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Abstract  
It is a common practice to design  refractory linings with the help of thermal computations, 

thermochemistry analyses and strong workman know-how. Their mechanical design is often limited 

to simple thermo-elastic computations. Sometimes computations are refined considering non-linear 

mechanical behaviour, even if corrosion often induces additional chemical strain and strong change 

in service of the mechanical behaviour of the refractory. The aim of this presentation is to briefly 

recast the irreversible thermodynamic framework in order to underline the implications of some 

basic thermodynamic concepts in term of refractory behaviour modelling. Then, the use of these 

concepts to develop fully 3D finite element simulations accounting simultaneously for thermal, 

mechanical and chemistry phenomena will be illustrated on the particular case of SiC-based 

refractory. Comparison between long duration oxidation test at high temperature and model 

prediction allows the validation of the proposed approach. Then, an extension to the industrial case 

of refractory lining in Waste to Energy plant will be illustrated.  The interest of taking into account 

the thermo-chemo-mechanical coupling effects is shown. 

Introduction 

Refractories are often subjected to extreme solicitations: high temperature gradient (imposed by 

the process), aggressive chemical environment (due to the process) and mechanical constraint (due 

to the design). Consequently, refractory degradations result from these combined solicitations. They 

induce a strong complexity in the design of large refractory lining structures which adds many 

engineering difficulties. Then, the degradation of refractory is a fully multi-physics problem. In 

addition as illustrated by figure 1, the different physics that play an important role in the 

degradation process do not take place at the same scale, so that degradation of refractory is also a a 

multi-scale problem. Thanks to specific studies of corrosion [1], phase change [2] and 

thermomechanics [3], problems occurred in fire industrial processes, and solved by specialists from 

different scientific fields (at different scales) permitted important progresses of the life-time of 

refractory linings. Although specialists acknowledge that pooling their resources could help to 

explore new ways to improve refractories, cross-studies are less common. In particular, thanks to 

developments of new experimental and numerical tools in different fields a better knowledge of the 

causes of degradations due to the combination of multi-physical phenomena seems to be now 

possible. 

 

Nowadays, development of finite elements analysis (FEA) and of thermochemistry software [4] 

permits to foresee lining simulations taking into account both thermo-mechanics analysis (i.e. 

structural effects in sense of geometry and mechanical behaviour) and thermo-chemistry analysis (in 



 

sense of corrosion or phase change inducing mechanical effect). Such new type of coupled 

computations corresponds to the dashed black line on Fig. 1. The two main limits for the 

achievement of such computations are the definition of the coupling terms and the 

adaptation/development of numerical tools. While the second key point is on the point of being 

solved from two different ways (coupling of existent softwares or development of dedicated fully-

coupled software) the first point is still be open: how writing the coupling(s) term(s) without too 

many un-identifiable parameters while maintaining a physical meaningful description of the reality? 

Even there may be no uniqueness of the answer, the extended irreversible thermodynamics provides 

an comprehensive and precise framework with some good guidelines to do it. 

 

 
Figure 1: Graphical sum up of the design of refractory lining: a fully multi-physic and multi-

scale problem. 

 

 

The aim of this paper is to briefly recast the irreversible thermodynamics framework in order to 

underline the implications of some basic thermodynamic concepts in term of refractory behaviour 

modelling to develop a fully 3D numerical simulation accounting for thermal, mechanics and 

chemistry with the goal to take into account the effect of corrosion. To illustrate the concepts and 

highlight the relevance of such approach, the particular case of the degradation of oxide bonded 

SiC-based refractory used in Waste-To-Energy facilities (WTE) serves as a guideline. 

Presentation of the guide line: degradation of the lining of Waste-To-Energy plant 

In WTE, a refractory lining protect the metallic water wall, which allows a maximum recovery of 

heat from hot ashes and gases resulting from the burning of waste,  against corrosion at high 

temperature. The thickness of the refractory lining is small (approximately 60 mm) to facilitate the 

heat transfer. On one side, the refractory lining is in contact with the metallic water wall at a 

temperature of approximately 250°C. On the other side it is in contact with smoke and ashes. The 

temperature in the combustion chamber at the bottom level in the hot flame is close to 1200°C. 

About 17 m higher, at the top of the chamber, it falls down to around 500°C.  

 

It is difficult to have a detailed and in-depth understanding of the environment conditions in the 

combustion chamber because the nature and content of fumes and ashes depend on the waste 

burned and the incinerator process. Consequently numerous mechanisms of corrosion may be 

involved in the chemical degradation of the SiC-based refractory. Observations made on worn parts 

of the refractory lining have shown that several corrosion mechanisms take place with the time [5]. 

For example, post-mortem analyses on worn oxide bonded SiC- based tiles have shown that molten 

salts react with SiC aggregates and matrix of the material and form para-wollastonite around SiC 



 

grains and in the porosity, near the hot face of refractory tiles. Other phases such as cristobalite and 

microline are also formed down to the core of tiles. One scenario of corrosion proposed by Prigent 

[5] is the following. It starts with the migration of oxygen molecules O2 into the refractory through 

the porosity. The gas O2 react with SiC-grain to form SiO2 layer surrounding the sound part of SiC 

grain. Then, oxidation products may react with some other fumes components (like Ca) to form 

other products of alkaline corrosion (like CaSiO3).  

 

At macroscopic scale, the degradation of the refractory layer depends on both the material and the 

geometry of tiles. But progressive swelling of the material during service is a common mechanism 

observed in different plants with the result that stresses are introduced that can locally lead to 

rupture. An illustration of a deformed tile is shown Fig.2. 

 

 
Figure 2: Worn (at the bottom) and new (at the top) tiles. 

 

Hereafter, attention will be exclusively focused on the oxidation of SiC. This choice is justified by 

the fact that it is the first step of the degradation mechanism and it often (close to always) 

participates to the degradation of SiC-based refractory structures. Furthermore, for sack of 

simplicity, it is easier to illustrate the thermodynamics framework that allows to couple 

thermochemistry and thermomechanics with only one chemical reaction. 

Essential basic concept of thermodynamics and macroscopic modelling 

The first important step for macroscopic modelling is to define a representative elementary 

volume (REV) which is large enough regard to the size of the heterogeneities of the material. This 

is required to ensure that averaged values of state variables (strain, stress, …) over this volume are 

relevant to describe the macroscopic behaviour i.e., a behaviour which do not depend on the size of 

the elementary volume of the material. This definition of the REV has to be understood regard to 

homogenization technique that permits to define an equivalent homogeneous media from the strain 

energy point of view [6]. The material considered hereafter is a commercial SiC-based refractory, 

having a particle size distribution ranging from 20 µm to 3 mm and containing approximately 85 

wt.% of SiC-grains. Its porosity is equal to 17%. Few large pores are observed at the millimetre 

scale but the connected porosity (small pores, microcracks) mainly exists at the micrometre scale, 

so that most of the oxidation effects takes place in the matrix phase. For this case, the REV is close 

to one cm
3
. At this scale, this material can be viewed as an open, reactive, multiphasic, 

heterogeneous, deformable medium exchanging mass, heat and work with its environment. It can be 

modelled as a continuous homogeneous porous multi-phasic medium. In this medium, the different 

phases (initial skeleton, void, gas, liquid, solid product of reaction) are assumed to be superimposed 

at each point. To ensure a representative global behaviour it is assumed that, at each point of the 

medium, the macroscopic properties are defined as volumic average of local properties [7,8]. 

 

Once the REV has been defined it is essential to well identify the state variables to describe the 

behaviour of the system.  As it is not so obvious to do it when dealing with multi-physical 

problems, the use of a coupling scheme is recommended [9]. This approach simplifies drawing of 

the physics in presence and their interactions and permits to not forget a coupling effect. Before to 

choose the state variables, there is an interest to remember the Callen’s remark [7]: “The 



 

equilibrium is assumed to be characterized completely by the extensive independent parameters. It 

follows that the properties of a system must be independent of the past history”. Often in the 

refractory community, appropriate state variables have not been well identified because there is 

often (always ?) observed an history effect. Indeed, as an illustration, many different effects more or 

less linked to chemistry and phase change are hidden in the temperature dependence of properties 

like Young’s modulus or coefficient of thermal expansion. Then, to develop a multi-physical model, 

this habit should be discarded. Indeed, as the equilibrium state is defined by the values of state 

variables that minimize the internal energy (thermostatic) or maximize entropy (irreversible 

process), a bad initial definition of the state variable will ruin the chance to obtain physically 

meaningful prediction. A proper identification of the set of state variables characterizing the system 

requires taking (long) time for rigorously analysis of available data (measurement, observation, 

know-how) and a careful identification of the phenomena that play a role and their interactions. In 

the application treated here, the physics taken into account are: heat transfer, mechanics, chemistry 

(i.e. SiC oxidation) and diffusion (i.e. oxygen flux through the gas into the porosity). The good state 

variables should be the temperature (easier to use than the entropy, even if it is not an extensive 

variable), the strain (for the mechanical state), the oxygen partial pressure in fumes/gas (playing a 

role in diffusion) and the mass fraction of SiC or the mass fraction of SiO2 or the extent of 

oxidation. If the chemical content of SiC or SiO2 is taken as state variable, it requires the 

quantification of the local content of SiC at each point. The oxidation extent instead of the SiO2 

mass fraction or the SiC content seems to be a better state variable because initially it is null at each 

point and it reduces the number of variable to compute (one instead of two that, are not 

independent). Moreover, from the chemical modelling point of view, the extent will be helpful to 

introduce the kinetics of oxidation. Finally, the local state of the system is characterized by four 

state variables: temperature (�), strain (�), oxygen partial pressure (�) and the extent of oxidation 

(�). 

 

 

Once the state variables are defined, it is possible to write the local balance laws of the system. It 

is essential to be aware that balance laws only concerne extensive variables, like mass, momentum, 

energy and entropy. Heat is not an extensive variable, the so-called “heat equation” results from the 

entropy balance and the energy balance, accounting for evolution and exchange laws [7,8]. Then, 

the definition of the fully coupled heat equation requires a huge background to well define the 

appropriate pseudo-potential of dissipation [10]. For refractory lining, a simple and general form for 

the heat equation is [10]: 
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where � denotes the average bulk density of the material and �� the specific heat for constant 

volume. Index i denotes the species, ��� the mass flux of species i, "� the molar mass for i, ��� the 

extent rate of the chemical reaction r and  Δ�! the enthalpy of reaction r. In industrial vessel, as the 

temperature gradient is often high and imposed by the process, the source term due to chemical 

reaction and the convective heat flow (in the local heat equation (1) it correspond to the heat 

transported by gas in the porosity of the refractory : ∑ ��
��� ���) can be neglected. 

 

 One important contribution of the chemical reactions concerns the mass balance equation, 

that writtes : 

 

�#�� = −������ + ∑ $��"�� ���  (2) 

 

where #� denotes the mass ratio of species i and $�� the stoechiometric coefficient for species i in 

reaction r. The definition of the source term in the mass balance requires to know the kinetics of 



 

reaction which still being a challenge in lot of practical cases. Here, for the case of oxidation of 

oxide bonded SiC based refractory, the extent rate can be defined by [10]: 
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where 34 is the rate constant following an Arrhenius law, 54 the mass action value at considered 

time and 64 the equilibrium constant. It is worth nothing that the equilibrium constant is equal to 

the mass action value at the equilibrium. The definition of the extent rate must be equal to 0 at 

equilibrium and the product with the affinity must always ensure a positive entropy rate (see 

[7,8,10]).  

 

In the WTE case the flux of each species is assumed resulting from diffusion through the gas in the 

porosity of the material. At local scale, some of them may react with the solid at the surface of 

pores and microcracks, creating new solid and gaseous products. The deposit of an oxide layer 

progressively clogs up the porosity leading to a reduction of the diffusivity with the extent of 

oxidation. Due to lack of information, to account for this reduction, it is assumed that the porosity 

decreases linearly with the extent of the reaction and the diffusivity changes linearly with porosity 

[11]. This evolution corresponds to the observed densification of the refractory [5,11]. 

 

The thermo-mechanical “behaviour” of the material usually encompasses the state laws and the 

evolution laws of the material. In the study case, the behaviour is described by a linear elastic law 

and thermal strain (7
) with a constant coefficient of thermal expansion is considered. The swelling 

induced by corrosion (dissipative mechanisms) can be described by an evolution law of the 

mechanical state variable (strain, 78) which is  depending on the chemical state variable (extent). 

Entropy rate is the key to establish such coupling terms respecting the energy conversion rule [7]. 

Assuming small strain, strain partition can be considered. The total strain tensor (7) becomes the 

sum of the thermal strain, the mechanical strain (79) and the corrosion induced strain 78. Assuming 

a quadratic thermodynamic pseudo-potential, a linear dependence between chemical strain and the 

extent can be established [3, 4]: 

 

78 = : ∙ � ∙ < (4) 

 

where < is the second rank identity tensor and β is the coefficient of chemical strain or “chemical 

expansion”. In the study case, the identification of : has been done thanks to correlation between 

thermogravimetrical analyses (TGA) and isothermal dilatometry [11]. Indeed, assuming a 

homogeneous oxidation in the dense samples during dilatometry, after the same duration, the extent 

in the dilatometric sample should be the same that in TGA sample. The validation of the chemical 

expansion term has been done thanks to a dedicated test [11] and the identification of elastic 

parameters has been done using three-point bend test and ultrasonic measurements [12]. 

Computational procedure 

The reactive transport equation (Eq. 1), including the oxidation extent evolution (Eq. 3), has 

been implemented in the software ABAQUS thanks to a UMATHT subroutine. To do this, 

equations are re-written in function of partial pressure of gases in the pores [11]. The chemical 

strain function of extent of oxidation (Eq. 4) is implemented in ABAQUS via the UEXPAN 

subroutine. As often for such unidirectional couplings, the uncoupled heat transfer is solved first. 

Then, the calculated temperature field is prescribed for the reactive transport computation. Finally, 

the temperature and oxidation extent fields are prescribed as a part of the loading in the mechanical 

computation. 



 

Validation test 

In order to validate the previous model, a numerical simulation was performed of an 

experimental oxidation test of a SiC-based castable cylinder subjected to an axial thermal gradient 

from room temperature to 1100°C for duration of 56 days. The main goals were: 1) validating the 

expansion law (Eq. 4) and the identification of the chemical expansion coefficient β; 2) validating 

the temperature effect on oxidation extent. Experimental set-up, results and data used for the 

computation have been already presented in [11]. 

 

 
Figure 3: Experimental results and model prediction for long term oxidation under thermal 

gradient. The blue curve represents numerical results, while red and violet points, are experimental 

measurements along two perpendicular diameters. 

 

The main results are summarised on Fig. 3. The variation in diameter all along the cylinder 

predicted by the numerical simulation and obtained experimentally after 56 days are plotted in the 

graph. At the left, the final shape, the final radial displacement and the extrema of temperatures 

during oxidation are represented. The discrepancy is lower than 20% for a distance from the hot 

face lower than 40 mm. In the 40 to 80 mm range, the macroscopic strain is smaller and the 

difference too. The model gives an appropriate description of the physical phenomena since a good 

agreement between the experimental and numerical results can be observed. The combined effect of 

thermal gradient and oxidation induces a higher swelling at the hot face after cool down. It is firstly 

due to the thermal activation of oxidation and, secondary, it is linked to the slowdown of the oxygen 

transport induced by the matrix densification.  

 

Thermo-chemo-mechanical computation: a tool for lining design 

 

In order to show the potential of prediction of in-service behaviour of refractory systems with such 

a model, two geometries of lining tiles are  have been modelled, corresponding to tiles A and B, 

respectively (Fig. 4). Tile A is placed on its handle, while tile B is tied on its top hole using mortar. 

For numerical convenience only the half part of the tiles have been modelled. The binding between 

water-wall and refractory lining is the main difference between both designs: hang up free (A) or 

interlock (B). Geometries of tiles correspond to real ones but material data used are those of a SiC 

based castable (CV85 from Calderys) so that these examples do not reproduce real industrial cases. 

The goal of these computations is to illustrate the interest of such approach, not to resolve a 

particular problem. 

 



 

For the thermal computations, convective heat flux was applied between refractory tiles and 

smoke and between pipe and steam with thermal exchange coefficients equal to 300 W.m
2
.K

-1
 and 

1000 W.m
2
.K

-1
 respectively. The steam temperature was equal to 250°C, and the smokes 

temperature equal to 1050°C. A thermal resistance was introduced between pipe and tile defined as  

the thickness of the air layer divided by the thermal conductivity of air. 

In the thickness of the tiles, the steady state temperature field was quite similar for both 

geometries. The small local difference (14°C) was due to the hang up device which induces a higher 

thermal resistance for tile A and so localises the “hot point” just in front of the hang up on the hot 

face. 

 

 

 
a) Tile B  b) Tile A 

Fig. 4. Effect of tile geometry on oxidation extent field (mol.mm
-3

) after one year in service for a 

SiC-based castable assuming steady state temperature field. 

 

For the simulation of the reactive transport, the initial partial pressure of oxygen in the lining was 

equal to that in the air. In service, a partial pressure of oxygen of 0.08 atm  was imposed on the hot 

face, according to industrial measurements in fumes. At the cold face, the partial pressure of oxygen 

was imposed equal to zero because of the corrosion of the metallic pipe observed on real water wall 

of WTE facilities. 

 

Computations confirm that the heterogeneous temperature field induces a heterogeneous 

oxidation: a high level of oxidation exists at the hot face and a low variation in the rest of the lining 

(Fig. 4). Design A shows a localized high extent pick while design B exhibits a more homogeneous 

oxidation but with a higher average extent. These differences directly result from the temperature 

field. Assuming a constant steady-state temperature field during one year, design A reaches the 

highest corrosion extent (localized in front of the hang up device) of the two designs. 

 

It is essential to underline that a small variation of the stationary temperature field changes 

notably the state of corrosion after a long duration because the extent of oxidation is sensitive to the 

integration of the temperature on the duration.  

 

For the simulation of the mechanical behaviour, the boiler tubes are clamped. A contact with 

friction is assumed between tiles and pipes. For design B, anchor and tile were pasted together by a 

mortar. Gravity force is taken into account and the mechanical behaviour of the SiC-based 

refractory is assumed, linear and elastic. This last assumption can lead to overestimation of the 

mechanical stresses that may be relaxed by local plasticity, creep and damage mechanisms. There is 



 

no difficulty in refining the mechanical behaviour in a next future. However, this refinement will 

not modify the expression of the strain induced by corrosion.  

 

Figure 5 compares in tile with design A the vertical component of the stress tensor when the 

chemical strain is taken into account or not in the simulations. It is important to emphasize that the 

stress fields in the two analyses are totally different in term of localization and stress level. It is 

worth nothing that the simulations performed with thermo-elasticity material behaviour under-

estimates sensitively the stress when compared with simulation accounting for thermo-chemo-

elasticity. This result clearly shows that the elastic assumption should not be considered as the worst 

case. The field of chemical strain is highly heterogeneous because the oxidation kinetics is strongly 

linked to the temperature field.  Discrepancies in localisation and level of stresses are consequence 

of the chemical strain induced by oxidation: the localisation of oxidation leads to a strong 

redistribution of stress in the structure and so will involve damage in area that thermo-elastic model 

cannot predict. This additive strain produces a bi-axial stress state in plane parallel to the hot face. 

 

   
 a) thermo-elasticity b) thermo-chemo-elasticity 

Fig. 5. Vertical component of the stress tensor after one year in service for tile A 

 

It is interesting to note that the localisation of maximal stresses predicted by the thermo-chemo-

elasticity computation is in quite good agreement with the crack pattern observed on (real) tile A 

(with another SiC-based refractory material) after a long time spent in WTE (Fig. 6). The difference 

in material (i.e. binder, SiC content) pleads to conclude that the localisation of the crack is driven by 

the geometry which is of major importance for the temperature field and so for the extent field. 

Such result from simulation illustrates how thermo-chemo-mechanic model could help to better 

anticipate the effect of the coupling of geometry and corrosion in term of mechanical reliability. 

Moreover, as the chemical strain grows up with oxidation extent, oxidation kinetics drives the 

stress-time curve. However, the relationship is not linear and strongly depends on the temperature 

and geometry (i.e. stress concentration effect).  

 

 
Fig. 6. Crack pattern on the top of post-mortem tile A 

 

 



 

Conclusion 

The thermodynamic framework briefly recast here allows building analytical and numerical tools 

which are able to reproduce complex effects of thermo-chemo-mechanical coupling such as 

swelling induced by corrosion for example. One important difficulty to overcome to develop 

numerical simulations is the choice of the appropriate state variables and the identification of the 

coupling terms between physics of the model. Both stages require taking time for a fine analyse of 

mechanisms involved in order to identify clearly the underlying physics and their strictly necessary 

description to permit the building of the constitutive equations and the identification of the 

parameters.  

The results presented here show that the thermo-chemo-elasticity permits to anticipate both the 

effects of oxidation and geometry on mechanical stress. Then, the crack patterns observed on real 

SiC-based refractoy tiles from WTE plant could be now anticipate. Such computations show that it 

becomes possible to refine the prediction of the stress localisation accounting for corrosion, and so 

to envisage in a next future to obtain reasonable lifespan prediction and improve the design of 

refractory linings. 
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