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Vortex solutions for the compressible Navier-Stokes

equations with general viscosity coefficients in 1D:

regularizing effects or not on the density

Boris Haspot ∗†

Abstract

We consider Navier-Stokes equations for compressible viscous fluids in the one-
dimensional case with general viscosity coefficients. We prove the existence of global
weak solution when the initial momentum ρ0u0 belongs to the set of the finite measure
M(R) and when the initial density ρ0 is in the set of bounded variation functions
BV (R). In particular it allows to deal with initial momentum which are Dirac masses
and initial density which admit shocks. We can observe in particular that this type of
initial data have infinite energy. Furthermore we show that if the coupling between
the density and the velocity is sufficiently strong then the initial density which admits
initially shocks is instantaneously regularized and becomes continuous. This coupling

is expressed via the regularity of the so called effective velocity v = u+ µ(ρ)
ρ2 ∂xρ with

µ(ρ) the viscosity coefficient. Inversely if the coupling between the initial density and
the initial velocity is too weak (typically ρ0v0 ∈M(R)) then we prove the existence
of weak energy in finite time but the density remains a priori discontinuous on the
time interval of existence.

1 Introduction

In this paper we wish to investigate the existence of global weak solutions of the following
Navier-Stokes equations for compressible isentropic flow:{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2)− ∂x(µ(ρ)∂xu) + ∂xP (ρ) = 0.
(1.1)

with possibly degenerate viscosity coefficient µ(ρ) ≥ 0. Here u = u(t, x) ∈ R stands for
the velocity field, ρ = ρ(t, x) ∈ R+ is the density and (t, x) ∈ R+ × R. Throughout the
paper, we will assume that the pressure P (ρ) verifies a γ type law P (ρ) = aργ with a > 0
and γ > 1 and that the viscosity coefficient can be written under the form µ(ρ) = µρα

with µ > 0 and α ≥ 0. A large amount of literature is dedicated to the study of the
compressible Navier-Stokes equations with constant viscosity case, however physically
the viscosity of a gas depends on the temperature and on the density (in the isentropic
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case). Let us mention the case of the Chapman-Enskog viscosity law (see [5]) or the case

of monoatomic gas (γ = 5
3) where µ(ρ) = ρ

1
3 . More generally, the viscosity coefficient

µ(ρ) is expected to vanish as a power of the density ρ on the vacuum. We emphasize that
the case α = 1 corresponds to the so called viscous shallow water system. This system
with friction has been derived by Gerbeau and Perthame in [11] from the Navier-Stokes
system with a free moving boundary in the shallow water regime at the first order (it
corresponds to a small shallowness parameter). This derivation relies on the hydrostatic
approximation where the authors follow the role of viscosity and friction on the bottom.

In the case of compressible Navier-Stokes equations in one dimension, the existence of
global weak solutions was first obtained by Kazhikhov and Shelukin [26] for smooth
enough data close to the equilibrium (in particular the initial density ρ0 is bounded away
from zero) with constant viscosity coefficient. The case of initial density admitting shocks
has been treated by Hoff [22] where the initial density belongs to BV (R), in addition the
author needs smallness assumption on the initial data. In [23], Hoff proved the existence
of global weak energy solution for constant viscosity coefficients provided that ρ0 is only
bounded in L∞ norm and is far away from zero. In this work there is no smallness re-
striction on the initial data. In passing let us mention that the existence of global weak
solution for constant viscosity coefficients in any dimension N ≥ 2 has been proved for
the first time by Lions in [30] and the result has been later refined by Feireisl et al [9].
The existence of global strong solution in one dimension with large initial data for initial
density far away from the vacuum has been proved for the first time by Kanel [25] (see
also [21]) in the case of constant viscosity coefficients.
The study of the compressible Navier Stokes equations with degenerate viscosity coef-
ficients is more recent and has been in particular motivated by the introduction of a
new entropy (see [2]) which provides new regularity estimate on the gradient of the den-
sity. In [24] Jiu and Xin proved the existence of global weak energy solution in one
dimension when µ(ρ) = µρα with α > 1

2 and with large initial energy data. In [33],
Mellet and Vasseur showed the existence of global strong solution when 0 ≤ α < 1

2 for
large initial data provided that the initial data (ρ0 − ρ̄, u0) are in H1(R) ×H1(R) with
0 < c ≤ ρ0 ≤ M < +∞. In [19] we extends this result to the case 1

2 < α ≤ 1 including
in particular the case of the so called viscous shallow water system ( α = 1, see [11]).
Constantin et al in [6] propose a very interesting other method to prove the existence of
global strong solution for 0 ≤ α ≤ 1 and also obtain new results in the case α > 1.
In passing we would like to give few words on the existence of global weak solution for de-
generate viscosity coefficients when N the dimension verifies N ≥ 2. Mellet and Vasseur
proved in [32] the stability of the global weak solution for compressible Navier-Stokes
equation with viscosity coefficient verifying the so called BD entropy (see [2]) in dimen-
sion N = 2, 3 (we refer also to [2, 3] when we consider in addition friction terms). Let
us mention in particular that the case µ(ρ) = µρ with µ > 0 and λ(ρ) = 0 verifies the
algebraic relation related to the new entropy discovered in [2], it corresponds here to
the so called viscous shallow water system. For N = 2, 3 the important problem of the
existence of global weak solutions has been recently resolved independently by Vasseur
and Yu [39, 40] and Li and Xin in [29].
We would like to emphasize that all these results have been achieved in a framework with
finite energy initial data, indeed systematically

√
ρ0u0 belongs to L2(R). It will be not
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the case of our result since ρ0u0, ρ0v0 are in our case only finite measures or a vortex.
The existence of global solution for initial data which are finite measure is an important
problem in mathematics and has been solved for other equations. We recall in particular
that for the incompressible Navier-Stokes equations it exists a theory on the existence of
global strong solution in dimension N = 2 for initial vorticity which belongs to the set
of finite measure (see for example [12, 10]). It exists also a theory for the existence of
global weak solution for the incompressible Euler equations in dimension N = 2 when
the initial vorticity is a measure (see [8, 31]).
Following [20, 19, 3, 17, 16] we can now rewrite the system (1.1) by using the so called

effective velocity v = u+ ∂xϕ(ρ) with ϕ′(ρ) = µ(ρ)
ρ2 :

∂tρ− ∂x(
µ(ρ)

ρ
∂xρ) + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρuv) + aγ
ργ+1

µ(ρ)
v = aγ

ργ+1

µ(ρ)
u

∂t(ρu) + ∂x(ρu2)− ∂x(µ(ρ)∂xu) + aγ
ργ+1

µ(ρ)
v = aγ

ργ+1

µ(ρ)
u

(1.2)

It is important to note that this change of unknown is true for any viscosity coefficients
(at the opposite in dimension N ≥ 2 such change of unknown involves an algebraic rela-
tion between the coefficients µ and λ which precludes in particular the case of constant
viscosity coefficients (see [20, 3] for more details)). When we observe the form of the
system (1.2), it is then natural to consider initial momentum ρ0u0 and ρ0v0 which are in
M(R); indeed if we choose ρ0u0 and ρ0v0 in L1(R) it is easy to prove that the L1 norm is
preserved all along the time. The problem of working with initial data describing some
vortex seems then natural.
The questions addressed in this paper are also motivated by the fact that discontinuous
solutions are fundamental both in the physical theory of non-equilibrium thermodynam-
ics as well as in the mathematical study of inviscid models for compressible flow. It is
important, therefore, to express a rigorous theory which accommodates these discontinu-
ities or shocks in the theory of compressible Navier Stokes equations. In order to obtain
such results, a key point is to work with initial data with minimal regularity assumption
as much as it is possible to do. The results of this paper effectively give a first direction
to the existence of global weak solution with initial density admitting shocks. More pre-
cisely we should deal with initial density ρ0 in BV (R) with 0 < c ≤ ρ0 ≤M < +∞ and
initial momentum ρ0u0, ρ0v0 in M(R) the set of finite measure (including in particular
Dirac masses). If µ1 ∈M(R), the total variation of µ1 is defined by:

‖µ1‖M(R) = sup{
∫
R
ϕdµ1 / ϕ ∈ C0(R), ‖ϕ‖L∞(R) ≤ 1 }

where C0(R) is the set of all real-valued functions on R vanishing at infinity. In addition
we say that ρ0 is in BV (R) if ρ0 is measurable, locally integrable, continuous on the left
and such that the derivative in the sense of the distribution is a finite measure. An other
way to describe the set BV (R) is to consider the function ρ0 with finite total variation:

TV (ρ0) = sup{
N∑
j=1

|ρ0(xj)− ρ0(xj+1)| N ∈ N∗, −∞ < x0 < · · · < xN < +∞}.
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The set BV (R) of these functions is a Banach space when we equip it with the norm
TV (ρ0) + |ρ0(y)| with y ∈ R. The set BV (R) is particularly adapted to our study since
it is sufficiently large for admitting shocks. It is also the natural space fas we will see for
studying the hyperbolic system in one dimension.
We will observe that if in addition we assume that v0 and ρ0− ρ̄ belong to L2(R) then the
density is instantaneously regularizing inasmuch as the density ρ(t, ·) becomes continuous
for t > 0.
It is interesting to compare this kind of surprising phenomenon with what is known on
the behavior of the solutions of hyperbolic systems (typically the compressible isentropic
Euler system which corresponds to µ(ρ) = 0). In particular when the system is strictly
hyperbolic (for a N × N system with x ∈ R) and genuinely non linear, we know from
the Glimm theorem (see [13]) that it exists a global weak solution with small initial
data in (BV (R))N (see also [7] for some extension in the case of a 2 × 2 system where
the smallness assumption is weaken due to the existence of Riemann invariants). Con-
cerning the uniqueness of such solutions, we refer to the works of Bressan et al (see [4]
for a excellent review on all these results using in particular the so-called front tracking
methods which generate a contractive L1 semi-group). It is important to note that for
such hyperbolic systems there is a priori no regularizing effects on the unknown in the
sense that the solution admits shocks all along the time (however a solution with a L∞

initial data can become BV (R) instantaneously, we refer to the scalar case with strictly
convex flux which was in particular studied by Oleinik [36]). In particular it is known
that for regular general initial data, there is creation of shocks in finite time (except if
we can use a characteristic methods, typically in the case of 2×2 systems where we have
Riemann invariants). It is then remarkable to observe that in the case of compressible
Navier Stokes systems the density can be instantaneously regularized even if the density
seems to be governed by a transport equation in (1.1).

2 Main result

We are going now to state the main results of this paper. Before we would like to recall a
very interesting result due to Hoff, this one indicates that there is a priori no regularizing
effects on the density (in the sense that the density does not become instantaneously
continuous) when the effective velocity v is not sufficiently regular.

Theorem 2.1 (Hoff [23]) Let ρ̄ > 0 and ū ∈ R. Assume that (ρ0,
1
ρ0

) ∈ L∞(R) and

(ρ0− ρ̄, u0− ū) ∈ (L2(R))2 then the initial value problem (1.1) has a global weak solution
(ρ, u) for which

ρ− ρ̄, ρu ∈ C([0,+∞), H−1(R)),

u ∈ C((0,+∞), L2(R)),

u(t, ·), µ∂xu(t, ·)− P (ρ(t, ·)) + P (ρ̄) ∈ H1(R), t > 0,

∂tu(t, ·), u̇(t, ·) ∈ L2(R), t > 0,

(2.3)

where u̇ is the convective derivative u̇ = ∂tu+ u∂xu. Additionally, given T > 0, there is
a positive constant C(T ) depending on T , µ, P and on upper bounds for ‖ρ0 − ρ̄‖L2(R),
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‖u0‖L2(R), ‖ρ0‖L∞, ‖ρ−1
0 ‖L∞ such that if σ(t) = min(1, t), then:

C(T )−1 ≤ ρ(t, ·) ≤ C(T ) a.e, (2.4)

sup
0≤t≤T

[‖ρ(t, ·)− ρ̄‖L2(R) + ‖u(t)‖L2(R) + σ(t)
1
2 ‖∂xu(t, ·)‖L2(R)

+ σ(t)
(
‖u̇(t)‖L2 + ‖µ∂xu(t, ·)− P (ρ)(t, ·) + P (ρ̄)‖L2(R)

)
≤ C(T ),

(2.5)

∫ T

0

(
‖∂xu(s, ·)‖2L2 + σ(s)‖u̇(s, ·)‖2L2 + σ(s)‖µ∂xu(s, ·)− P (ρ)(s, ·) + P (ρ̄)‖L2(R)

+ σ2(s)‖∂xu̇(s, ·)‖2L2 ]ds ≤ C(T ),

(2.6)

and for 0 < τ < T

σ(τ)
1
4 ‖u‖L∞(R×|τ,T ]) + σ(τ)

1
2 〈u〉

1
2
, 1
4

[τ,T ]×R ≤ C(T ). (2.7)

where 〈u〉
1
2
, 1
4

[τ,T ]×R is the usaul Hölder norm

sup{ |u(t, x)− u(s, y)|
|x− y|

1
2 + |t− s|

1
4

, x, y ∈ R, t, s ∈ [τ, T ], (t, x) 6= (s, y)}.

Remark 1 In the case of the constant viscosity coefficient µ > 0, the effective initial
velocity has the form v0 = u0−µ∂x( 1

ρ0
) and under the assumptions of the theorem 2.1 we

have v0 ∈ L2(R)+W−1,∞(R). From (1.2), we observe that the effective velocity v verifies
a damped transport equation which prevents a priori any regularizing effects. It implies
that ∂x(1

ρ) is at the best in L∞(W−1,∞ + L2), in other words it is not sufficient to show
via Sobolev embedding that the density ρ becomes continuous. In our next theorems, the
situation will be different since v0 will be in L2(R).

Remark 2 In the previous theorem Hoff proved that the velocity ∂xu − P (ρ) + P (ρ̄)
becomes regular, however to be able to prove that P (ρ) becomes regular it is necessary to
obtain additional information on ∂xu. It explains also why we have no regularizing effects.
The coupling with the effective velocity v is different since it provides an information on
∂x(1

ρ). It explains why this coupling is stronger compared with the so called effective
pressure.

We define now the initial momentum and the initial effective momentum which formally
verify m0 = ρ0u0 and m1

0 = m0 + ∂xϕ1(ρ0) ((m0 has to be considered as an unknown, ρ0

corresponds to the initial density and we have ϕ1(ρ0) = µ
αρ

α
0 ).

Let us give a definition of a global weak solution for initial data verifying for ρ̄ > 0:
0 < c ≤ ρ0 ≤M < +∞
(ρ0 − ρ̄) ∈ L2(R), ϕ1(ρ0) ∈ BV (R)

m1
0 ∈M(R),

m1
0

ρ0
∈ L2(R).

(2.8)
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In the sequel we will define m, m1, m2 as follows:

m = ρu, m1 = ρu+ ∂xϕ1(ρ) and m2 =
√
ρu+ ∂xϕ2(ρ),

with ϕ2(ρ) = µ

α− 1
2

∂xρ
α− 1

2 with α 6= 1
2 . We refer to [30] for the definition of the Orlicz

space Lγ2(R).

Definition 2.1 A pair (ρ, u) is said to be a weak solution to (1.1) provided that:

• ρ ≥ 0 a. e and for ρ̄ > 0, ε > 0 and any T > 0, 1 ≤ p < +∞:

ρ− ρ̄ ∈ L∞([0, T ], Lγ2(R)),

ρ ∈ C([0,+∞[,W−ε,ploc (R)), ρ ∈ L∞([0, T ], L∞(R))

ρu ∈ L∞((0, T ), L1(R)),
√
ρu ∈ L2+ε

loc ([0, T ]× R)

∂xρ
1
2

(γ+α−1) ∈ L2([0, T ], L2(R)), ∂x(ρα−
1
2 ) ∈ L2(([0, T ], L2(R))

m2 ∈ L∞([0, T ], L2(R))

∂xρ
α− 1

2 ∈ L∞([1,+∞[, L2(R))

m1 ∈ L∞((0, T ),M(R)).

• (ρ,
√
ρu) satisfies in the sense of distributions:{

∂tρ+ ∂x(
√
ρ
√
ρu) = 0

ρ(0, x) = ρ0(x).

• For any ϕ ∈ C∞0 ([0, T [×R) and any T > 0:∫
R
m0(x)ϕ(0, x)dx+

∫ T

0

∫
R

[
√
ρ(
√
ρu)∂tϕ+ ((

√
ρu)2 + ργ)∂xϕ]dtdx

+ 〈µ(ρ)∂xu, ∂xϕ〉 = 0,

(2.9)

where the diffusion term makes sense when written as:

〈µ(ρ)∂xu, ∂xϕ〉 =

∫ T

0

∫
R
∂x(ϕ3(ρ))

√
ρu∂xϕdxdt+

∫ T

0

∫
R

µ(ρ)
√
ρ

(
√
ρu)∂xxϕdxdt,

(2.10)

with ϕ′3(ρ) = µ′(ρ)√
ρ .

We obtain the main following theorems.

Theorem 2.2 Assume that µ(ρ) = µρα with µ, α > 0, α 6= 1
2 and P (ρ) = aργ with

γ > 1, a > 0, γ ≥ α and γ ≥ 2α− 1 if α > 1
2 . The initial data satisfy for ρ̄ > 0:

ϕ1(ρ0) ∈ BV (R), (ρ0 − ρ̄) ∈ Lγ2(R),

0 < c ≤ ρ0(x) ≤ C < +∞ for any x ∈ R,
v0 ∈ L2(R), ρ0v0 ∈M(R).

(2.11)
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The momentum m0 is defined as follows:

m0 = ρ0v0 − ∂xϕ1(ρ0), m0 ∈M(R). (2.12)

In addition theres exists ε0 > 0 such that if:

‖∂xϕ1(ρ0)‖M(R) + ‖m0‖M(R) ≤ ε0, (2.13)

then there exists a global weak solution (ρ,
√
ρu) for the system (1.1) verifying the defi-

nition 2.1. In addition there exists Tβ > 0 and C > 0 such that we have: ‖(ρ,
1

ρ
)‖L∞([0,Tβ ],L∞(R) ≤ C,

‖u‖Lp(s)−ε([0,Tβ ],Hs(R)) ≤ C,
(2.14)

with 0 < s < 1 and p(s) = 6
1+2s and ε > 0 sufficiently small such that p(s)− ε ≥ 1. There

exists C > 0 sufficiently large such that for any t > 0 and C(t) > 0 depending on t we
have: 

‖ρ(t, ·)‖L∞(R) ≤ C,
‖ρu(t, ·)‖L1(R) ≤ C(t),

‖√ρu‖L∞((0,t),L2(R)) ≤ C(1 +
1√
t
),

‖m2‖L∞((0,t),L2(R)) ≤ C,
‖ρ− ρ̄‖L∞((0,t),L2(R)) ≤ C,

‖∂x(ρ
1
2

(γ+α−1))‖L2((0,t),L2(R)) ≤ C,

‖∂xρα−
1
2 ‖L2([0,Tβ ],L2(R))+L∞([Tβ ,+∞[,L2(R)) ≤ C.

(2.15)

If 0 < α < 1
2 we have in addition for C > 0: ‖

1

ρ
‖L∞(R+,L∞(R)) ≤ C

‖∂xu‖L2([Tβ ,+∞[,L2(R)) ≤ C.
(2.16)

Furthermore we have for any T > 0:{
m ∈ Cw([0, T ],M(R))

m1 ∈ Cw([0, T ],M(R)),
(2.17)

with m =
√
ρ
√
ρu and m1 = ∂xϕ1(ρ) +m.

Remark 3 The main interest of this result is to observe the two following points, first
we can deal with initial momentum m0 which are vortex. This means that we can take m0

in M(R). The second thing is that ϕ1(ρ0) is only in BV (R) and by composition theorem
ρ0 is also in BV (R).This implies obviously that ρ0 can admit initially some shocks.
We can now observe that these shocks at the initial time t = 0 are instantaneously
regularizing inasmuch as we verify that ρ(t, ·) ∈ C(R) for any 0 < t ≤ Tβ. Indeed we
observe that:

∂xϕ1(ρ(t, ·)) = ρu(t, ·) + ρv(t, ·).
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Since ρu(t, ·) and ρv(t, ·) are in L2(R) for t > 0 and ϕ1(ρ(t, ·))− ϕ1(ρ̄) belongs to L2(R)
for t ∈ [0, Tβ], we deduce by Sobolev embedding that ϕ1(ρ)(t, ·) − ϕ1(ρ̄) is continuous
and then ρ(t, ·) is also continuous for any t > 0 (indeed we know that (ρ, 1

ρ) belongs to
L∞([0, Tβ], L∞(R))).
We can try to explain this phenomena, v verifies only a damped transport equation and
has a priori no regularizing effect. In opposite the velocity u admits regularizing effects
since u verifies a parabolic equation. Since ∂xϕ1(ρ) = ρv−ρu, taking v sufficiently regular
and using regularizing effects on u allows to prove that ∂xϕ1(ρ) is instantaneously bounded
at least in L1(R). We can precise what we mean by sufficiently regular for v. Assume that
ρ0v0 is at least in L1(R) and that ρ0u0 belongs to M(R) we should observe regularizing
effects on the density ρ. Indeed we can expect that ρv(t, ·) remains in L1(R) but that
ρu(t, ·) is in L1(R) for t > 0 (this regularizing effect should provide from the parabolic
behavior on the momentum m). Heuristically it implies that ∂xϕ1(ρ(t, ·)) ∈ L1(R) for
t ∈ [0, Tβ] and we can now use the fact that W 1,1(R) is embedded in C0(R).
In other word the regularizing effects on the density ρ depend on the regularity of the
coupling between the density ρ0 and the velocity u0 which is expressed by the unknown
ρ0v0.

Remark 4 From (2.12), we give a sense to the initial momentum m0. It is however not
clear if we can define properly u0. It would be natural now to write u0 as u0 = 1

ρ0
m0 with

m0 ∈M(R). However since 1
ρ0

is a priori not in C(R) (the space of bounded continuous

function), the product 1
ρ0
m0 is not well defined. It is the same if we assume in addition

that (ρ0 − ρ̄) ∈ Ḃ1
1,∞(R) and m0 ∈ Ḃ0

1,∞(R) (we refer to [1] for the definition of the

homogeneous Besov space and on the notion of paraproduct law). In this case 1
ρ0
m0 can

not be defined using classical paraproduct law, in fact the remainder R(m0,
1
ρ0
− 1

ρ̄) is not
well defined.
However if we consider u0 = v0 + ∂xϕ(ρ0) this unknown is well defined since v0 belongs
to L2(R) and ∂xϕ(ρ0) is in M(R). Indeed since ϕ1(ρ0) is in BV (R) and since we have
0 < c ≤ ρ0 ≤ C < +∞, we deduce using the definition of the total variation and the
mean value theorem that ϕ(ρ0) is in BV (R). In our case ρ0 and m0 have to be considered
as the initial data. It is also remarkable that instantaneously u is well defined since on
[0, Tβ], u(t, ·) is in L1(R).

Remark 5 Numerous works dedicated to the incompressible and compressible Navier-
Stokes equations are dedicated to the existence of global strong solution with small initial
data (ρ0, u0) belonging to critical space. By critical, we mean that the system (1.1) is
solved in functional spaces with norm invariant by the changes of scales which leave (1.1)
invariant. In the case of barotropic fluids, we can observe that the transformations:

(ρ(t, x), u(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx)), l ∈ R, (2.18)

have that property, provided that the pressure term has been changed accordingly. Roughly
speaking we expect that such spaces are optimal in term of regularity on the initial data in
order to prove the well-posedness of the system (1.1). We can easily observe in particular

that Ḃ
1
p
p,r(R)×B

1
p
−1

p,r (R) with p ∈ [1,+∞], r ∈ [1,+∞] is a good candidate since its norm
remains invariant by the transformation (2.18).

8



In this sense the previous result is a Theorem dealing with critical initial data since
BV (R)×M(R) is critical for (2.18) if we consider initial data (ρ0,m0). In our case, we
need to impose the smallness assumption (2.13), it would be interesting to get a similar
result without smallness assumption even if we must work with initial data slightly more
regular.
It is natural then to try to adapt the results of [1, 14, 15] to the case of the dimension
N = 1, in other words it consists to prove the existence of strong solution in finite time
with initial data verifying:

0 < c ≤ ρ0 ≤M < +∞, ρ0 − ρ̄ ∈ Ḃ1
1,1(R), u0 ∈ Ḃ0

1,1(R).

Unfortunately it seems delicate to prove this type of results, indeed if we apply the method
develop in [1, 14, 15] it is necessary to give a sense to the term (µ(ρ) − µ(ρ̄))∂xxu with
u ∈ L̃1([0, T ], Ḃ2

1,1(R)), (ρ− ρ̄) ∈ L̃∞([0, T ], Ḃ1
1,1(R)) and ρ ≥ c

2 on [0, T ] with T < +∞.

It implies that ∂xxu is in L̃1([0, T ], Ḃ0
1,1(R)). Unfortunately the product (µ(ρ)−µ(ρ̄))∂xxu

is a priori not defined, indeed if we apply the classical paraproduct law, we can observe
that R((µ(ρ) − µ(ρ̄)), ∂xxu) is not defined in dimension N = 1. This term is critical in
the sense that we have s1 + s2 + N inf(0, 1

p −
1
p1
− 1

p2
) = 0 with s1 = 0, s2 = 1, N = 1,

p = 1, p1 = 1 and p2 = 1.
It is then not obvious to prove the existence of strong solution in critical Besov spaces
in one dimension, it would be however quite easy if we assume the initial data slightly
subcritical (ρ0 − ρ̄, u0) ∈ (Ḃ1

1,1(R) ∩ Ḃ1+ε
1,1 (R))× (Ḃ0

1,1(R) ∩ Ḃε
1,1(R)) with ε > 0.

In this sense our result gives an other method than [1, 14, 15] to deal with critical initial
data in one dimension.

Remark 6 This Theorem is a result of global weak solution with infinite energy space,
this is due to the fact that

√
ρ0u0 does not belong to L2(R). To the best of our knowledge,

this is the first result of this type for compressible Navier Stokes equations.

We obtain now the following two corollaries.

Corollary 1 Assume that µ(ρ) = µρα with µ, α > 0 and P (ρ) = aργ with γ > 0, a > 1
and γ ≥ α. The initial data satisfy for ρ̄ > 0:

ϕ1(ρ0) ∈ BV (R), (ρ0 − ρ̄) ∈ Lγ2(R)

0 < c ≤ ρ0(x) ≤ C < +∞ for any x ∈ R
u0 ∈ L2(R), m0 ∈M(R).

(2.19)

The momentum m1
0 is defined as follows:

m1
0 = ρ0u0 + ∂xϕ1(ρ0), m1

0 ∈M(R). (2.20)

In addition theres exists ε0 > 0 such that if:

‖∂xϕ1(ρ0)‖M(R) + ‖m0‖M(R) ≤ ε0, (2.21)
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then there exists T > 0 and a weak solution (ρ, u) for the system (1.1) verifying the
definition 2.1 on the time interval [0, T ]. We have in addition:

u ∈ L∞([0, T ], L2(R)), ∂xu ∈ L2([0, T ], L2(R))

(ρ,
1

ρ
) ∈ L∞([0, T ], L∞(R))2, ∂xρ ∈ L∞([0, T ],M(R))

(ρ− ρ̄) ∈ L∞([0, T ], Lγ2(R)), ρ ∈ C([0, T ], Lploc(R))

ρu ∈ C([0, T ],M(R)∗)

m1 ∈ C([0, T ],M(R)∗).

(2.22)

Remark 7 The previous corollary is a generalization of [22] for general viscosity co-
efficients (in [22] the author deals with constant viscosity coefficients). In the previous
theorem u0 is well defined and we can deal with initial density admitting shocks since ρ0

is in BV (R).

Let us deal now with the case of constant viscosity coefficients, we obtain the following
Theorem.

Theorem 2.3 Assume that µ(ρ) = µ with µ > 0 and P (ρ) = aργ with γ > 1, a > 0.
The initial data satisfy for ρ̄ > 0:

m1
0 ∈M(R), ϕ1(ρ0) ∈ BV (R), v0 ∈ L2(R)

0 < c ≤ ρ0(x) ≤ C < +∞ for any x ∈ R
ρ0 − ρ̄ ∈ Lγ2(R).

(2.23)

The momentum m0 is defined as follows:

m0 = ρ0v0 − ∂xϕ1(ρ0), m0 ∈M(R). (2.24)

Then there exists a global weak solution (ρ, u) for the system (1.1) verifying the definition
2.1, in addition for any t > 0 we have:

‖ρu(t, ·)‖L1(R) ≤ C1(t)

‖(ρ(t, ·), 1

ρ
(t, ·)‖L∞ ≤ C1(t)

‖√ρu(t, ·)‖L2(R) ≤ C(
1√
t

+ 1)

‖ρ(t, ·)− ρ̄‖Lγ2 (R) ≤ C
‖∂xρ‖L2

t (L
2(R)) ≤ CC1(t)

‖m2‖L∞(R+,L2(R)) ≤ C.

(2.25)

In addition u belongs to L
p(s)−ε
loc (Hs(R)) with 0 ≤ s < 1 and p(s) = 3

1+2s with ε > 0

sufficiently small such that p(s) − ε ≥ 1. We have also ρ ∈ C([0,+∞[,W−ε,ploc (R)) and
ρu ∈ C([0,+∞[,M(R)∗).
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Remark 8 Compared with the Theorem 2.2, we have no smallness assumption on the
initial data.

Remark 9 As in the Theorem 2.2, we can observe regularizing effects on the density.
In [23], the initial density verifies only ρ0 − ρ̄ ∈ L2(R) ∩ L∞(R) and 1

ρ0
∈ L∞(R) (in

particular the assumptions on the initial data are weaken as our Theorem even if they
are stronger on the initial velocity since u0 ∈ L2(R)). In particular the Theorem of
[23] allows to deal with initial shocks on the density and a priori there is no reasons to
observe regularizing effects on the density. One of the reasons is probably that ρ0v0 is not
sufficiently regular, indeed this term is a priori only in W−1,∞(R).

We recall now some classical lemma of compactness in particular the classical lemma of
Aubin-Lions.

Lemma 1 Let X0, X,X1 Banach spaces. Assume that X0 is compactly embedded in X
and X is continuously embedded in X1. Let 1 ≤ p, q ≤ +∞. We set for T > 0:

WT = {u ∈ Lp([0, T ], X0),
d

dt
u ∈ Lq([0, T ], X1)}.

Then if:

• p < +∞ then the embedding of W into Lp([0, T ], X) is compact.

• p = +∞ and q > 1, then the embedding of W into C([0, T ], X) is compact.

We refer to [37] for the following Lemma which is a consequence of the Helly’s Theorem.

Lemma 2 We consider a sequence (ρn)n∈N of functions defined on [0, T ]×R with values
in R satisfying the following hypotheses:

1. There exists M > 0 such that TV (ρn(t, ·)) ≤M for all n ∈ N.

2. |ρn(t, ·)| ≤M for all n ∈ N.

3. There exists a sequence (εn)n∈N which converges to 0+, such that:∫
R
|ρn(t, x)− ρn(s, x)|dx ≤ εn +M |t− s|β

for all n ∈ N, all s, t ∈ [0, T ] and β > 0.

Then this sequence is relatively compact in L1
loc((0, T )× R).

Lemma 3 Let K a compact subset of R and (vn)n∈N a sequel such that:

• (vn)n∈N is uniformly bounded in Lp+α(K) with α > 0 and p ≥ 1,

• (vn)n∈N converges almost everywhere to v,

then (vn)n∈N strongly converges to v in Lp(K) with v ∈ Lp+α(K).

11



Proof: First by the Fatou lemma v is in Lp+α(K). Next we have for any M > 0:∫
K
|vn − v|pdx ≤

∫
K∩{|vn−v|≤M}

|vn − v|pdx+

∫
K∩{|vn−v|≥M}

|vn − v|pdx. (2.26)

We are dealing with the second member of the right hand side, by Hölder inequality and
Tchebychev lemma we have for a C > 0:∫

K∩{|vn−v|≥M}
|vn − v|pdx ≤ (

∫
K
|vn − v|p

|vn − v|α

Mα
dx) ≤ C

Mα
. (2.27)

In particular we have shown the strong convergence of vε to v, indeed from the inequality
(2.26) it suffices to use the Lebesgue theorem for the first term on the right hand side
and the estimate (2.27) with M going to +∞. �

Section 3 deals with the proof of the theorem 2.2. In the section 4 we prove the corollaries
1. We show the theorem 2.3 which consider constant viscosity coefficients in the section
5.

3 Proof of theorem 2.2

We start by constructing a sequence (ρn, un)n∈N of global strong solutions of the system
(1.1) provided that the initial data is sufficiently regular, in addition we change slightly
the viscosity coefficient. More precisely (ρn, un)n∈N are solutions of the following systems:{

∂tρn + ∂x(ρnun) = 0,

∂t(ρnun) + ∂x(ρnu
2
n)− ∂x(µn(ρn)∂xun) + ∂xP (ρn) = 0,

(3.28)

with µn(ρn) = 1
nρ

θ
n + µραn with θ ∈ (0, 1

2) (we will fix θ later). In addition we assume
that:
mn(0, ·) = e

1
n
∂xx(m0)

ϕ1(ρn)(0, ·) = e
1
n
∂xx(ϕ1(ρ0))

m1
n(0, ·) = mn(0, ·) +

µn(ρn(0, ·))
ρn(0, ·)

∂xρn(0, ·) = e
1
n
∂xx(m1

0) +
1

µn
ρθ−αn (0, ·)e

1
n
∂xx(∂xϕ1(ρ0)),

with m1
0 = m0 + ∂xϕ1(ρ0), ϕ1(ρ) = µ

αρ
α and α > 0. We verify easily since ρ0 − ρ̄ is

in Lγ2(R) and we have 0 < c ≤ ρ0 ≤ C < +∞ that ρ0 − ρ̄ ∈ L2(R). In addition by
composition theorem we deduce that ϕ1(ρ0) − ϕ1(ρ̄) belongs to L2(R). It implies from
(2.19) that there exists Cn,s depending on n and s > 0 such that for a continuous function
C independent on n and C1 > 0 large enough independent on n we have:

‖mn(0, ·)‖L1(R) ≤ ‖m1
0‖M(R) + ‖ϕ1(ρ0)‖BV (R)

‖∂xϕ1(ρn)(0, ·)‖L1(R) ≤ ‖ϕ1(ρ0)‖BV (R)

0 < min(ϕ1(c), ϕ1(C)) ≤ ϕ1(ρn)(0, ·) ≤ max(ϕ1(C), ϕ1(c)) < +∞
0 < c ≤ ρn(0, ·) ≤ C < +∞

‖m1
n(0, ·)‖L1(R) ≤ ‖m1

0‖M(R) +
1

nµ
‖ρθ−αn (0, ·)‖L∞‖ϕ1(ρ0)‖BV (R)

(3.29)
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and similarly we get for s1 > 0 large enough:

‖ϕ1(ρn(0, ·))− ϕ1(ρ̄)‖Hs(R) ≤ Cn,s‖ϕ1(ρ0)− ϕ1(ρ̄)‖L2(R)

‖ρn(0, ·)− ρ̄‖Hs(R) ≤ Cn,sC(‖ρ0‖L∞(R), ‖
1

ρ0
‖L∞(R))‖ρ0 − ρ̄‖L2(R)

‖ρn(0, ·)− ρ̄‖L2(R) ≤ C(‖ρ0‖L∞(R), ‖
1

ρ0
‖L∞(R))‖ρ0 − ρ̄‖L2(R)

‖m1
n(0, ·)‖L2(R) ≤ ‖m1

0‖L2(R)(1 +
C1

n
3
4

‖ρn(0, ·)‖θ−αL∞(R))

‖m1
n(0, ·)‖Hs1 (R) ≤ Cn,s1‖m1

0‖L2(R)

+
1

n
(1 + Cn,s1C(‖ρ0‖L∞(R), ‖

1

ρ0
‖L∞(R))‖ρ0 − ρ̄‖L2(R))Cn,s1+1‖ρ0 − ρ̄‖L2(R)

‖mn(0, ·)‖Hs1 (R) ≤ Cn,s‖m1
0‖L2(R)

+
1

n
(1 + Cn,s1C(‖ρ0‖L∞(R), ‖

1

ρ0
‖L∞(R))‖ρ0 − ρ̄‖L2(R))Cn,s1+1‖ρ0 − ρ̄‖L2(R).

(3.30)
We have previously used composition theorem to pass from the Hs norm on ϕ1(ρn(0, ·))−
ϕ1(ρ̄) to the Hs norm on ρn(0, ·) − ρ̄ and to deal with the term ‖m1

n(0, ·)‖Hs1 (R). Con-
cerning the term ‖m1

n(0, ·)‖L2(R), we have used the fact that for C1 > 0 large enough we
have:

1

n
‖ρθ−αn (0, ·)e

1
n
∂xx∂xϕ1(ρ0)‖L2(R) ≤

1

n
‖ρθ−αn (0, ·)‖L∞(R)C1n

1
4 ‖e

1
2n
∂xx∂xϕ1(ρ0)‖L1(R).

Let us mention that we can now define un(0, ·) and vn(0, ·), indeed if we write un(0, ·) =
1

ρn(0,·)mn(0, ·) and vn(0, ·) = 1
ρn(0,·)m

1
n(0, ·) , these terms have a sense since they belong

to L1(R).
In particular we deduce from (3.29), (3.30) and using product in Sobolev space that we
have for Cn,s > 0 depending on n and every s with s > 0: ‖

1

ρn(0, ·)
− 1

ρ̄
‖Hs(R) ≤ Cn,s

‖un(0, ·)‖Hs(R) ≤ Cn,s1
(3.31)

with s1 ≥ s sufficiently large. We have just used the theorem of product in Sobolev
space. From [33], we know that there exists a global strong solution for the system (3.28)
since (ρn(0, ·)− ρ̄, un(0, ·)) belongs to H1(R)×H1(R) with 0 < c ≤ ρn(0, ·) ≤ C < +∞.
Indeed we observe that we have the condition µn(ρ) ≥ 1

nρ
θ with θ ∈ [0, 1

2) which is the
relevant condition for the existence of global strong solution in [33].
We are now going to prove uniform estimates in n on the sequence (ρn, un)n∈N, in a
second time we will prove that (ρn, un)n∈N converges up to a subsequence to a global
weak solution solution (ρ, u) of (1.1) with (ρ0, u0) verifying the condition of theorem 2.2.
We can mention that the solution (ρn, un) here is classical in the sense that (ρn, un) is in
C∞([0,+∞) × R). This is due to the fact that the Hs regularity is preserved all along
the time. From (2.13) and (3.29) we deduce that there exists C > 0 such that:

‖ρnun(0, ·)‖L1(R) + ‖ρnvn(0, ·)‖L1(R) ≤ Cε0. (3.32)
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3.1 Uniform estimates on (ρn, un, vn)n∈N

Estimates of ρnun and ρnvn in L∞T (L1(R)) for any T > 0

From (1.2), we recall that we have (with vn = un + µn(ρn)
ρ2
n

∂xρn):
ρn∂tun + ρnun∂xun − ∂x(µn(ρn)∂xun) +

P ′(ρn)ρ2
n

µn(ρ)
vn =

P ′(ρn)ρ2
n

µn(ρn)
un,

ρn∂tvn + ρnun∂xvn +
P ′(ρn)ρ2

n

µn(ρn)
vn =

P ′(ρn)ρ2
n

µn(ρn)
un.

(3.33)

We set jk(s) =
√
s2 + 1

k −
√

1
k and we have j′k(s) = s√

s2+ 1
k

, j′′k (s) = 1

k(s2+ 1
k

)
3
2

. We are

going now to multiply the first and the second equation respectively by j′k(un) and j′k(vn).
Since the solution (ρn, un, vn) is classical and is in particular in C2([0,+∞)×R) we have:

ρn∂tjk(vn) + ρnun∂xjk(vn) +
P ′(ρn)ρ2

µn(ρn)
vnj
′
k(vn) =

P ′(ρn)ρ2
n

µn(ρn)
unj

′
k(vn)

ρn∂tjk(un) + ρnun∂xjk(un)− ∂x(µn(ρn)∂xjk(un)) + µn(ρn)j′′k (un)|∂xun|2

= −P
′(ρn)ρ2

n

µn(ρn)
vnj
′
k(un) +

P ′(ρn)ρ2
n

µn(ρn)
unj

′
k(un).

(3.34)
We integrate now on (0, T ) × R and we obtain using the fact that lim|x|→+∞ un(t, x) =
lim|x|→+∞ vn(t, x) = 0 for t ≥ 0 (this is due to the fact that (un, vn)n∈N are in Sobolev
space Hs with high regularity) :∫

R
ρn(T, x)jk(vn)(T, x)dx+

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(s, x)

v2
n(s, x)√

v2
n(s, x) + 1

k

dsdx

=

∫
R
ρn(0, x)jk(vn(0, x))dx+

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(s, x)

vn(s, x)un(s, x)√
v2
n(s, x) + 1

k

dsdx.

∫
R
ρn(T, x)jk(un)(T, x)dx+

∫ T

0

∫
R
µn(ρn)j′′k (un)|∂xun|2(s, x)dsdx

=

∫
R
ρn(0, x)jk(un(0, x))dx−

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(s, x)

vn(s, x)un(s, x)√
u2
n(s, x) + 1

k

dsdx

+

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(s, x)

u2
n(s, x)√

u2
n(s, x) + 1

k

dsdx.

We deduce that we have:∫
R
ρn(T, x)jk(vn)(T, x)dx+

∫
R
ρn(T, x)jk(un)(T, x)dx ≤∫

R
ρn(0, x)|un(0, x)|dx+

∫
R
ρn(0, x)|vn(0, x)|dx

+ 3

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(|vn(s, x)|+ |un(s, x)|)dsdx.

(3.35)
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We pass to the limit when k → +∞ and using the Fatou lemma we obtain:∫
R
ρn(T, x)|vn|(T, x)dx+

∫
R
ρn(T, x)|un|(T, x)dx ≤∫

R
ρn(0, x)|un(0, x)|dx+

∫
R
ρn(0, x)|vn(0, x)|dx

+ 3

∫ T

0

∫
R

P ′(ρn)ρ2
n

µn(ρn)
(|vn(s, x)|+ |un(s, x)|)dsdx.

(3.36)

From the Gronwall lemma we deduce that for any T > 0:

‖ρnvn(T, ·)‖L1(R) + ‖ρnun(T, ·)‖L1(R)

≤ (‖ρnvn(0, ·)‖L1(R) + ‖ρnun(0, ·)‖L1(R))e
3
∫ T
0 ‖

P ′(ρn)ρn
µn(ρn)

(s,·)‖L∞ds.
(3.37)

At this level it is important to point out that we have:

P ′(ρn)ρn
µ(ρn)

≤ aγ

µ
ργ−αn +

aγ

n
ργ−θn ,

and we are going to use the fact that γ − α, γ − θ ≥ 0 in order to control the L∞ norm

of P ′(ρn)ρn
µ(ρn) in terms of the L∞ norm of the density ρ.

BD Entropy

Multiplying the momentum equation (1.2) by v and integrating over (0, T )×R, we obtain
the following entropy:

1

2

∫
R

(ρ|v|2(T, x) + (Π(ρ)−Π(ρ̄))(T, x)dx+

∫ T

0

∫
R

P ′(ρ)µ(ρ)

ρ2
(s, x)|∂xρ|2(s, x)dsdx

≤ 1

2

∫
R

(ρ0|v0|2(x) + (Π(ρ0)−Π(ρ̄))(x)dx,

(3.38)
with:

Π(s) = s(

∫ s

ρ̄

P (z)

z2
dz − P (ρ̄)

ρ̄
).

It gives in our case for the the system (3.28) when γ+α−3 6= 0 with µn(ρn) = µραn+ 1
nρ

θ
n

and C > 0 large enough independent on n:

1

2

∫
R

(ρn|vn|2(T, x) + (Π(ρn)−Π(ρ̄))(T, x)dx+
4aγµ

(γ + α− 1)2

∫ T

0

∫
R
|∂xρ

1
2

(γ+α−1)
n |2(s, x)dsdx

+
4γ

n(γ + θ − 1)2

∫ T

0

∫
R
|∂xρ

1
2

(γ+θ−1)
n |2(s, x)dsdx

≤ 1

2

∫
R

(ρn(0, x)|vn(0, x)|2 + (Π(ρn(0, x))−Π(ρ̄))dx ≤ C,

(3.39)
and we know that γ + α − 1 > 0, γ + θ − 1 > 0 since α, θ ≥ 0 and γ > 1. The fact
that C > 0 is independent on n is a direct consequence from (3.29) and (3.30). It is also

important to note that by definition we have vn = un + ∂xϕn(ρn) with ϕ′n(ρn) = µn(ρn)
ρ2
n

.
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Uniform L∞ estimate on the density (ρn)n∈N in finite time

From (3.37) we deduce that ∂xϕ1,n(ρn) = ρnvn − ρnun (with ϕ1,n(ρn) = µ
αρ

α
n + 1

nθρ
θ
n) is

bounded in L∞T (L1(R)) for any T > 0 provided that ρn belongs to L∞T (L∞(R)). Since
the density ρn− ρ̄ and mn are bounded in C([0, T ], Hs(R)) for any s > 0, we deduce that
for any t ≥ 0 we have:

lim
|x|→+∞

ϕ1(ρn)(t, x) = ϕ1(ρ̄). (3.40)

Now using the fact that the space W 1,1(R) is embedded in L∞(R) we deduce from (3.37)
that for any t > 0:

‖ϕ1,n(ρn(t, ·))‖L∞ ≤ ϕ1,n(ρ̄) + ‖∂xϕ1,n(ρn(t, ·))‖L1(R)

≤ ϕ1,n(ρ̄) + (‖ρnvn(0, ·)‖L1(R) + ‖ρnun(0, ·)‖L1(R))e
3
∫ T
0 ‖

P ′(ρn)ρn
µn(ρn)

(s,·)‖L∞ds.
(3.41)

The previous inequality shows that we can prove L∞ estimates on the density ρn in finite
time by using bootstrap arguments. As previously, we assume that γ − α ≥ 0 and we
have using (3.29) for C > 0, α > 0 and any t > 0:

‖ρn‖αL∞t (L∞(R)) ≤ C(ρ̄α +
1

n
ρ̄θ)

+ C(‖ρ0v0‖M(R) + ‖ρ0u0‖M(R))(1 +
1

n
‖ρ0‖θ−αL∞(R))e

3Ct(‖ρn‖γ−αL∞t (L∞(R))
+ 1
n
‖ρn‖γ−θL∞t (L∞(R))

)
.

(3.42)
And it yields that for C ′ > 0 independent on n, n large enough:

‖ρn‖L∞t (L∞(R)) ≤ C ′ρ̄+ C ′(‖ρ0v0‖M(R) + ‖ρ0u0‖M(R))
1
α e

3C′
α
t(‖ρ‖γ−α

L∞t (L∞(R))
+ 1
n
‖ρn‖γ−θL∞t (L∞(R)

)
.

(3.43)
Let us prove now that the sequence (ρn)n∈N is uniformly bounded in n in L∞ norm on
an time interval [0, T ∗] with T ∗ > 0 independent on n. More precisely we define by:

Tn = sup{t ∈ (0,+∞), ‖ρn(t, ·)‖L∞ ≤ sup(2‖ρ0‖L∞ ,M1)}

with M1 = 2C ′ρ̄+ 2C ′(2‖ρ0v0‖M(R) + ‖∂xϕ1(ρ0)‖M(R) and M = sup(2‖ρ0‖L∞ ,M1).
We observe that Tn > 0 since ρn belongs to C([0,+∞[, L∞(R)) for any n ∈ N and since
‖ρn(0, ·)‖L∞(R) < M . Let us define now T∗ such that:

e
3C′
α
T∗(Mγ−α+Mθ−α) =

3

2
and T∗ =

α ln(3
2)

3C ′(Mγ−α +M θ−α)
.

From the definition of Tn and from (3.43) we deduce that for any n ∈ N large enough we
have:

Tn ≥ T∗ > 0.

It implies that (ρn)n∈N is uniformly bounded in n in L∞((0, T∗), L
∞(R)) with T∗ inde-

pendent on n. In other words we have for any n ∈ N∗:

‖ρn‖L∞([0,T∗],L∞(R)) ≤M. (3.44)
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In the sequel we will prove in fact that (ρn)n∈N is also uniformly bounded in n in
L∞((0,∞), L∞(R)). Now if we combine (3.44), (3.29) and (3.37) we deduce that there
exists C > 0 independent on n such that:

‖ρnun‖L∞([0,T∗],L1(R)) + ‖ρnvn‖L∞([0,T∗],L1(R))

≤ (2‖ρ0v0‖M(R) + ‖∂xϕ1(ρ0)‖M(R))e
CT∗Mγ−α

.
(3.45)

Control of the L∞ norm of ( 1
ρn

)n∈N in finite time

Now we are interested in estimating the L∞ norm of 1
ρn

on a finite time Tβ independent
on n. As in (3.41) we have for C > 0 large enough, for n large enough and any t ∈ [0, T∗]:

‖ϕ1,n(ρ(t, ·))− ϕ1,n(ρ̄)‖L∞ ≤ ‖∂xϕ1,n(ρn(t, ·))‖L1(R)

≤ 2(‖ρ0v0‖M(R) + ‖ρ0u0‖M(R))e
tCMγ−α

.
(3.46)

Now since we have ‖ρ0v0‖M(R) + ‖ρ0u0‖M(R) ≤ C2ε0 with C2 > 0 independent on n and
with ε0 sufficiently small, we deduce that for Tβ ≤ T∗ such that:

eTβCM
γ−α ≤ 2, (3.47)

we obtain that for C3 > 0 large enough and any t ∈ [0, Tβ] and any x ∈ R:

ϕ1(ρn(t, x)) ≥ ϕ1(ρ̄)− 4C2ε0 −
C3

n
‖ρn‖θL∞t (L∞(R)). (3.48)

From (3.48) and (3.44) it implies that 1
ρn

belongs uniformly to L∞([0, Tβ], L∞(R)) for n
large enough with Tβ > 0 independent on n if ε0 > 0 is small enough.

Gain of regularity on the velocity un

From (3.38), we deduce that for any T > 0 we have uniformly in n:

∂xρ
1
2

(γ+α−1)
n ∈ L2

T (L2(R)),
√
ρnvn ∈ L∞T (L2(R)). (3.49)

Now from the definition of the effective velocity vn we have:

√
ρnun =

√
ρnvn −

µn(ρn)

ρ
3
2
n

∂xρn

=
√
ρnvn −

2µ

γ + α− 1
ρ

1
2

(α−γ)
n ∂xρ

1
2

(γ+α−1)
n − 2

n(γ + θ − 1)
ρ

1
2

(θ−γ)
n ∂xρ

1
2

(γ+θ−1)
n .

(3.50)
From (3.49), (3.48) and since α− γ, θ − γ ≤ 0, we deduce that (

√
ρnun)n∈N is uniformly

bounded in L2((0, Tβ) × R), it gives that for Tβ > 0 independent on n, it exists C > 0
independent on n such that:

‖√ρnun‖L2((0,Tβ)×R) ≤ C. (3.51)

Let us prove now some additional regularizing effects independent on n on the sequel
(un)n∈N. It will be important in order to pass to the limit when n goes to +∞. ALet
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us multiply the momentum equation of (3.28) by sun and integrate over (0, t)× R with
t ∈ (0, Tβ), we have then:

1

2
t

∫
R
ρn|un|2(t, x)dx− 1

2

∫ t

0

∫
R
ρn|un|2(s, x)dsdx+

∫ t

0

∫
R
µn(ρn)(∂xun)2(s, x)s dsdx

+

∫ t

0

∫
R
s∂xP (ρn)undx = 0

We recall now that we have:

∂t(t(Π(ρn)−Π(ρ̄)) + t∂x(Π(ρn)un) + tP (ρn)∂xun − (Π(ρn)−Π(ρ̄)) = 0.

We deduce then that we have:

1

2
t

∫
R
ρn|un|2(t, x)dx+

∫ t

0

∫
R
µn(ρn)s(∂xun)2(s, x)dsdx+ t

∫
R

(Π(ρn)(t, x)−Π(ρ̄))dx

=

∫ t

0

∫
R

(Π(ρn)−Π(ρ̄))(s, x)dsdx+
1

2

∫ t

0

∫
R
ρn|un|2(s, x)dsdx.

(3.52)
We deduce from (3.38), (3.48), (3.51) and (3.52) that the sequence (un)n∈N verify uni-
formly in n on [0, Tβ]:

√
tun ∈ L∞([0, Tβ], L2(R)) and

√
t∂xun ∈ L2([0, Tβ], L2(R)). (3.53)

We can obtain additional uniform informations on the sequence (un)n∈N by using inter-
polation estimates. Indeed from (3.45) we know that (ρnun)n∈N is uniformly bounded
in L∞([0, Tβ], L1(R)). We recall that ( 1

ρn
)n∈N is uniformly bounded on [0, Tβ] then we

deduce that (un)n∈N is uniformly bounded in L∞([0, Tβ], L1(R)) and then is uniformly

bounded in L∞([0, Tβ], H−
1
2 (R)) by Sobolev embedding. It is important to mention that

the bound depend only on ε0 and ‖ρ0‖L∞(R).
By interpolation, we have for 0 < s < 1 and any t ∈ (0, Tβ]:

t
1
6

(1+2s)‖un(t, ·)‖Hs ≤ ‖un(t, ·)‖
2
3

(1−s)

H−
1
2 (R)

(
√
t‖un(t, ·)‖H1(R))

1
3

(1+2s). (3.54)

From (3.48), (3.53) and (3.54) we deduce that (un)n∈N is uniformly bounded in Lp(s)−ε([0, Tα], Hs(R))
with s ∈ (0, 1), p(s) = 3

1+2s and ε > 0 sufficiently small such that p(s) − ε ≥ 1 (ε > 0
depends here on s ∈ (0, 1)). We have finally obtained that for any t ∈ [0, Tβ], we have
for C > 0 independent on n:

‖ρn(t, ·)− ρ̄‖L2(R) ≤ C, ‖(
1

ρn
, ρn)(t, ·)‖L∞(R) ≤ C

‖vn(t, ·)‖L2(R) ≤ C, ‖vn(t, ·)‖L1(R) ≤ C
‖
√
s∂xun‖L2([0,Tβ ],L2(R)) ≤ C

‖un(t, ·)‖L2(R) ≤ C(1 +
1√
t
), ‖un(t, ·)‖L1(R) ≤ C

‖∂xϕ(ρn)‖L2(R) ≤ C(1 +
1√
t
)

‖un‖Lp(s)−ε([0,t],Hs(R)) ≤ C.

(3.55)
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Indeed we use the fact that ‖∂xϕ(ρn)‖L2(R) ≤ ‖∂xϕn(ρn)‖L2(R) with ϕ′n(ρ) = µn(ρn)
ρ2
n

. We

deduce in particular that choosing s1(ε) ∈ (0, 1) such that 1
2 − s1(ε) = 1

p(s1(ε))−ε , we have

from (3.55) and by Sobolev embedding that:

‖un‖Lp(s1(ε))−ε([0,Tβ ]×R) ≤ C, (3.56)

with C > 0 independent on n. We observe then that 4εs1(ε)2 − 10s1(ε) + (1 − ε) = 0,

and since s1(ε) ∈ (0, 1) we get s1(ε) = 5
4ε(1−

√
1− 4

25ε(1− ε)) with s1(ε) →ε→0
1
10 . We

deduce in particular that 2 < p(s1(ε))− ε < 3 for ε > 0 small enough.

Estimate in long time of the L∞ norm of the density ρn when α > 1
2

We know that (ρn, un, vn)n∈N verify the classical energy estimate on (0,+∞)×R (indeed
the initial data belongs to the energy space, in particular un(0, ·) ∈ L2(R)), however the
energy estimate depends on the initial data and is not uniform in n (indeed the initial
velocity u0 of the Theorem 2.2 is not in L2(R)). However for t ≥ t1 > 0 the energy
estimate will be uniform in n. Indeed let us multiply the momentum equation of (3.28)
by un and integrating over [t1, t2] with t1 ∈ (0, Tβ] and t2 > t1, it gives then:

1

2

∫
R

(ρn|un|2(t2, x) + (Π(ρn)−Π(ρ̄))(t2, x)dx+

∫ t2

t1

∫
R
µn(ρn(s, x))(∂xun(s, x))2dsdx

≤ 1

2

∫
R

(ρn(t1, x)|un(t1, x)|2(x) + (Π(ρn(t1, x))−Π(ρ̄))dx.

(3.57)
From (3.52), (3.55) and (3.38) we deduce that there exists C > 0 independent on n:

1

2

∫
R

(ρn|un|2(t2, x) + (Π(ρn)−Π(ρ̄))(t2, x)dx+

∫ t2

t1

∫
R
µn(ρn(s, x))(∂xun(s, x))2dsdx

≤ C(1 +
1

t1
).

(3.58)
Combining (3.39) and (3.58) we deduce that for any t > 0 we have for C > 0 independent
on n: 

‖√ρnvn(t, ·)‖L2(R) ≤ C

‖√ρnun(t, ·)‖L2(R) ≤ C(1 +
1√
t
)

‖(
√
s1{s≤Tβ} +

√
µ(ρn)1{s≥Tβ})∂xun‖L2

t (L
2(R)) ≤ C

‖∂xρ
α− 1

2
n (t, ·)‖L2(R) +

1

n
‖∂xρ

θ− 1
2

n (t, ·)‖L2(R) ≤ C(1 +
1√
t
)

‖∂xρ
1
2

(γ+α−1)
n ‖L2

t (L
2(R)) +

1√
n
‖∂xρ

1
2

(γ+θ−1)
n ‖L2

t (L
2(R)) ≤ C

‖ρn(t, ·)− ρ̄‖Lγ2 (R) ≤ C.

(3.59)

Lemma 4 When α > 1
2 and γ ≥ 2α − 1, for any t ≥ 0 there exists C > 0 independent

on n such that:
‖ρn(t, ·)‖L∞ ≤ C. (3.60)
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Proof: We know that for t1 ∈ (0, Tβ], we have C > 0 independent on n such that:

‖ρn‖L∞([0,t1],L∞(R)) ≤ C. (3.61)

Following the lemma 3.7 in [24], it remains now only to prove that there exists C > 0
independent on n such that for all t ≥ t1 > 0, we have:

‖ρn(t, ·)‖L∞ ≤ C. (3.62)

Since ρn is regular, it yields for any t ≥ t1 and for β ≥ 0 to determine later:

(ρ
α− 1

2
n (t, x)− ρ̄α−

1
2 )2β(t, x) =

∫ x

−∞
∂y((ρ

α− 1
2

n (t, y)− ρ̄α−
1
2 )2β)(t, y)dy

≤ 2β
( ∫ x

−∞
|ρα−

1
2

n (t, y)− ρ̄α−
1
2 |2(2β−1)dy

) 1
2
( ∫ x

−∞
|∂yρ

α− 1
2

n (t, y)|2dy
) 1

2 .

(3.63)

From (3.59) we know that
∫ x
−∞ |∂yρ

α− 1
2

n (t, y)|2dy is uniformly bounded in n for t ≥ t1 > 0.
We have now to estimate the following term:∫ x

−∞
|ρα−

1
2

n (t, y)− ρ̄α−
1
2 |2(2β−1)dy =

∫ x

−∞
|ρα−

1
2

n (t, y)− ρ̄α−
1
2 |2(2β−1)[1{|ρn−ρ̄|≤ ρ̄2 }

+ 1{|ρn−ρ̄|> ρ̄
2
}]dy = I1(t) + I2(t).

We have now for C,C1 > 0 sufficiently large and taking β = 1 for any t ≥ t1 and using
(3.59):

I1(t) =

∫ x

−∞
|ρα−

1
2

n (t, y)− ρ̄α−
1
2 |2(2β−1)1{|ρn−ρ̄|≤ ρ̄2 }

dy

≤ C
∫ x

−∞
|ρn(t, y)− ρ̄|21{|ρn−ρ̄|≤ ρ̄2 }

dy

≤ C1.

(3.64)

For β = 1 we have now when t ≥ t1 and C,C1 > 0 sufficiently large using (3.59):

I2(t) =

∫ x

−∞
|ρα−

1
2

n (t, y)− ρ̄α−
1
2 |2(2β−1)1{|ρn−ρ̄|> ρ̄

2
}dy

≤ C
∫ x

−∞
|ρn(t, y)− ρ̄|2(2β−1)(α− 1

2
)1{|ρn−ρ̄|> ρ̄

2
}dy

≤ C
∫ x

−∞
|ρn(t, y)− ρ̄|2(α− 1

2
)1{|ρn−ρ̄|> ρ̄

2
}dy.

(3.65)

Since 2α− 1 ≤ γ it exists C1 > 0 large enough such that:

I2(t) ≤ C1(

∫ x

−∞
|ρn(t, y)− ρ̄|γ1{|ρn−ρ̄|> ρ̄

2
}dy)

2α−1
γ |{|ρn − ρ̄| >

ρ̄

2
}|
γ−2α+1

γ

≤ C1‖ρn(t, ·)− ρ̄‖γ
Lγ2 (R)

.
(3.66)

From (3.61), (3.63), (3.64) and (3.66) we conclude the proof of (3.60). �

We deduce using the estimate (3.37) that for any t > 0 and any n ∈ N∗ we have for
C(t) > 0 depending only on t:

‖ρnun(t, ·)‖L1(R) + ‖ρnvn(t, ·)‖L1(R) ≤ C(t). (3.67)
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Estimate in long time of the L∞ norm of ρn and 1
ρn

when α < 1
2

We recall that we have now:

∂tun + un∂xun − ∂x(
µn(ρn)

ρn
∂xun)− ∂xϕn(ρn) ∂xun +

aγ

γ − 1
∂x(ργ−1

n ) = 0.

We deduce that we have for t ∈]t1, Tβ] with 0 < t1 < Tβ:

∂t((t− t1)∂xun)− ∂xun + ∂x(un (t− t1)∂xun)− ∂x
(µn(ρn)

ρn
∂x((t− t1)∂xun)

)
− ∂x

(
(∂xϕ(ρn) + ∂x(

µn(ρn)

ρn
)) (t− t1)∂xun

)
+

aγ

γ − 1
∂xx((t− t1)ργ−1

n ) = 0.

We set now wn = (t− t1)∂xun and we have for t ∈]t1, Tβ] :

∂twn − ∂xun + ∂x(unwn)− ∂x(
µn(ρn)

ρn
∂xwn)− ∂x(

µ′n(ρn)

ρ
∂xρnwn)

+
aγ

γ − 1
∂xx((t− t1)ργ−1

n ) = 0

Multiplying by wn and integrating over (t1, t)× R, we obtain:

1

2

∫
R
|wn|2(t, x)dx+

∫ t

t1

∫
R

µn(ρn)

ρn
(s, x)|∂xwn(s, x)|2dsdx−

∫ t

t1

∫
R
∂xun(s, x)wn(s, x)dsdx

−
∫ t

t1

∫
R
un(s, x)wn(s, x)∂xwn(s, x)dsdx+

∫ t

t1

∫
R

µ′n(ρn)

ρn
∂xρn(s, x)wn(s, x)∂xwn(s, x)dsdx

− aγ

γ − 1

∫ t

t1

∫
R

(s− t1)∂xρ
γ−1
n (s, x)∂xwn(s, x)dsdx = 0.

Using (3.55) we obtain then on (t1, t) with t ∈]t1, Tβ], c > 0 and C > 0 independent on
n:

1

2

∫
R
|wn|2(t, x)dx+ µc

∫ t

t1

∫
R
|∂xwn(s, x)|2dsdx ≤ ‖∂xun‖L2((t1,t),L2(R))

√
t‖wn‖L∞((t1,t),L2(R))

+ ‖µ
′
n(ρn)

ρ
∂xρn‖L∞((t1,t),L2(R))‖∂xwn‖L2((t1,t),L2(R))‖wn‖L2((t1,t),L∞(R))

+ ‖un‖L∞((t1,t),L2(R))‖∂xwn‖L2((t1,t),L2(R))‖wn‖L2((t1,t),L∞(R))

+ Ct‖∂xργ−1
n ‖L2((t1,t),L2(R))‖∂xwn‖L2((t1,t),L2(R)).

Next by Gagliardo-Niremberg inequality:

1

2

∫
R
|wn|2(t, x)dx+ µc

∫ t

t1

∫
R
|∂xwn(s, x)|2dsdx ≤

‖∂xun‖L2((t1,t),L2(R))

√
t‖wn‖L∞((t1,t),L2(R)) + Ct‖∂xργ−1

n ‖L2((t1,t),L2(R))‖∂xwn‖L2((t1,t),L2(R))

+ C(‖µ
′
n(ρn)

ρn
∂xρn‖L∞((t1,t),L2(R)) + ‖un‖L∞((t1,t),L2(R)))‖∂xwn‖

3
2

L2((t1,t),L2(R))
‖wn‖

1
2

L2((t1,t),L2(R))
.
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Now using Young inequality we deduce that for C1 > 0 large enough:

1

4
‖wn‖2L∞((t1,t),L2(R)) +

µc

2
‖∂xwn‖2L2((t1,t),L2(R))

≤ C1(‖∂xun‖2L2((t1,t),L2(R))t+ t2‖∂xργ−1
n ‖2L2((t1,t),L2(R))

+ (‖µ
′
n(ρn)

ρn
∂xρn‖L∞((t1,t),L2(R)) + ‖un‖L∞((t1,t),L2(R)))

4‖wn‖2L2((t1,t),L2(R))

)
.

From (3.55) and (3.59) we deduce that for t ∈ (t1, Tβ], we have for C(t, t1) > 0 indepen-
dent on n:

1

4
‖wn‖2L∞((t1,t),L2(R)) +

µc

2
‖∂xwn‖L2((t1,t),L2(R)) ≤ C(t, t1). (3.68)

We have showed that for t1 ∈]0, Tβ] and any t ∈]t1, Tβ] and any n ∈ N∗ we have:

‖(t− t1)∂xun(t, ·)‖L2 ≤ C(t, t1) < +∞. (3.69)

Remark 10 It is important to mention in fact that the previous estimate is true for any
α > 0.

From (3.69) and (3.55) we have obtained that for t2 ∈]t1, Tβ] with 0 < t1 < Tβ, we have
for C > 0 independent on n and depending only on the initial data (ρ0, u0, v0):

‖∂xun(t2, ·)‖L2(R) ≤ C
‖un(t2, ·)‖L2(R) ≤ C
‖ρn(t2, ·)− ρ̄‖H1(R) ≤ C

‖(ρn,
1

ρn
)(t2, ·)‖L∞(R) ≤ C.

(3.70)

From the theorem of Mellet and Vasseur in [33], we know that there exists a global strong
solution (ρµ,n, uµ,n) with initial data (ρn(t2, ·), un(t2, ·)). In addition it is proved in [33]
that for t ≥ 0 there exists C(t) > 0 depending only on t, ‖un(t2, ·)‖H1(R), ‖ρn(t2, ·) −
ρ̄‖H1(R) and ‖(ρn, 1

ρn
)(t2, ·)‖L∞(R) such that for any t ≥ 0 we have:

‖( 1

ρµ,n
, ρµ,n)(t, ·)‖L∞(R) ≤ C(t). (3.71)

We deduce that when 0 < α < 1
2 the regular solution (ρn, un) verify for any t ≥ t2:

(ρn(t, ·), un(t, ·)) = (ρµ,n(t− t2, ·), uµ,n(t− t2, ·)), (3.72)

This is a direct consequence of the uniqueness of the solution (ρµ,n, uµ,n), indeed (ρn, un)
is sufficiently regular such that the solution is in the class of uniqueness of (ρµ,n, uµ,n). It
implies from (3.71) that there exists C(t) depending only on ‖un(t2, ·)‖H1(R), ‖ρn(t2, ·)−
ρ̄‖H1(R) and ‖(ρn, 1

ρn
)(t2, ·)‖L∞(R) (it is important to mention that we have seen that

these norms are independent on n, in particular C(t) depends only on t and (ρ0, u0, v0))
such that for any t ≥ 0 we have:

‖( 1

ρn
, ρn)(t, ·)‖L∞(R) ≤ C(t). (3.73)

From (3.37) it yields that for any t > 0 there exists C(t) > 0 independent on n such that:

‖ρnun(t, ·)‖L1(R) + ‖ρnvn(t, ·)‖L1(R) ≤ C(t). (3.74)

22



Gain of integrability on the velocity un in long time when α > 1
2

Multiplying the momentum equation of (3.28) by un|un|p (with p = 2) and integrating
over (t1, t)× R with t1 ∈ (0, Tβ] and t > t1, we have then:

1

p+ 2

∫
R
ρn(t, x)|un|p+2(t, x)dx+ (p+ 1)

∫ t

t1

∫
R
µn(ρn(s, x))|∂xun(s, x)|2|un(s, x)|pdsdx

+

∫ t

t1

∫
R
∂xP (ρn)(s, x)un|un|p(s, x)dsdx =

1

p+ 2

∫
R
ρ(t1, x)|un|p+2(t1, x)dx.

(3.75)
From (3.69) and (3.55) (indeed (3.69) is true for any α > 0), and using interpolation we
know that there exists C(t1) > 0 independent on n such that:

|
∫
R
ρn(t1, x)|un|p+2(t1, x)dx| ≤ C(t1). (3.76)

It remains now only to estimate the term coming from the pressure. We have then using
Young inequality for ε > 0 and Cε > 0 large enough with p = 2:

|
∫ t

t1

∫
R
∂xP (ρn)(s, x)un|un|p(s, x)dsdx|

≤ a(p+ 1)|
∫ t

t1

∫
R
ργn(s, x) ∂xun(s, x)|un|p(s, x)dsdx|

≤ ε
∫ t

t1

∫
R
µn(ρn(s, x))|∂xun(s, x)|2|un(s, x)|2dsdx

+ Cε

∫ t

t1

∫
R

ρ2γ−1
n (s, x)

µn(ρn(s, x))
ρn(s, x)|un|2(s, x)dsdx.

(3.77)

Since we have 2γ − 1 ≥ α, we deduce from (3.55) and (3.60) that we have:

|
∫ t

t1

∫
R
∂xP (ρn)(s, x)un|un|p(s, x)dsdx|

≤ ε
∫ t

t1

∫
R
µn(ρ(s, x))|∂xun(s, x)|2|un(s, x)|2dsdx

+ Cε‖ρn‖2γ−1−α
L∞(R+,L∞(R))

(t− t1)‖√ρnun‖2L∞([t1,+∞),L2(R)).

(3.78)

From (3.59), (3.78), (3.76) and (3.75) we deduce that for any n ∈ N∗ and for any t1 ∈
]0, Tβ] and t > t1 we have:

‖ρ
1
4
nun‖L∞([t1,t],L4(R)) ≤ C(t1, t), (3.79)

with C(t1, t) depending only on t, t1 but independent on n.

Compactness when 0 < α < 1
2

We wish now to prove that the sequence (ρn, un)n∈N converges up to a subsequence to a
global weak solution (ρ, u) of the system (1.1). Using (3.59), (3.55), (3.71) and (3.74))
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we have seen that there exists C > 0, C(t) > 0 independent on n (with C(t) depending
only on t) such that we have for any t > 0:

‖√ρnvn(t, ·)‖L2(R) ≤ C

‖√ρnun(t, ·)‖L2(R) ≤ C(1 +
1√
t
)

‖(
√
s1{s≤Tβ} +

√
µ(ρn)1{s≥Tβ})∂xun‖L2

t (L
2(R)) ≤ C

‖∂xρ
α− 1

2
n (t, ·)‖L2(R) ≤ C(1 +

1√
t
)

‖∂xρ
1
2

(γ+α−1)
n ‖L2

t (L
2(R)) ≤ C

‖un‖Lp(s)−ε([0,Tβ ],Hs(R)) ≤ C
‖ρn(t, ·)− ρ̄‖Lγ2 (R) ≤ C

‖( 1

ρn
, ρn)(t, ·)‖L∞(R) ≤ C(t)

‖ρnun(t, ·)‖L1(R) + ‖ρnvn(t, ·)‖L1(R) ≤ C(t).

(3.80)

with s ∈ (0, 1), p(s) = 3
1+2s and ε > 0 sufficiently small such that p(s) − ε ≥ 1. From

(3.80), we deduce that there exists C(T ) > 0 independent on n such that for any T > 0
we have:

‖ρn − ρ̄‖L2((0,T ),H1(R)) ≤ C(T ). (3.81)

In addition we have ∂t(ρn − ρ̄) = −∂x(ρnun), then from (3.80) ∂t(ρn − ρ̄) is uniformly
bounded in L1((0, T ), H−1(R)). From the Lemma 1, the diagonal process and compact
Sobolev embedding, it implies that up to a subsequence (ρn)n∈N converges strongly to ρ in
L2
loc(R+×R). We deduce that up to a subsequence (ρn)n∈N converges almost everywhere

to ρ on ]0,+∞[×R. From Fatou lemma and (3.80), we obtain that there exists C(t) >
depending only on t > 0 such that:

‖ρ(t, ·)− ρ̄‖Lγ2 (R) ≤ C

‖(1

ρ
, ρ)(t, ·)‖L∞(R) ≤ C(t).

(3.82)

Next from (3.80), we deduce that (un)n∈N is uniformly bounded in Lp(s)−ε([0, Tβ], Hs(R))
and un is uniformly bounded in L2

loc([Tβ,+∞), H1(R)). Using classical paraproduct laws
(see[1]) we obtain that for t ∈]0, Tβ] and 0 < s < 1

2 :

‖T(ρn(t,·)−ρ̄)un(t, ·)‖Hs(R) ≤ ‖ρn(t, ·)− ρ̄‖L∞(R)‖un(t, ·)‖Hs(R)

‖Tun(t,·)(ρn(t, ·)− ρ̄)‖
H

1
2 +s(R)

≤ ‖ρn(t, ·)− ρ̄‖H1(R)‖un(t, ·)‖Hs(R)

‖R(un(t, ·), (ρn(t, ·)− ρ̄))‖
H

1
2 +s(R)

≤ ‖ρn(t, ·)− ρ̄‖H1(R)‖un(t, ·)‖Hs(R)

We deduce from (3.80) and (3.81) that ρnun is uniformly bounded in Lq(s)([0, Tβ], Hs(R))+
Lp(s)−ε([0, Tβ], Hs(R)) with 0 < s < 1−ε

2(2+ε) and 1
q(s) = 1

2 + 1
p(s)−ε ( p(s) = 3

1+2s and ε > 0

sufficiently small and p(s) − ε ≥ 2). In particular since p(s) − ε ≥ q(s) ≥ 1, we have
proved that ρnun is uniformly bounded in Lq(s)([0, Tβ], Hs(R)).
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From (3.80), we observe that un and (ρn−ρ̄) are uniformly bounded in L2
loc([Tβ,+∞[, H1(R)),

by product of Sobolev space we deduce that ρnun is bounded in L1
loc([Tβ,+∞[, H1(R)).

We have finally proved that ρnun is bounded in L1
loc(R+, Hs(R)) for 0 < s < 1−ε

2(2+ε) with
ε > 0 sufficiently small. We recall now that we have:

∂t(ρnun) = −∂x(ρnu
2
n) + ∂xx(µn(ρn)un)− ∂x(un∂x(µn(ρn)))− ∂x(a(ργn − ρ̄γ)).

Let us deal with the term ∂x(un∂x(µn(ρn))), from (3.80) we know that ∂x(µn(ρn)) is
uniformly bounded in L2(R+, L2(R)) and un is uniformly bounded in L2

loc(R+, L2(R)), we
deduce that ∂x(un∂x(µn(ρn))) is uniformly bounded in L1

loc(R+,W−1,1(R)). We proceed
similarly for the other terms and we deduce by Sobolev embedding that ∂t(ρnun) is
uniformly bounded in L1

loc(R+, H−s1(R)) with s1 sufficiently large.
Since we have seen that (ρnun)n∈N is bounded in L1

loc(R+, Hs(R)) for 0 < s < 1−ε
2(2+ε) with

ε > 0 sufficiently small, using the lemma 1 we show that (ρnun)n∈N converges strongly
up to a subsequence to m in L1

loc(R+, L2
loc(R)). It implies in particular that up to a

subsequence (ρnun)n∈N converges almost everywhere to m in ]0,+∞[×R. We define now
u as u = m

ρ which is well defined since 1
ρ belongs to L∞(R+×R) (see (3.82) and we have

that (un)n∈N converges up to a subsequence to u.
From Fatou lemma, we have for any t > 0: ‖

√
ρu(t, ·)‖L2(R) ≤ C(1 +

1√
t
)

‖m(t, ·)‖L1(R) ≤ C(t).
(3.83)

From (3.80) we observe that (un)n∈N is uniformly bounded in Lp(s)−ε([0, Tβ], Hs(R)) and
is also uniformly bounded in L∞([Tβ,+∞[, L2(R))∩L2([Tβ,+∞[, Ḣ1(R)). By Gagliardo-
Niremberg we deduce that (un)n∈N is uniformly bounded in L4([Tβ,+∞[, L∞(R)). By
interpolation it implies that un is uniformly bounded in L6([Tβ,+∞[, L6(R)). Now taking
s = ε1 > 0 sufficiently small and using the fact that (un)n∈N is uniformly bounded
in Lp(s)−ε([0, Tβ], Hs(R)), we deduce by Sobolev embedding that (un)n∈N is uniformly
bounded in L2+ε2([0, Tβ], Lp2(R)) with ε2 > 0 sufficiently small and p2 > 2. It implies in
particular that there exists C > 0 independent on n and ε2 > 0 sufficiently small such
that:

‖un‖L2+ε2
loc (R+×R)

≤ C. (3.84)

Using the Lemma 3, Lemma 1, (3.80), (3.84) and the fact that up to a subsequence
(ρn, un,mn)n∈N converges almost everywhere to (ρ, u,m), we deduce that up to a subse-
quence:

• (ρn,
1
ρn

)n∈N converges strongly to (ρ, 1
ρ) in Lploc(R

+ × R) for any 1 ≤ p < +∞.

• For any T > 0, (ρn)n∈N converges strongly to ρ in C([0, T ],W−ε,ploc (R)) for any
1 ≤ p < +∞ and ε > 0.

• (un)n∈N, (
√
ρnun)n∈N, (mn)n∈N converge strongly in L2+ε2

loc (R+ × R) for ε2 > 0
sufficiently small.

In particular since (
√
ρnvn)n∈N is uniformly bounded in L∞(R+, L2(R)), we deduce that

up to a subsequence (
√
ρnvn)n∈N converges weakly in L∞(R+, L2(R)) to m3. Since
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√
ρnvn =

√
ρnun + ∂xϕ2,n(ρn) with ϕ′2,n(ρn) = µn(ρn)

ρ
3
2
n

, we have seen using the previ-

ous informations that (
√
ρnvn)n∈N converges in the sense of the distributions to

√
ρu +

∂xϕ2(ρ) = m2. It implies that m3 = m2. Indeed it suffices to prove that (ρ
α− 1

2
n )n∈N

and ( 1
nρ

θ− 1
2

n )n∈N converge respectively to ρα−
1
2 and 0. It is again a direct consequence of

(3.80), dominated convergence theorem and of the fact that up to a subsequence (ρn)n∈N
converges almost everywhere to ρ. Now using the Fatou lemma for weak convergence we
deduce that there exists C > 0 such that:

‖m2‖L∞(R+,L2(R)) ≤ C. (3.85)

Since (ρn, un)n∈N is a regular solution, we have for any test function ϕ ∈ C∞0 ([0,+∞[×R)
after integration by parts:∫ +∞

0

∫
R

(
ρnun(s, x)∂sϕ(s, x) + ρnu

2
n(s, x)∂xϕ(s, x) + µn(ρn)un(s, x)∂xxϕ(s, x)

+ ∂x(µn(ρn))un(s, x)∂xϕ(s, x) + aργn(s, x)∂xϕ(s, x)
)
ds dx+

∫
R
ρnun(0, x)ϕ(0, x)dx = 0.

(3.86)
From (3.80), we know that (∂x(µn(ρn)))n∈N is uniformly bounded in L2(R+, L2(R)), then
up to a subsequence ∂x(µn(ρn)) converges weakly in L2(R+, L2(R)) to w. Since µn(ρn)
converges to µ(ρ) in Lploc(R

+×R) for any 1 ≤ p < +∞ using dominated convergence, we
deduce that w = ∂xµ(ρ) in the sense of the distributions. Now since we have seen that
un∂xϕ converges strongly in L2(R+, L2(R)) up to a subsequence to u∂xϕ (we use the fact
here that ∂xϕ has compact support), it yields up to a subsequence:

lim
n→+∞

∫ +∞

0

∫
R
∂x(µn(ρn))un(s, x)∂xϕ(s, x)dxds =

∫ +∞

0

∫
R
∂x(µ(ρ))u(s, x)∂xϕ(s, x)dxds

(3.87)
Proceeding similarly for the other terms we have proved that (ρ, u) is a global weak
solution in the sense of the definition 2.1. It is important in particular to observe that
mn(0, ·) converges to m0 in the sense of the measure and we have then:

lim
n→+∞

∫
R
ρnun(0, x)ϕ(0, x)dx =

∫
R
m0(x)ϕ(0, x)dx. (3.88)

We proceed also similarly for the mass equation. From (3.80) (vn)n∈N is uniformly
bounded in L∞(R+, L2(R)) and converges weakly * to v in L∞(R+, L2(R)). We verify
in particular easily that m2 =

√
ρv. From the Fatou properties for the weak convergence

we deduce that for any t > 0:

‖v‖L∞([0,t],L2(R)) ≤ C
‖(
√
s1{s≤Tβ} + 1{s≥Tβ})∂xu‖L2

t (L
2(R)) ≤ C

‖∂xρα−
1
2 ‖L2([0,Tβ ],L2(R))+L∞([Tβ ,+∞[,L2(R)) ≤ C

‖∂xρ
1
2

(γ+α−1)‖L2
t (L

2(R)) ≤ C
‖u‖Lp(s)−ε([0,Tβ ],Hs(R)) ≤ C.

(3.89)
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Compactness when α ≥ 1

This case is more delicate essentially because ( 1
ρn

)n∈N is a priori not uniformly bounded

in L∞(R+, L∞(R)). We only know that there exists Tβ > 0 independent on n such that
( 1
ρn

)n∈N is uniformly bounded in L∞([0, Tβ], L∞(R)). In particular we have the same
estimates on (ρn, un, vn) and (ρ, u, v) on the time interval [0, Tβ] as previously ((ρ, u, v)
are defined in a similar way). The main difficulty now is to prove that ρn and a certain

momentum mn = ρβ1
n un converge almost everywhere up to a subsequence to ρ and m.

Convergence almost everywhere of (ρn)n∈N

From (3.59) and (3.60), we have for any ϕ ∈ C∞0 (R) with suppϕ ⊂] − M,M [, there
exists C(t1) > 0, C > 0 independent on n such that for t1 ∈]0, Tβ]:

‖∂x(ϕραn)‖L∞([t1,+∞[,L1(R)) ≤ C‖ϕ
√
ρn‖L∞([t1,+∞[,L2(R))‖∂xρ

α− 1
2

n ‖L∞([t1,+∞[,L2(R))

+ ‖ραn∂xϕ‖L∞([t1,+∞[,L1(R))

≤ (‖ϕ‖L2(R) + ‖∂xϕ‖L1(R))C(M, t1).
(3.90)

with C(M, t1) depending only on t1,M . Next we have:

∂t(ϕρ
α
n) = (1− α)ϕραn∂xun − ∂x(ϕραnun) + ∂xϕρ

α
nun.

From (3.60) and (3.59), we deduce that ϕραn∂xun is uniformly bounded in L2([t1,+∞[, L2(R)),
∂x(ϕραnun) is uniformly bounded (since α > 1

2) in L∞([t1,+∞[,W−1,2(R))), ∂xϕρ
α
nun is

uniformly bounded in L∞([t1,+∞[, L2(R))). It implies that (∂t(ϕρ
α
n))n∈N is uniformly

bounded in L2
loc([t1,+∞[,W−1,2(R))). From the Lemma 1, we deduce that (ραn)n∈N con-

verges strongly up to a subsequence in C([t1, T ], Lβ1

loc(R))) for any 1 ≤ β1 < +∞ and
T > t1. Up to a subsequence it implies that (ραn)n∈N converges to ρα almost everywhere
on [t1,+∞[×R. In particular up to a subsequence (ρn)n∈N converges almost everywhere

to ρ on [t1,+∞[×R with ρ = ρ
1
α
α if ρα > 0 and ρ = 0 if ρα = 0.

Now using the same arguments as the proof for α < 1
2 on ]0, t1] with t1 ∈]0, Tβ], we obtain

that (ρn)n∈N converges almost everywhere on ]0, t1]×R to ρ up to a subsequence. Indeed
we can use similar ideas since we know from (3.55) that (ρn,

1
ρn

)n∈N is uniformly bounded
in L∞([0, Tβ], L∞(R)). We have finally proved that ρn converges almost everywhere to ρ
on ]0,+∞[×R. From (3.60) we deduce that for any t > 0 we have for C > 0:

‖ρ(t, ·)‖L∞(R) ≤ C. (3.91)

In addition it implies using the dominated convergence and (3.60) that (ργn)n∈N converges
up to a subsequence to ργ in L1

loc(R+ × R).

Convergence almost everywhere of (ραnun)n∈N when α ≥ 1

We set mn = ραnun, we deduce from (3.59) and (3.60)that there exists C(t1) > 0 such
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that for t1 ∈]0, Tβ] and t > t1:

‖∂x(ραnun)‖L2([t1,t],L2(R))+L∞([t1,t],L1(R)) ≤ C
(
‖ρ

α
2
n ∂xun‖L2([t1,t],L2(R))‖ρ

α
2
n ‖L∞([t1,t],L∞(R))

+ ‖∂x(ρ
α− 1

2
n )‖L∞([t1,t],L2(R))‖

√
ρnun‖L∞([t1,t],L2(R))

)
≤ C(t1),

(3.92)
and:

‖ραnun‖L∞([t1,t],L2(R)) ≤ ‖
√
ρnun‖L∞([t1,t],L2(R))‖ρ

α− 1
2

n ‖L∞([t1,t],L∞(R)) ≤ C(t1). (3.93)

Next we have:

∂t(ρ
α
nun) = ρα−1

n ∂t(ρnun) + ρnun∂tρ
α−1
n

= ∂x(µn(ρn)ρα−1
n ∂xun)− ∂x(ρα−1

n )µn(ρn)∂xun − ∂x(ραnu
2
n) + ∂x(ρα−1

n )ρnu
2
n

− aγ

γ + α− 1
∂xρ

γ+α−1
n − (α− 1)ραnun∂xun − ρnu2

n∂x(ρα−1
n )

= ∂x(µn(ρn)ρ
α
2
−1

n ρ
α
2
n ∂xun)− (α− 1)

µn(ρn)

ρ
3
2
n

∂x(ρn)
√
µn(ρn)∂xun

ρ
α− 1

2
n√
µn(ρn)

− ∂x(ρnu
2
nρ

α−1
n )

− (α− 1)ρ
α
2
n unρ

α
2
n ∂xun −

aγ

γ + α− 1
∂xρ

γ+α−1
n .

Here since α ≥ 1 it is important to point out that from (3.60), ρ
α− 1

2
n√
µn(ρn)

is uniformly

bounded in L∞(R+, L∞(R)). From (3.59) and (3.60) it yields that for C > 0, C(t1) > 0
independent on n:

‖∂t(ραnun)‖L2([t1,t],H−1(R))+L∞([t1,t],W−1,1(R))+L2([t1,t],L1(R)+L∞([t1,t],W−1,∞(R))

≤ C
(
‖µn(ρn)ρ

α
2
−1

n ‖L∞([t1,t],L∞(R))‖ρ
α
2
n ∂xun‖L2([t1,t],L2(R))

+ ‖µn(ρn)

ρ
3
2
n

∂x(ρn)‖L∞([t1,t],L2(R))‖
√
µn(ρn)∂xun‖L2([t1,t],L2(R))‖

ρ
α− 1

2
n√
µn(ρn)

‖L∞([t1,t],L∞(R))

+ ‖ρnu2
n‖L∞([t1,t],L1(R))‖ρα−1

n ‖L∞([t1,t],L∞(R)) + ‖ργ+α−1
n ‖L∞([t1,t],L∞(R))

+ ‖ρ
1
2
nun‖L∞([t1,t],L2(R))‖ρ

1
2

(α−1)
n ‖L∞([t1,t],L∞(R))‖ρ

α
2
n ∂xun‖L2([t1,t],L2(R))

≤ C(t1).
(3.94)

We have seen that (ραnun)n∈N∗ is uniformly bounded in L2
loc([t1,+∞[,W 1,1

loc (R)) and

(∂t(ρ
α
nun))n∈N∗ is uniformly bounded in L2

loc([t1,+∞[,W−s,∞loc (R)) for s > 0 large enough
by Sobolev embedding.
From (3.92), (3.93), (3.94), the diagonal process and Lemma 1, we deduce that (ραnun)n∈N
converges strongly up to a subsequence to mα in L2

loc([t1,+∞[×R). In addition up to a
subsequence, it implies that ραnun converges almost everywhere on [t1,+∞[×R to mα.

Note that we can already define the velocity u with u(t, x) = mα(t,x)
ρα(t,x) on the set {(t, x) ∈

R+ × R; ρ(t, x) > 0}. Let us verify now that mα = 0 almost everywhere on the set
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{(t, x) ∈ R+×R; ρ(t, x) = 0}. Indeed we have for any t > 0 and using the Fatou Lemma
and (3.59):∫

{ρ(t,x)≤1}
lim inf

n→+∞

(ραnun(t, x))2

ρ2α−1
n (t, x)

dx ≤ lim inf
n→+∞

∫
R
ρn|un|2(t, x)dx

≤ C(1 +
1

t
),

with C > 0 independent on n (we mention that for any n we have always ρn(t, ·) > 0
for any t ∈ R+). It implies since 2α − 1 ≥ 0 that mα = 0 almost everywhere on the set
{(t, x) ∈ R+ × R; ρ(t, x) = 0}. We have then:

• mα(t, x) = 0 almost everywhere on {(t, x) ∈ R+ × R; ρ(t, x) = 0}.

• u(t, x) = mα(t,x)
ρα(t,x) on {(t, x) ∈ R+ × R; ρ(t, x) > 0} and u(t, x) = 0 on {(t, x) ∈

R+ × R; ρ(t, x) = 0}.

We can observe that u is not uniquely defined on {(t, x) ∈ R+ × R; ρ(t, x) = 0}. Now
from (3.79) and the Fatou lemma we deduce that there exists C(t, t1) > 0 such that for
any t ≥ t1 we have:

‖ρ
1
4u‖L∞([t1,t],L4(R)) ≤ C(t1, t). (3.95)

Similarly from (3.67) we have for any t > 0:

‖ρu(t, ·)‖L1(R) ≤ C(t). (3.96)

We are going now to prove the strong L2
loc convergence of (

√
ρnun)n∈N.

Lemma 5 We have for any T > 0 and any compact K of R:∫ T

0

∫
K
|√ρn(t, x)un(t, x)−√ρ(t, x)u(t, x)|2dtdx→n→+∞ 0. (3.97)

This limit is true up to a subsequence.

Proof: Following the proof of the case α < 1
2 (since (ρn,

1
ρn

)n∈N is uniformly bounded
on [0, Tβ]), we know that up to a subsequence we have for any compact K (we refer in
particular to (3.55)):∫ Tβ

0

∫
K
|√ρn(t, x)un(t, x)−√ρ(t, x)u(t, x)|2dtdx→n→+∞ 0. (3.98)

Let us deal now with the case T > Tβ. We have seen that (
√
ρnun)n∈N converges almost

everywhere to
√
ρu on the set {(t, x) ∈ [t1,+∞[×R; ρ(t, x) > 0} with t1 ∈]0, Tβ]. It

implies that we have for any T > 0 using dominated convergence, (3.60) and taking
M > 0 with K1 = K ∩ {(t, x) ∈ [t1, T ]× R; ρ(t, x) > 0}:∫ T

t1

∫
K1

|√ρn(t, x)un(t, x)1{|un|(t,x)≤M} −
√
ρ(t, x)u(t, x)1{|u|(t,x)≤M}|2dtdx→n→+∞ 0.

(3.99)
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We have now using (3.79), (3.95) and (3.60) that there exists C > 0 independent on n
such that: ∫ T

t1

∫
K1

|√ρn(t, x)un(t, x)|21{|un|(t,x)>M}dtdx

≤ C

M2

∫ T

t1

∫
K1

ρn|un|4(t, x)dtdx ≤ C(T, t1)

M2
→M→+∞ 0,

(3.100)

similarly we have:∫ T

t1

∫
K1

|√ρ(t, x)u(t, x)|21{|u|(t,x)>M}dtdx ≤
C(T, t1)

M2
→M→+∞ 0. (3.101)

On the set {(t, x) ∈ [t1,+∞[×R; ρ(t, x) = 0}, we have for any M > 0:

√
ρn|un(t, x)|1{|un|(t,x)≤M} ≤M

√
ρn(t, x)→n→+∞ 0 =

√
ρ|u|(t, x).

From convergence dominated, (3.60), (3.79), (3.95) and Tchebytchev lemma we deduce
that: ∫ T

t1

∫
K∩{(t,x)∈[t1,T ]×R; ρ(t,x)=0}

|√ρn(t, x)un(t, x)|2dtdx→n→+∞ 0. (3.102)

From (3.98), (3.99), (3.100), (3.101), (3.102) and the fact that
√
ρu = 0 on {(t, x) ∈

[t1,+∞[×R, ρ(t, x) = 0} we deduce (3.97). �

Let us prove now that the sequel (ρnun)n∈N converges in the sense of the distribution to
ρu. Indeed we have for any T > 0, any K a compact of R and C(T,K) > 0:

‖ρnun − ρu‖L1([0,T ],L1(K)) ≤ C(T,K)
(
‖√ρn‖L∞([0,T ],L∞(K))‖

√
ρnun −

√
ρu‖L2([0,T ],L2(K))

+ ‖√ρn −
√
ρ‖L2([0,T ],L2(K))‖

√
ρu‖L2([0,T ],L2(K))

)
.

(3.103)
From (3.97), (3.60), convergence dominated and the fact that

√
ρn converges almost

everywhere to
√
ρ we deduce that ρnun converges to ρu in L1

loc(R+ × R). Now from
(3.60), (3.79), (3.95), (3.56) and by interpolation we deduce that (ρnun)n∈N converges to
ρu in L2

loc(R+ × R).
Let us deal now with the term of viscosity, we have then for any ϕ ∈ C∞0 (R+ × R):∫ ∞

0

∫
R
µn(ρn)∂xun(t, x)∂xϕ(t, x)dxdt = −µ

∫ ∞
0

∫
R
ρ
α− 1

2
n
√
ρnun(t, x)∂xxϕ(t, x)dxdt

− 1

n

∫ ∞
0

∫
R
ρθnun(t, x)∂xxϕ(t, x)dxdt−

∫ ∞
0

∫
R
∂x(µn(ρn))(t, x)un(t, x)∂xϕ(t, x)dxdt.

We have only to consider the case of the interval [t1,+∞[ with t1 ∈]0, Tβ] since the
procedure follows the proof of the case α < 1

2 on [0, Tβ]. We know from (3.59) and (3.79)
that we have for any t ∈ [t1,+∞[:
‖∂xρ

α− 1
2

n (t, ·)‖L2(R) +
1

n
‖ρθ−

3
2

n ∂xρn(t, ·)‖L2(R) +
1√
n
‖ρ

α+θ−3
2

n ∂xρn(t, ·)‖L2(R) ≤ C(t1)

‖ρ
1
4
nun(t, ·)‖L4(R) ≤ C(t, t1).

(3.104)
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We have now:

un∂x(µn(ρn)) =
µα

α− 1
2

√
ρnun∂xρ

α− 1
2

n +
θ

n
ρ

1
4
nun ρ

θ− 5
4

n ∂xρn.

From (3.104), we have setting θ1 ∈ (0, 1) such that θ − 5
4 = θ1(α − 3

2) + (1 − θ1)(θ − 3
2)

(this is true because we have α ≥ 1 and θ ≤ 1
2) and for any t ≥ t1:∫

R
ρ

2θ− 5
2

n (t, x)|∂xρn(t, x)|2dx

≤ (

∫
R
ρ

2(θ− 3
2

)
n (t, x)|∂xρn(t, x)|2dx)(1−θ1)(

∫
R
ρ

2(α− 3
2

)
n (t, x)|∂xρn(t, x)|2dx)θ1

≤ n2(1−θ1)C(t1).

(3.105)

Using Hölder’s inequality, (3.104) and (3.105), we deduce that we have:

| θ
n

∫ +∞

t1

∫
R
ρ

1
4
nun ρ

θ− 5
4

n ∂xρn(t, x)∂xϕ(t, x)dtdx|

≤ θ

n
‖ρ

1
4
nun|∂xϕ|

1
2 ‖L∞([t1,+∞[,L4(R))‖ρ

θ− 5
4

n ∂xρn|∂xϕ|
1
2 ‖
L1([t1,+∞[,L

4
3 (R))

≤ θ

n
‖ρ

1
4
nun‖L∞([t1,+∞[,L4(R))‖∂xϕ‖

1
2

L∞([t1,+∞[,L∞(R))‖|∂xϕ|
1
2 ‖L1([t1,+∞[,L4(R))

× ‖ρθ−
5
4

n ∂xρn‖L∞([t1,+∞[,L2(R))

≤ θ

nθ1
C(t1)‖∂xϕ‖

1
2

L∞([t1,+∞[,L∞(R))‖|∂xϕ|
1
2 ‖L1([t1,+∞[,L4(R)).

(3.106)

We deduce then that:

θ

n

∫ +∞

t1

∫
R
ρ

1
4
nun ρ

θ− 5
4

n ∂xρn(t, x)∂xϕ(t, x)dtdx→n→0 0. (3.107)

It is easy now to verify that:

θ

n

∫ t1

0

∫
R
ρ

1
4
nun ρ

θ− 5
4

n ∂xρn(t, x)∂xϕ(t, x)dtdx→n→0 0. (3.108)

We have finally proved that:

θ

n

∫ +∞

0

∫
R
ρ

1
4
nun ρ

θ− 5
4

n ∂xρn(t, x)∂xϕ(t, x)dtdx→n→0 0. (3.109)

Similarly if we fix now θ = 1
4 , we obtain from (3.104):

1

n

∫ ∞
0

∫
R
ρθnun(t, x)∂xxϕ(t, x)dxdt→n→0 0. (3.110)

We can prove easily now that up to a subsequence:

− µ
∫ ∞

0

∫
R
ρ
α− 1

2
n
√
ρnun(t, x)∂xxϕ(t, x)dxdt−

∫ ∞
0

∫
R

µα

α− 1
2

√
ρnun∂xρ

α− 1
2

n ∂xϕ(t, x)dxdt

→n→+∞ −µ
∫ ∞

0

∫
R
ρα−

1
2
√
ρu(t, x)∂xxϕ(t, x)dxdt

−
∫ ∞

0

∫
R

µα

α− 1
2

√
ρu∂xρ

α− 1
2∂xϕ(t, x)dxdt

(3.111)
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Indeed since (∂xρ
α− 1

2
n ∂xϕ)n∈N is uniformly bounded in L2([t1,+∞[×R), it implies that

up to a subsequence (∂xρ
α− 1

2
n ∂xϕ)n∈N converges weakly in L2([t1,+∞[×R) to w1. Since

(ρ
α− 1

2
n )n∈N converges to ρα−

1
2 in L2

loc([t1,+∞[×R) via the dominated convergence, we de-

duce that (∂xρ
α− 1

2
n ∂xϕ)n∈N converges in the sense of the distribution to w1 = ∂xρ

α− 1
2∂xϕ.

Now using the fact that (
√
ρnun)n∈N converges strongly to

√
ρu in L2

loc([t1,+∞[×R), we
now obtain the convergence of the second term on the left hand side of (3.111) (indeed
on the time interval [0, t1] we proceed as in the previous section with 0 < t1 < Tβ). We
proceed similarly for the other term.
We have proved finally that (ρn, un)n∈N converges in the sense of the distribution to a
global weak solution (ρ, u) of the system (1.1). Finally we can prove the estimates (2.15)
by using Fatou lemma in the framework of the weak convergence.

Compactness when 1
2 < α < 1

We proceed as in the previous section excepted that it suffices to use the Lemma 1 for
the unknown mn = ρnun. Indeed we observe that we have from (3.59) and (3.60) with
t1 ∈]0, Tβ]:

‖ρnun‖L∞([t1,+∞[,L2(R)) ≤ C(t1), (3.112)

and since:
∂t(ρnun) = −∂x(ρnu

2
n) + ∂x(µn(ρn)∂xun)− ∂x(aργn),

we have then:

‖ρnun‖L∞([t1,+∞[,W−1,1(R))+L2([t1,+∞[,H−1(R))+L∞([t1,+∞[,W−1,+∞(R)) ≤ C(t1). (3.113)

We can then apply the Lemma 1 and conclude as in the previous section.

Continuity in time of the momentum ρu and m1

Proposition 3.1 For any T > 0, m and ρv belongs to C([0, T ],M(R)∗).

Proof: From (3.37), the sequence (ρnun)n∈N is uniformly bounded in n on [0, T ] inM(R)
when ‖ρn0un0‖L1 ≤M , indeed there exists M(T ) > 0 such that for any t ∈ [0, T ] we have:

‖ρnun(t, ·)‖M(R) ≤M(T ).

We are now going to prove that for any ϕ ∈ C0(R), (ρnun(t, ·), ϕ) is uniformly continuous
in n on [0, T ]. Indeed we have using the momentum equation of (1.1), the Fubini theorem
when t > s ≥ 0 and (3.59), (3.60), (3.55) and (3.79) that for any ϕ ∈ C∞0 (R):

|(ρnun(t, ·), ϕ)− (ρnun(s, ·), ϕ)|

= |
∫
R

∫ t

s
[−∂x(ρnu

2
n)(τ, x) + ∂x(µn(ρn)∂xun)(τ, x)− (∂xP (ρn))(τ, x)]ϕ(x) dτ dx|

= |
∫ t

s

∫
R

[ρnu
2
n(τ, x) + ∂x(µn(ρn))un(τ, x) + P (ρn)(τ, x)]∂xϕ(x) dτ dx

+

∫ t

s

∫
R
µn(ρn(τ, x))un(τ, x)∂xxϕ(x)dτdx|
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|(ρnun(t, ·), ϕ)− (ρnun(s, ·), ϕ)|

≤
∫ t

s

(
‖ρn‖L∞(R+,L∞(R)‖1[0,Tβ ](τ)un(τ, ·)‖2L2(R) + ‖1t≥Tβ (τ)

√
ρnun(τ, ·)‖2L2(R)

)
‖∂xϕ‖L∞(R)dτ

+

∫ t

s
(1[0,Tβ ](τ)τ

1√
τ
‖√ρn∂xϕn(ρn)(τ, ·)‖L2(R)‖

√
ρn‖L∞(R+,L∞(R))

1√
τ
‖un(τ, ·)‖L2(R)‖∂xϕ‖L∞(R)

+ 1τ≥Tβ (τ)‖√ρnun‖L2(R))‖
√
ρn∂xϕn(ρn)‖L2(R)‖∂xϕ‖L∞(R)

)
dτ

+ ‖P (ρn)‖L∞(R+,L∞(R))‖∂xϕ‖L1(R)(t− s)

+

∫ t

s

(
1[0,Tβ ](τ)‖µ(ρn)‖L∞(R+,L∞(R))‖un(τ, ·)‖L2(R)‖∂xxϕ‖L2(R)

+ 1τ≥Tβ (τ)‖ρ
1
4
nun(τ, ·)‖L4(R)‖∂xxϕ‖L 4

3 (R)
‖µn(ρn)

ρ
1
4
n

‖L∞(R+,L∞(R))

)
dτ

≤ C(|t− s|+ |t− s|α1)(1 + ‖∂xϕ‖L∞(R) + ‖∂xϕ‖L1(R) + ‖∂xxϕ‖L∞(R) + ‖∂xxϕ‖L1(R)),

with α1 > 0. We note that we have used the fact that (un)n∈N is uniformly bounded in
L3−ε([0, Tβ], L2(R)) with ε > 0 small enough and the fact that we have choose θ = 1

4 . It
is also important to recall that ( 1

ρn
)n∈N is uniformly bounded in L∞(R+, L∞(R)) when

0 < α < 1
2 .

By a density argument and the fact that (ρnun)n∈N is uniformly bounded in L∞([0, T ],M(R))
it implies that for ϕ ∈ C0(R), (ρnun(t, ·), ϕ)n∈N is uniformly continuous in n on [0, T ].
In other words the sequence (ρnun)n∈N is equicontinuous on [0, T ] for the weak * topol-
ogy on M(R) when ‖ρn0un0‖L1 ≤ M . Using the Ascoli theorem on the metric space
B(0,M(T ))M(R) endowed with the weak * topology (this is true because C0(R) is sep-
arable), we deduce that up to a subsequence ρnun(t, ·) converges uniformly to m(t, ·)
on [0, T ] in the weak * topology of M(R). In particular it implies that m belongs to
C([0, T ],M(R)∗) for any T > 0. The proof is similar for m2 = ρv. �

4 Proof of the Corollary 1

We proceed as in the proof of the theorem 2.2, we use in particular the same regularizing
process. We have then a sequence (ρn, un)n∈N solution of the system (3.28) and we
want to verify that up to a subsequence this sequence converges in the sense of the
distributions to a weak solution of the system (1.1). Compared with the theorem 2.2,
we have no estimate as (3.38) since v0 does not belong to L2(R). However we have the
classical energy estimate, indeed this is due to the fact that un(0, ·) is uniformly bounded
in L2(R). Multiplying the momentum equation of (3.28) and integrate over (0, T ) × R
we have then:

1

2

∫
R

(
ρn(T, x)|un(T, x)|2 + (Π(ρn(T, x))−Π(ρ̄))

)
dx

+

∫ T

0

∫
R
µn(ρn(s, x))(∂xun(s, x))2dxds

≤ 1

2

∫
R

(
ρn(0, x)|un(0, x)|2 + (Π(ρn(0, x))−Π(ρ̄))

)
dx.

(4.114)
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Now proceeding as in the proof of the theorem 2.2, we establish that there exists Tβ > 0,
C > 0 independent on n such that:

‖( 1

ρn
, ρn)‖L∞([0,Tβ ],L∞(R)) ≤ C. (4.115)

From (3.37), we deduce that it exists C1 > 0 independent on n such that:

‖ρnun‖L∞([0,Tβ ],L1(R)) + ‖ρnvn‖L∞([0,Tβ ],L1(R))

≤ C(‖ρnun(0, ·)‖L1(R) + ‖ρnvn(0, ·)‖L1(R))e
C1T

γ−α
β ≤ C1ε0e

C1T
γ−α
β .

(4.116)

It implies in particular from (4.115) and (4.116) that for any t ∈ [0, Tβ], there exists
C > 0 independent on n such that:

‖ραn(t, ·)‖BV (R) ≤ C + C1ε0e
C1T

γ−α
β . (4.117)

From (4.115), (4.117), composition theorem we deduce that for C > 0 independent on n
and any t ∈ [0, Tβ]:

‖ρn(t, ·)‖BV (R) ≤ C(1 + ε0e
CT γ−αβ ). (4.118)

We wish now to prove that ρn converges almost everywhere on ]0, Tβ] × R up to a sub-
sequence. We are going to use the lemma 2. From (4.118), it suffices only to prove
the third assumption of the lemma 2. From the mass equation, we deduce now that
for any compact K ∈ R we have from (4.114), (4.115), Sobolev embedding that for any
(s, t) ∈ [0, Tβ]2 and for C > 0 independent on n and depending on Tβ:

‖ρn(t, ·)− ρn(s, ·)‖L1(K) ≤
∫ t

s
‖∂x(ρnun)(s′, ·)‖L1(K)ds

′

≤
∫ t

s

(√
|K| ‖ ρn√

µn(ρn)
(t, ·)‖L∞(K)‖

√
µn(ρn)∂xun(t, ·)‖L2(K)

+ ‖∂xϕ1,n(ρn)(t, ·)‖L1(K)‖
ρn

µn(ρn)
(t, ·)‖L∞(K)‖un(t, ·)‖H1(R)

)
ds

≤ C
√
t− s(1 +

√
|K|).

(4.119)

From the Lemma 2 by localizing the argument (it suffices to consider the sequel (ϕρn)n∈N
with ϕ ∈ C∞0 (R) and to use the diagonal process), we deduce that up to a subsequence
(ρn)n∈N converges strongly in L1

loc([0, Tβ] × R). It implies in particular that up to a
subsequence (ρn)n∈N converges almost everywhere to ρ on [0, Tβ]×R. From (4.115) and
the dominated convergence theorem we deduce that:

• ργn, ραn converges strongly in Lploc([0, Tβ] × R) for any 1 ≤ p < +∞ to respectively
ργ and ρα.

From (4.114) and (4.115) we observe that un is uniformly bounded in L2([0, Tβ], H1(R)).
Up to a subsequence (un)n∈N converges weakly to u in L2([0, Tβ], H1(R)). Since ραn
converges strongly to ρα in L2

loc([0, Tβ] × R), µn(ρn)∂xun converges to µ(ρ)∂xu in the
sense of the distribution on [0, Tβ]× R.
Easily we can prove now that:
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• (ρnun)n∈N converges up to a subsequence to ρu in D′([0, Tβ]× R).

• ρnu2
n converges up to a subsequence to ρu2 in D′([0, Tβ]× R).

Indeed it suffices to use the arguments developed in [30]. To finish since ∂xρn is uniformly
bounded in L∞([0, Tβ], L1(R)) we deduce that up to a subsequence ∂xρn converges *
weakly to ∂xρ in L∞([0, Tβ],M(R)).
In addition we have the following estimates for C > 0 large enough by using the Fatou
lemma for weak convergence:

‖u‖L∞([0,Tβ ],L2(R)) ≤ C
‖∂xu‖L2([0,Tβ ],L2(R)) ≤ C

‖(ρ, 1

ρ
)‖L∞([0,Tβ ],L∞(R)) ≤ C

‖∂xρ‖L∞([0,Tβ ],M(R)) ≤ C
‖(ρ− ρ̄)‖L∞([0,Tβ ],Lγ2 (R)) ≤ C.

(4.120)

In addition from (4.114), (4.115), (4.116) and Sobolev embedding, we deduce that (ρn −
ρ̄)n∈N is uniformly bounded in L∞([0, Tβ], H

1
2 (R)). From the mass equation ∂tρn is uni-

formly in L∞([0, Tβ],W−1,1(R)). Using the Lemma 1, we deduce that (ρn)n∈N converges
strongly to ρ in C([0, Tβ], Lploc(R)) for 1 ≤ p < +∞.
Following the same argument than in the previous section, we prove also that (ρnun)n∈N
converges to ρu in C([0, Tβ],M(R)∗).

5 Proof of the theorem 2.3

Let (ρ0, u0, v0) verifying the assumptions of the Theorem 2.3, we define now the regular-
izing initial data (ρn0 ,m

n
0 )n∈N as in the previous section. From [25, 33] since (ρn0 − ρ̄, un0 )

belongs to H1(R)×H1(R) and we have 0 ≤ c ≤ ρn0 ≤M < +∞, we know that it exists a
sequence of global strong solution (ρn, un)n∈N for the system (1.1) with constant viscosity
coefficient µ. In addition since the regularity Hs with s ≥ 1 is preserved the sequence
(ρn, un)n∈N is in C∞(R+×R). We are going now to prove uniform estimates in n on the
solution (ρn, un). When we will have sufficiently uniform estimates, we will verify that
(ρn, un)n∈N converges up to a subsequence in a suitable functional space to a global weak
solution (ρ, u) of (1.1).
Similarly we have the following entropy and for C > 0 large enough:

1

2

∫
R

(ρn|vn|2(T, x) + (Π(ρn)−Π(ρ̄))(T, x)dx+
4aγµ

(γ + α− 1)2

∫ T

0

∫
R
|∂xρ

1
2

(γ−1
n )|2(s, x)dsdx

≤ 1

2

∫
R

(ρn|vn|2(0, x) + (Π(ρn)−Π(ρ̄))(0, x)dx ≤ C.

(5.121)

L∞ estimate of 1
ρ and ρ in L∞ norm on a finite time intervall

In this case the only difference is the way that we are going to use to prove L∞ estimate
on ρn and 1

ρn
. We can show the estimate (3.37) in a similar way as the proof of the
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Theorem 2.2. We deduce as (3.41) that we have for C > 0 large enough independent on
n and any t > 0:

‖ρnun(t, ·)‖L1(R) + ‖ρnvn(t, ·)‖L1(R)

≤ C(‖ρnvn(0, ·)‖L1(R) + ‖ρnun(0, ·)‖L1(R))e
C
µ

∫ t
0 ‖P

′(ρn)ρn(s,·)‖L∞ds.
(5.122)

Since we have ρnvn = ρnun + µ∂x ln ρn, we deduce in particular that for any t > 0 we
have using (5.121):

‖ ln ρn(t, ·)‖L∞ ≤ | ln(ρ̄)|+ ‖∂x ln(ρn(t, ·))‖L1(R)

≤ C
(
| ln(ρ̄)|+ (‖ρ0v0‖M(R) + ‖ρ0u0‖M(R))e

C
µ

∫ t
0 ‖P

′(ρn)ρn(s,·)‖L∞ds).
(5.123)

And it yields that for C ′ > 0 since

‖ ln ρn‖L∞t (L∞(R)) ≤ C ′
(
| ln ρ̄|+ (‖ρ0v0‖M(R) + ‖ρ0u0‖M(R))e

C′te
γ‖ ln ρn‖L∞t (L∞(R)))

.

(5.124)
Let us prove now that (ρn)n∈N and (1

ρ)n∈N are uniformly bounded in L∞ in n and on an
time interval [0, T ∗] with T ∗ independent on n. More precisely we define by:

Tn = sup{t ∈ (0,+∞), ‖ ln ρn(t, ·)‖L∞(R) ≤M1.},

with M1 = sup(2‖ ln ρ0‖L∞ , C ′
(
| ln ρ̄|+ 2(‖ρ0v0‖L1(R) + ‖ρ0u0‖L1(R))

)
). We observe that

Tn > 0 since ln ρn belongs to C([0,+∞[, L∞(R)) for any n ∈ N (indeed this is due to
the regularity of the solution (ρn, un)) and since ‖ ln ρn0‖L∞ < M1). Let us define now T2

such that:

eC
′T2eγM1

=
3

2
and T2 =

ln(3
2)

C ′eγM1
.

From the definition of Tn and from (5.124) we have for any n ∈ N:

Tn ≥ T2 > 0.

We have then proved that (ln ρn)n∈N is uniformly bounded in n in L∞((0, T2), L∞(R))
with T2 independent on n. In particular this gives for any n:

‖(ρn,
1

ρn
)‖L∞([0,T2],L∞(R)) ≤ eM1 . (5.125)

Now proceeding as in the previous section we can show additional regularity information
on the velocity un and ρn, we have in particular for any t > 0 there exists C > 0
independent on n such that:

‖√ρnun(t, ·)‖L2(R) ≤ C(
1√
t

+ 1)

‖(
√
s1{s≤1} + 1{s≥1})∂xun‖L2

t (L
2(R)) ≤ C.

(5.126)

We recall in addition that from (5.121) we have also for any t > 0 and C > 0 independent
on n: 

‖√ρnvn(t, ·)‖L2 ≤ C
‖Π(ρn(t, ·))−Π(ρ̄)‖L1(R) ≤ C

‖∂x(ρ
1
2

(γ−1)
n )‖L2

t (L
2(R)) ≤ C.

(5.127)
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From (5.126), (5.127) and the definition of the effective velocity vn, we deduce that for
any t > 0 and C > 0 large enough:

‖∂x(
1

√
ρn(t, ·)

)‖L2(R) ≤ C(
1√
t

+ 1). (5.128)

Control of the L∞ norm for long time of (ρn)n∈N and ( 1
ρn

)n∈N

We are going to follow the method develop by Hoff in [23]. We fix now t1 ∈]0, T2]. We
are going now to prove that for every T > t1, it exists C(T ) > 0 such that for any x0 ∈ R
and t2 ∈ [t1, T ] it exists necessary a element x1 such that:{

|x0 − x1| ≤ C(T )

C(T )−1 ≤ ρn(t2, x1) ≤ C(T ).
(5.129)

It is important to point out that C(T ) is independent on n and depends only on T . We
observe that there exists C > 0 such that:

lim
ρ→0

inf(Π(ρ)−Π(ρ̄)) ≥ C−1.

We deduce in particular that there exists δ > 0 such that for all 0 < ρ < δ we have:

Π(ρ)−Π(ρ̄) ≥ C−1

2
.

Then if for any R > 0 we have:

sup
x∈[x0−R,x0+R]

ρn(t2, x) < δ,

then we have from the previous estimate and (5.121) (with C1 > 0 depends on the initial
data (ρ0, u0)):

C−1R ≤
∫
R

(Π(ρn(t2, x)−Π(ρ̄))dx ≤ C1. (5.130)

In particular R can not goes to 0. In particular it implies that for R1 = 2C1C, it
exists necessary x2 ∈ [x0 − R1, x0 + R1] such that ρn(t2, x2) > δ. Let us define now
Cn,δ = {x ∈ [x0 −R1, x0 +R1], ρn(t, x) > δ}, it is now obvious that the measure of Cn,δ
verifies |Cn,δ| > R1

2 . Indeed we have from (5.121) for C1 > 0 large enough:∫
[x0−R1,x0+R1]/Cn,δ

(Π(ρn(t2, x)−Π(ρ̄))dx+

∫
Cn,δ

(Π(ρn(t2, x)−Π(ρ̄))dx ≤ C1. (5.131)

If |Cn,δ| < R1
2 then we have:

C−1

2

∣∣[x0 −R1, x0 +R1]/Cn,δ
∣∣ ≤ C1.

This is absurd since R1 = 2C1C then we have |Cn,δ| > R1
2 . We can verify now that for

C2 > 0 large enough we have:

ρ+ P (ρ) ≤ C2[1 + (Π(ρ)−Π(ρ̄))].
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It implies from (5.130) that it exists x1 ∈ Cn,δ such that ρn(t2, x1) ≤ (4C2 + 2C2C1
R1

). This
concludes the proof of (5.129) since R1 depends only on T .
We use now the characteristic method, we set for t ∈ [t1, t2] with t1 < t2 ≤ T :

d

dt
Xn
j (s) = un(t,Xn

j (s))

Xn
j (t2) = xj ∈ R, j = 0, 1.

We set ∆Ln(t) = log ρn(t,X1(t))− log ρn(t,X0(t)). From (1.1) we deduce that:

d

dt
∆Ln(t) = −

∫ Xn
1 (t)

Xn
0 (t)

∂xxun(t, x)dx

= − 1

µ

∫ Xn
1 (t)

Xn
0 (t)

(∂t(ρnun)(t, x) + ∂x(ρnu
2
n)(t, x) + ∂xP (ρn)(t, x)dx = − d

dt
In(t)−∆Pn(t),

where In(t) =
∫ Xn

1 (t)

Xn
0 (t) ρnun(t, x)dx and ∆Pn(t) = P (ρn(t,Xn

1 (t))) − P (ρn(t,Xn
0 (t))). We

observe now as in [23] that αn(t) = ∆Ln(t)
∆Pn(t) is positive. We deduce then that we have the

following ordinary differential equation:

d

dt
∆Ln(t) + αn(t)∆Ln(t) = − d

dt
In(t).

We deduce that we have for any t ∈ [t1, t2]:

|∆Ln(t)| ≤ |∆Ln(t1)|+ |In(t1)|+ |I(t)|+
∫ t

t1

e−
∫ t
s αn(τ)dταn(s)|In(s)|ds. (5.132)

For the latter, we take for example Xn
1 > Xn

0 . We observe easily that for any t ∈ [t1, t2]
we have from (5.126), (5.121) and for C > 0 large enough:

In(t) ≤ ‖√ρnun(t, ·)‖L2(R)‖
√
ρn‖L2([Xn

0 (t),Xn
1 (t)])

≤ C(1 +
1√
t
)
(
‖ρn(t, ·)− ρ̄‖Lγ2 (R)(|Xn

0 (t)−Xn
1 (t)|

1
2 + |Xn

0 (t)−Xn
1 (t)|1−

1
γ )

+ |Xn
0 (t)−Xn

1 (t)|
) 1

2

≤ C(1 +
1√
t
)
(
|Xn

0 (t)−Xn
1 (t)|

1
2 + |Xn

0 (t)−Xn
1 (t)|1−

1
γ ) + |Xn

0 (t)−Xn
1 (t)|

) 1
2 .

(5.133)

It remains now only to estimate |Xn
0 (t)−Xn

1 (t)|, next we have:

d

dt
(Xn

1 −Xn
0 )(t) =

∫ Xn
1 (t)

Xn
0 (t)

∂xun(t, x)dx ≥ −1

2
(Xn

1 (t)−Xn
0 (t))− 1

2

∫ Xn
1 (t)

Xn
0 (t)

(∂xun)2(t, x)dx.

Using (5.126) and the previous inequality, we get for t1 ≤ t ≤ t2 and C > 0 large enough:

Xn
1 (t2)−Xn

0 (t2) ≥ Xn
1 (t)−Xn

0 (t)−
∫ t2

t
(X1(s)−X0(s))ds−

∫ t2

t

∫ Xn
1 (s)

Xn
0 (s)

(∂xun)2(s, x)dxds

Xn
1 (t)−Xn

0 (t) ≤ |x1 − x0|+
∫ t2

t
(Xn

1 (s)−Xn
0 (s))ds+

∫ t2

t

∫
R

(∂xun)2(s, x)dx

≤ |x1 − x0|+
∫ t2

t
(Xn

1 (s)−Xn
0 (s))ds+

C

t1
.
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Setting Fn(t) =
∫ t2
t (Xn

1 (s)−Xn
0 (s))ds, we have then:

Fn(t) + F ′n(t) ≥ −|x0 − x1| −
C

t1
,

and:

Fn(t) ≤
∫ t2

t
(|x0 − x1|+

C

t1
)es−tds.

We deduce that for t1 ≤ t ≤ t2 ≤ T , we have:

|Xn
1 (t)−Xn

0 (t)| ≤ |x1 − x0|+
C

t1
+

∫ T

t
(|x0 − x1|+

C

t1
)es−tds. (5.134)

Combining (5.133) and (5.134), it exists a continuous fonction C independent on n such
that for t1 ≤ t ≤ t2 ≤ T we have:

In(t) ≤ C(T, t1). (5.135)

Now using (5.132) and (5.135) we get for any t1 ≤ t ≤ t2 ≤ T :

|∆Ln(t)| ≤ |∆Ln(t1)|+ 2C(T, t1) + C(T, t1)

∫ t

t1

e−
∫ t
s αn(τ)dταn(s)ds

≤ |∆Ln(t1)|+ 4C(T, t1).

(5.136)

Now since ( 1
ρn

(t1, ·), ρn(t1, ·))n∈N is uniformly bounded in n in L∞(R), we deduce that:

| ln ρn(t2, x0)− ln ρn(t2, x1)| ≤ C(T, t1). (5.137)

From (5.129) and (5.137), we deduce that for any t2 with 0 < t1 ≤ t2 ≤ T and any x0 ∈ R
there exists C1(T, t1) independent on n such that:

C(t1, T )−1 ≤ ρn(t2, x0) ≤ C(T, t1).

It implies in particular that we have for C1 an increasing continuous function and any
t ≥ t1

‖(ρn(t, ·), 1

ρn
(t, ·)‖L∞ ≤ C1(t, t1). (5.138)

If we summarize the previous estimates (5.122), (5.126), (5.127), (5.128) and (5.138),
we have proved that for any t > 0 there exists C > 0 and C1 a continuous increasing
function not depending on n such that:

‖(ρnun(t, ·), ρnvn(t, ·))‖L1(R) ≤ C1(t)

‖(ρn(t, ·), 1

ρn
(t, ·)‖L∞ ≤ C1(t)

‖√ρnun(t, ·)‖L2(R) ≤ C(
1√
t

+ 1)

‖(
√
s1{s≤1} + 1{s≥1})∂xun‖L2

t (L
2(R)) ≤ C

‖√ρnvn(t, ·)‖L2 ≤ C
‖ρn(t, ·)− ρ̄‖Lγ2 (R) ≤ C
‖∂xρn‖L2

t (L
2(R)) ≤ C

‖∂xρn(t, ·)‖L2(R) ≤ C(
1√
t

+ 1).

(5.139)
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Compactness arguments

From (5.139) we deduce that (ρn)n∈N is uniformly bounded in L2
loc(H

1(R)). In addition
from (5.139) and from the fact that ∂tρn = −∂x(ρnun) we deduce that (∂tρn)n∈N is

uniformly bounded in L∞loc(W
−1,1(R)) and is bounded uniformy in n in L2−ε

loc (W−
3
2
,2(R)).

Using the Aubin-Lions lemma 1, we deduce that the sequence (ρn)n∈N converges up to
a subsequence in L2

loc(H
s
loc(R)) with 0 ≤ s < 1 to ρ. It implies in particular that up to

a subsequence (ρn)n∈N converges almost everywhere to ρ. From convergence dominated
and (5.139) we show that ργn converges to ργ in Lploc(R × R+) for any 1 ≤ p < +∞. In
addition from (5.139) for any t > 0, there exists C(t) > 0 such that we have:

‖(1

ρ
(t, ·), ρ(t, ·))‖L∞(R) ≤ C(t). (5.140)

Proceeding as for (3.54), we deduce that (un)n∈N is uniformly bounded in n in L
p(s)−ε
loc (Hs(R))

with 0 ≤ s < 1 and p(s) = 3
1+2s with ε > 0 sufficiently small such that p(s)− ε ≥ 1. Now

using paraproduct law we deduce that we have for any t > 0 and 0 ≤ s ≤ 1
2 :

‖(ρn − ρ̄)un(t, ·)‖Hs(R) ≤
‖un(t, ·)‖Hs(R)‖ρn(t, ·)− ρ̄‖L∞ + ‖ρn(t, ·)− ρ̄‖H1(R)‖un(t, ·)‖

H−
1
2 (R)

(5.141)

Combining the fact that (un)n∈N is uniformly bounded in n in L
p(s)−ε
loc (Hs(R)) and (5.139)

we deduce that (ρnun)n∈N is uniformly bounded in L
q(s)
loc (Hs(R)) with q(s) = min(2, p(s))

and s ∈ [0, 1
2 ].

Now we recall that we have ∂t(ρnun) = −∂x(ρnu
2
n) + µ∂xxun − ∂xP (ρn), taking in the

previous estimate s = 0 we deduce that (u2
n)n∈N is bounded in L

3
2
loc(L

1(R)) and (ρn)n∈N is

uniformly bounded in L∞loc(L
∞(R)) then (ρnu

2
n)n∈N is uniformly bounded in L

3
2
loc(L

1(R)).
Proceeding similarly we observe by Sobolev embedding that (∂t(ρnun))n∈N is bounded
uniformly in L1

loc(H
−s2(R)) with s2 > 0 large enough. Using the Aubin-Lions lemma 1 we

deduce that (ρnun)n∈N converges strongly up to a subsequence to m in in L
q(s)
loc (Hs

loc(R))
with q(s) = min(2, p(s)) and s ∈ [0, 1

2 [. By Sobolev embedding we deduce that (ρnun)n∈N
converges strongly to m in L2

loc(L
2
loc(R)). Now since (ρn)n∈N and ( 1

ρn
)n∈N converges re-

spectively to ρ and 1
ρ in Lploc(R

+ × R) for 1 ≤ p < +∞ and since ( 1
ρn

)n∈N is uniformly
bounded in L∞loc(L

∞(R)) we get that (un)n∈N converges up to a subsequence strongly to
m
ρ = u in L2−ε

loc (L2−ε
loc (R)) with ε > 0 and (un)n∈N converges up to a subsequence almost

everywhere to u.
All these estimates are now sufficient to show that (ρn, un)n∈N converges up to a subse-
quence in the sense of the distribution to a global weak solution (ρ, u).
In addition using Fatou lemma, convergence almost everywhere and weak convergence,
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we deduce from (5.139) that for any t > 0 there exists C > 0 and C1(t) > 0 such that:

‖ρu(t, ·)‖L1(R) ≤ C1(t)

‖(ρ(t, ·), 1

ρ
(t, ·)‖L∞ ≤ C1(t)

‖√ρu(t, ·)‖L2(R) ≤ C(
1√
t

+ 1)

‖ρ(t, ·)− ρ̄‖Lγ2 (R) ≤ C
‖∂xρ‖L2

t (L
2(R)) ≤ C.

(5.142)

In addition u belongs to L
p(s)−ε
loc (Hs(R)) with 0 ≤ s < 1 and p(s) = 3

1+2s with ε > 0
sufficiently small such that p(s)− ε ≥ 1. As in the previous proof, we can show also that
ρ is in C([0,+∞[,W−ε,ploc (R)) and ρu is in C([0, T ],M(R)∗). This achieves the proof of
the Theorem 2.3.
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