0} ∩ (C 2 \ C 1 ) is singular of degree |α 2 |. Any other free boundary point z ∈ ∂{u > 0} \ (C 1 ∪ C 2 ) is a free boundary point of degree 0.
Notice that no continuity assumption has been required on ω. In particular, we are interested in the analysis of free boundary problems in possibly random media. Given a measurable function 0 < c 0 ≤ θ < c -1 0 defined on the unit sphere

S d-1 , 0 ≤ m < d -2 and -m < α ≤ 0, we can always define an α-homogeneous, A 2 weight function ω in B 1 \ {0} as ω(x) := |x | α • θ x |x| ,
where, as above, x = (x , x m+1 , • • • , x d ). This is another important example of weights we have in mind as to motivate this work. We conclude this section by setting a nomenclature convention: hereafter any constant that depends only upon dimension, d, and ω will be called universal.

Existence and local boundedness

In this preliminary section, we discuss about existence and local boundedness of minimizers. We also comment on the Euler-Lagrange equation satisfied by a local minimum. The proofs follow somewhat classical arguments, thus we simply sketch them here for the sake of completeness.

Fixed a nonnegative boundary datum f ∈ H 1 (Ω, ω), one can consider a minimizing sequence

v j ∈ H 1 f (Ω, ω). Clearly, C > J(v j ) ≥ Ω ω(x)|∇v j | 2 dx.
Thus, up to a subsequence, v j → u weakly in H 1 (Ω, ω), for some function u ∈ H 1 f (Ω, ω). By compactness embedding, v j → u in L 2 (Ω, ω) and v j → u a.e. in Ω. Passing to the limit as j → ∞ (see [START_REF] Caffarelli | Existence and regularity for a minimum problem with free boundary[END_REF]Section 1.3] to handle the term χ {v j >0} ), one concludes

J(u) ≤ lim inf j→∞ J(v j ) = min J.
This shows the existence of a minimizer. To verify that u is nonnegative, one simply compares u with u + in the minimization problem. Also, if the boundary datum f is assumed to be in

H 1 (Ω, ω) ∩ L ∞ (Ω), then for each |t| 1, the function u+t ( f ∞ -u) -competes with u in the minimization problem. Standard computations yield {u > f ∞ } has measure zero, that is, {0 ≤ u ≤ f ∞ } has total measure in Ω.
Now, if ϕ is a nonnegative test function in C ∞ 0 (Ω), then u + ϕ competes with u in the minimization problem. As {u+ϕ > 0} ⊃ {u > 0}, there holds,

-2 Ω ω(x)∇u • ∇ϕdx = J(u + ϕ) -J(u) - Ω χ {u+ϕ>0} -χ {u>0} dx ≥ 0.
This shows div (ω(x)∇u) defines a nonnegative measure ν.

If B δ (x 0 ) ⊂ {u > 0}, then given a test function ϕ ∈ C ∞ 0 (B δ (x 0 )), for 0 < |t| 1, u + tϕ is also positive in B δ (x 0 ), thus we conclude ν ≡ 0 in the interior of {u > 0}.
Let us gather the information delivered above and state as a theorem for future reference.

Theorem 5. Let ω be any A 2 weight and f ∈ H 1 (Ω, ω) nonnegative. Then there exists a minimizer u ∈ H 1 (Ω, ω) to problem (2.2) such that u = f on ∂Ω, in the trace sense. Furthermore, u is nonnegative,

u L ∞ (Ω) ≤ f L ∞ (Ω)
, and there exists a non-negative Radon measure ν, supported on its free boundary ∂{u > 0}, such that div (ω(x)∇u) = ν is verified in the distributional sense.

Compactness

In this section we discuss several compactness properties pertaining to the problem. In particular, we will show that bounded local minima are (universally) locally Hölder continuous, thus any family of bounded local minima is pre-compact in the uniform convergence topology.

We start with a lemma reminiscent of Caccioppoli inequality. Then there exist universal constants 0 < µ < 1 and C > 0, such that

Br(y) ω(x)|∇h| 2 dx ≤ Cm 2 • r d-2+2µ . (4.1)
Proof. Following standard Caccioppoli type methods, one easily reaches

Br(y) ω(x)|∇h| 2 ≤ C r 2 B 5r/4 (y) ω(x) u - B 5r/4 (y) u 2 .
By (H1), along with Reverse Hölder inequality for A ∞ weights, see for instance [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], we know ω ∈ L q for some q > 1. Applying Hölder inequality

B 5r/4 (y) ω(x) u - B 5r/4 (y) u 2 ≤ B 5r/4 (y)
ω q (x)

1/q B 5r/4 (y) (u - B 5r/4 (y) u) 2q/q-1 (q-1)/q ≤ C B 5r/4 (y) (u - B 5r/4 (y)
u) 2q/q-1 (q-1)/q

Invoking Campanato theory in the last previous line, and denoting by µ the Hölder exponent of h (recall that h is Hölder continuous by Theorem 2), one has

B 5r/4 (y) ω(x) u - B 5r/4 (y) u 2 ≤ Cm 2 r d+2µ ,
hence the result.

Theorem 7 (Local C 0,τ ). Let u be local minimizer of (2.2) in B 1 . There exist universal constants 0 < τ 1 and C > 1 such that u ∈ C 0,τ (B 1/2 ) and

u C 0,τ (B 1/2 ) ≤ C u L ∞ (B 1 ) .
Proof. Let u be a local minimizer of (2.2) in B 1 , y ∈ B 1/2 and r < 1/12 be fixed. Let h be as in Lemma 6. Since h competes with u in the minimization problem, we can estimate

B 2r (y) ω(x) |∇u| 2 -|∇h| 2 dx ≤ c d r d . (4.2)
From the PDE satisfied by h, we have

B 2r (y) ω(x)∇h • ∇(h -u)dx = 0, (4.3) 
hence,

B 2r (y) ω(x) |∇u -∇h| 2 dx = B 2r (y) ω(x) |∇u| 2 -|∇h| 2 dx. (4.4) 
Combining (4.1), (4.2), (4.3), and (4.4), together with the triangle inequality, yields

∇u L 2 (Br(y),ω) ≤ ∇(u -h) L 2 (B 2r (y),ω) + ∇h L 2 (Br(y),ω) ≤ c d • r d 2 + √ Cm • r d 2 -1+µ . (4.5) 
By Hölder inequality and (H4), we can further estimate,

Br(y) |∇u|dx ≤ Br(y) ω -1 (x)dx 1 2 • Br(y) ω(x)|∇u| 2 dx 1 2 ≤ τ -1/2 0 r d 2 • c d • r d 2 + √ Cm • r d 2 -1+µ ≤ C 4 r d-1+µ , (4.6) 
for a constant C 4 > 0 depending only on universal parameters. Local Hölder continuity of u follows now by Morrey's Theorem, see [START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF].

Homogenization. We now turn our attention to limiting free boundary problems arising from homogenization. That is, hereafter we assume (H2) Let 0 be a free boundary point. There exists -d < α ≤ 0 such that, as λ → 0+, ω λ (x) := λ |α| ω(λx), converges locally in L 1 to a weight ω 0 (x) ∈ A 2 . The weight ω 0 is the homogenization limit, as it verifies ω 0 (tx) = t α ω 0 (x), for all t > 0. Of course, should the original weight ω be homogeneous, then (H2) is immediately verified.

The examples discussed at the end of Section 2 are, essentially, α-homogeneous. In addition to classical homogenization procedures, condition (H2) further contemplates perturbations of those by terms g(x) = o(|x| -|α| ) as |x| → 0, and products by bounded, positive functions θ(x) ∈ VMO. So typical, we have in mind weights of the form

ω(x) = θ(x)ω 0 (x) + g(x),
where ω 0 is α-homogeneous (as in the examples from Section 2), θ ∈ VMO verifying 0 < λ 0 < θ(x) < λ -1 0 , and |x| |α| g(x) → 0 as |x| → 0. Before we continue, let us make a comment on the scaling of the free boundary problem (2.2), which further substantiates (H2).

Remark 8. Let u be a local minimizer of

J(ω, u, Ω) := Ω ω(x)|∇u(x)| 2 + χ {u>0} dx. Given 0 < λ < 1, define β = 1 - α 2 , u λ (x) = λ -β u(λx), and ω λ (x) = λ |α| ω(λx),
then change of variables yields

J(ω, u, Ω) = Ω/λ ω(λy)|∇u(λy)| 2 + χ {u(λy)>0} λ d dy = Ω/λ λ α ω λ (y)λ 2(-1+β) |∇u λ (y)| 2 + χ {u λ (y)>0} λ d dy = λ d J(ω λ , u λ , Ω/λ).
That is, u λ is a local minimizer of functional J λ , ruled by an approximation of the homogenizing medium.

We start off with a weak compactness result.

Proposition 9 (Weak compactness in W 1,d+ ). Let λ k be any sequence converging to zero and u k local minima of J k = J(ω k , v, Ω), with ω k (x) := λ |α| k ω(λ k x). There exists µ > 0 such that {∇u k } k≥1 is locally weakly precompact in L d+µ (Ω).

Proof. We revisit the proof of Theorem 7, for ω = ω λ k , u = u k as to reach the corresponding of (4.6), namely

Br(y) |∇u k |dx ≤ Cr d-1+τ , (4.7) 
for positive constants C and τ > 0 independent of k. Fixed Ω Ω, by standard applications of Hölder inequality, we can bound

{|∇u k |} k∈N in L d 1-τ (Ω ), uniformly in k. We choose µ > 0 such that d(1 -τ ) -1 = d + µ,
and the result follows since L d+µ is a reflexive space.

In the sequel we indeed show that local minima of the functional J λ converge to a minimizer of the singular homogenized problem ruled by ω 0 . Theorem 10. Assume 0 is a free boundary point and that ω satisfies H1-H2. Let λ k be any sequence converging to zero and u k local minima of

J k = J(ω k , v, Ω), with ω k (x) := λ |α| k ω(λ k x).
Then, up to a subsequence, u k converges locally uniformly to a local minimum of J(ω 0 , v, Ω).

Proof. From Theorem 7 along with Proposition 9, up to a subsequence, u k → u locally uniformly in Ω and locally weakly in W 1,d+µ . By minimization, ω

1/2 k |∇u k | is bounded in L 2 . Also, from (H2), ω 1/2 k → ω 1/2 0
strongly in L 2 , and thus

ω 1/2 k ∇u k ω 1/2
0 ∇u, locally in the weak topology of L 2 . Lower weak semicontinuity of norm along with Fatou's Lemma imply, for any fixed subdomain Ω Ω, there holds

J(ω 0 , u 0 , Ω ) ≤ lim inf J(ω k , u k , Ω ). (4.8) 
Now, fix a ball B := B r (x 0 ) Ω and let ϕ be a smooth function in B satisfying ϕ = u 0 on ∂B. For ε > 0 small, consider ψ(y) := |y -x 0 | -r εr and define ϕ ε k : Ω → R to be the linear interpolation between u k and ϕ within B (1+ε)r (x 0 ), that is:

ϕ ε k (y) =    ϕ(y), if |y -x 0 | ≤ r u k (y), if |y -x 0 | ≥ (1 + ε)r (1 -ψ(y))u 0 (y) + ψ(y)u k (y), if r < |y -x 0 | < (1 + ε)r.
(4.9) Since u k is a local minimizer of J k over B := B (1+ε)r (x 0 ), we have

J(ω k , u k , B) ≤ J(ω k , ϕ ε k , B), that is J(ω k , u k , B) ≤ J(ω k , ϕ, B) + J(ω k , ϕ ε k , B \ B). (4.10) 
On the transition region, r < |y -x 0 | < (1 + ε)r, taking into account (4.9), we estimate for a.e. y,

|∇ϕ ε k (y)| ≤ |∇u 0 (y)| + |∇u k (y)| + C ε |u k (y) -u 0 (y)|. (4.11) 
Consequently, from (4.9), (4.10) and (4.11), taking into account that

| B \ B| ∼ ε and that ω k (y)|∇u k | 2 is bounded in L 1+δ ( B)
, for some δ > 0, we obtain, for some 0 < β 1,

J(ω k , u k , B) ≤ J(ω k , ϕ, B) + Cε β + ε -2+β o(1), (4.12) 
as k → ∞. Finally, letting k → ∞, taking into account (4.8), we obtain

J(ω 0 , u 0 , B) ≤ J(ω 0 , ϕ, B) + Cε β .
Since ϕ and ε > 0 were taken arbitrary, we conclude the proof of the Theorem.

C 1+γ regularity at the free boundary

In the previous section we showed minimizers are locally Hölder continuous, which, in particular, yields a rough oscillation control of u near the free boundary. The heart of the matter, though, is to describe the precise geometric behavior of a local minimizer at free boundary points. Roughly speaking, solutions to singular free boundary problems should adjust their vanishing rate based upon the singularity of the medium. More precisely, in this section we shall work under the following assumption:

(H3) For some -d < α ≤ 0, there exists L > 0 such that

Br(0) ω(x)dx ≤ Lr α .
Recall, for notation convenience, we have localized 0 as a free boundary point, thus, condition (H3) prescribes, in a way, the maximum blow-up rate of ω at a free boundary. In this case, we will say 0 is a singular free boundary point of degree |α|. In particular, regular free boundary points from classical study of cavitation problems, that is such that ω(0) is finite, represent (singular) free boundary points of degree zero.

While there is no hope to obtain an estimate superior than Hölder continuity of local minima, at any other point, in this section we show that u behaves as a C 1+γ function around a singular free boundary point. As usual, this implies higher order differentiability of u at free boundary points. In particular, if 1 + γ = N is an integer, then u ∈ C N -1,1 , in the sense it is N -1 differentiable, and the N th-Newtonian quotient remains bounded. When 1 + γ = N + θ, for 0 < θ < 1, then solutions are C N,θ regular at free boundary points. This is the contents of the following key result:

Theorem 11. Assume (H1) -(H2) -(H3) and let u be a local minimizer of (2.2) so that 0 is a free boundary point. Then

sup Br u ≤ Cr 1+ |α| 2 ,
for a universal constant C > 0, independent of u.

The proof of Theorem 11 will be based on a geometric flatness improvement technic. For that, we need a Lemma:

Lemma 12. Let u ∈ H 1 (B 1 , ω) verify 0 ≤ u ≤ 1 in B 1 , with u(0) = 0.
Given δ > 0, there exists ε > 0 depending only on δ and universal constants, such that if u is a local minimizer of

J ε (u) := B 1 ω λ (x)|∇u(x)| 2 + εχ {u>0} dx, (5.1) 
It follows from induction hypothesis that 0 ≤ v ≤ 1. Also, from scaling, we check that ṽ is too a minimizer of J ε 0 . Applying Lemma 7 to ṽ we conclude sup

B 1/2 ṽ ≤ 2 α 2 -1 ,
which, in terms of ũ, gives the precisely the (p + 1) step of induction. Now, given a (universally small) radius r > 0, choose k ∈ N, such that

2 -(k+1) < -1 0 r ≤ 2 -k . We can then estimate sup Br u = sup B -1 0 r ũ ≤ sup B 2 -k ũ ≤ 2 k( α 2 -1) ≤ 2 0 1-α 2 • r 1+ |α| 2 = Cr 1+ |α| 2 , for C > 1 universal, as required.

Nondegeneracy and weak geometry

In the previous section we show local minima are C 1+γ smooth along the singular free boundary, for γ = |α| 2 . In this section we prove a competing inequality which assures that such a geometric decay is sharp. Naturally, such an estimate requires a corresponding lower bound for the degree of singularity of the free boundary, namely:

(H4) For some -d < α ≤ 0, there exists τ > 0 such that τ r α ≤ Br(0) ω(x)dx, for all 0 < r 1. Again, we recall 0 is the localized free boundary point we are analyzing, thus condition (H4) conveys the idea that the origin is a singular free boundary point of degree at least |α|. Note that (H4) yields

inf r>0 B 1 ω r (x)dx ≥ τ ,
where, as before, ω r (x) = r |α| ω(rx).

Theorem 13. Let u be a minimizer of f (2.2), 0 a free boundary point and assume (H4). Then

sup Br u(x) ≥ 2 • τ d d (d + 2) d+2 • r 1+ |α| 2 , ∀0 < r < 1,
where d is dimension.

Proof. The idea of the proof is to cut a family of concentric holes on the graph of u, compare the resulting functions with u in terms of the minimization problem J, and finally optimize the cutting-hole parameter; here are the details. Let 0 < r < 1 be a fixed radius and define v r :

B 1 → R as v r (y) := r α 2 -1 u(ry).
The goal is to show that S r := sup By standard arguments we then conclude that near free boundary points of same homogeneity, the set of positivity {u > 0} has uniform positive density:

Corollary 15. Let u be a minimizer of (2.2) and assume all free boundary points in B 1/2 satisfy (H1)-(H4) Then, for any 0 < r < 1 4 , L n (B r ∩ {u > 0})

L n (B r ) ≥ µ, where 0 < µ < 1 is a universal constant, independent of r.

Lemma 6 .

 6 Let u be a bounded local minimizer of (2.2) in B 1 , y ∈ B 1/2 and r < 1/12 be fixed. Denote by m := u L ∞ (B 1 ) and let h be the unique solution of div (ω(x)∇h) = 0 in B 2r (y) h = u on ∂B 2r (y).

B 1 v 1 ω 1 χ( 6 . 3 )= B 1 χ 1 ω 2 r B 1 ω 2 . 14 .

 111631121214 r is uniformly bounded from below, independently of r. From Remark 8, v r is a local minimizer of J r over B 1 . Next, let us choose 0 < σ < 1, 0 < ε 1 and craft a smooth, radially symmetric function ϕ :B 1 → R satisfying: 0 ≤ ϕ ≤ 1, ϕ ≡ 0 in B σ , ϕ = 1 on ∂B 1 , |∇ϕ| ≤ (1+ε)(1-σ) -1 . (6.1)In the sequel, let us consider the test function ξ : B 1 → R given by ξ(x) := min {v(x), (1 + ε)S r • ϕ(x)} .By construction, ξ competes with v in the minimization problem J r , and thusB 1 ω r (x)|∇ξ| 2 + χ {ξ>0} dx ≥ B 1 ω r (x)|∇v| 2 + χ {v>0} dx. (6.2)We can rewrite (6.2) as an inequality of the form A ≥ B, forA := B r (x) |∇ξ| 2 -|∇v| 2 dx, {v>0} -χ {ξ>0} dx.As to estimate B from below we note that {v > 0} ⊃ {ξ > 0}, thusB {ξ=0} dx ≥ L n (B σ ). (6.4)Next we estimate A from above. For that, let us defineΠ := x ∈ B 1 (1 + ε)S r • ϕ(x) < v(x)and computeB r (y) |∇ξ| 2 -|∇v| 2 dx = Π ω r (x) |∇ξ| 2 -|∇v| 2 dx ≤ (1 + ε) 2 S r (x) |∇ϕ| 2 dx ≤ (1 + ε) 4 (1 -σ) ε) 4 σ d (1 -σ) 2 .Letting ε → 0 and selecting σ = d d + 2 yields the optimal lower bound. The proof of Theorem 13 is complete.A important consequence of Theorem 11 and Theorem 13 combined is that, around free boundary points of same homogeneity α, a local minimum detaches from its coincidence set, {u = 0}, precisely as dist 1+ |α| Corollary Let u be a minimizer of (2.2) and assume all free boundary points in B 1/2 satisfy conditions (H1)-(H4). Then there exists a universal constant C > 1 such thatC -1 dist(x, ∂ {u > 0}) 1+|α| 2 ≤ u(x) ≤ C • dist(x, ∂ {u > 0}) 1+ |α| 2 for any x ∈ B 1/4 ∩ {u > 0}.

  Let Ω ⊂ R d be a smooth bounded domain and u a solution of L ω u = -div h in Ω, where |h|/ω ∈ L 2 (Ω, ω). Then, u is Hölder continuous in Ω with a Hölder exponent depending only on d and the A 2 class of ω.Theorem 3 (Harnack inequality). Let u be a positive solution of

	Green's function. Below we state four results from [6], supporting, directly
	or indirectly, the framework developed in this present article.
	Theorem 1 (Solvability in Sobolev spaces). Let Ω ⊂ R d be a smooth
	bounded domain, h = (h 1 , ..., h n ) satisfy |h|/ω ∈ L 2 (Ω, ω), and g ∈ H 1 (Ω, ω).
	Then, there exists a unique solution u ∈ H 1 (Ω, ω) of L ω u = -div h in Ω
	with u -g ∈ H 1 0 (Ω, ω).
	Theorem 2 (Local Hölder regularity).
	, Fabes, Jerison,
	Kenig, and Serapioni developed a systematic theory for this class of opera-
	tors: existence of weak solutions, Sobolev embeddings, Poincaré inequality,
	Harnack inequality, local solvability in Hölder spaces, and estimates on the
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for any 0 < λ < 1, then, in B 1/2 , u is at most δ, that is,

(5.2)

Proof. Suppose, for the sake of contradiction, that the thesis of the Lemma does not hold. This means for some δ 0 > 0, one can find a sequence of functions u j ∈ H 1 (B 1 , ω j ) satisfying:

(1) 0 ≤ u j ≤ 1 in B 1 ;

(2) u j (0) = 0;

(3) u j is a local minimizer of J j (u

From compactness estimates proven in Section 4, up to a subsequence, u j converges locally uniformly to a function a nonnegative function u ∞ , with u ∞ (0) = 0. Also, from similar analysis as in Theorem 10, u ∞ is a local minimizer of

Applying maximum principle (available for minimizers of the functional J 0 ), we conclude u ∞ ≡ 0. That is, we have proven u j converges locally uniformly to 0. Therefore, for j 1, we reach a contradiction with (5.3). The proof of Lemma 12 is complete.

Proof of Theorem 11. We will make few (universal) decisions. Initially we set δ := 2 α 2 -1 . Lemma 7 assumes the existence of a positive (universal) constant ε 0 > 0 such that any normalized minimizer of J ε 0 , as defined in (5.1) verifies (5.2), for δ . Define 0 := 2-α √ ε 0 , and ũ(x) := u( 0 x).

By remark 8, ũ is a local minimizer of J ε 0 , and hence, from Lemma 7, there holds: sup

Next, by induction, we iterate the previous argument as to show sup