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Vortex solutions for the compressible Navier-Stokes
equations with general viscosity coefficients in 1D:
regularizing effects or not on the density

Boris Haspot *f

Abstract

We consider Navier-Stokes equations for compressible viscous fluids in the one-
dimensional case with general viscosity coefficients. We prove the existence of global
weak solution when the initial momentum pgug belongs to the set of the finite measure
M(R) and when the initial density po is in the set of bounded variation functions
BV(R). In particular it includes at the same time the case of initial momentum
which are Dirac masses and initial density which admit shocks. We can observe in
particular that this type of initial data have infinite energy. Furthermore we show
that if the coupling between the density and the velocity is sufficiently strong then
the initial density which admits initially shocks is instantaneously regularizing and
becomes continuous. This coupling is expressed via the regularity of the so called
effective velocity v = u + “p(é’) 0:p (see [20, 18, 3]) with u(p) the viscosity coefficient.
Inversely if the coupling between the initial density and the initial velocity is to weak
(it means povg € M(R)) then we prove the existence of weak energy in finite time
but the density remains a prirori discontinuous on the time interval of existence.

1 Introduction

In this paper we wish to investigate the existence of global weak solutions of the following
Navier-Stokes equations for compressible isentropic flow:

Op + 0z(pu) =0, (L1)
Br(pu) + 0z (pu®) — By (1(p)Bru) + 0:P(p) = 0.

with possibly degenerate viscosity coefficient p(p) > 0. Throughout the paper, we will
assume that the pressure P(p) verifies a v type law P(p) = ap? with a > 0 and v > 1 and
that the viscosity coefficient can be written under the form p(p) = pup® with g > 0 and
a > 0. A large amount of literature is dedicated to the study of the compressible Navier-
Stokes equations with constant viscosity case, however physically the viscosity of a gas
depends on the temperature and on the density (in the isentropic case). Let us mention
the case of the Chapman-Enskog viscosity law (see [5]) or the case of monoatomic gas
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(v = %) where p(p) = p%. More generally, the viscosity coefficient p(p) is expected to
vanish as a power of the density p on the vacuum. We emphasize that the case a = 1
corresponds to the so called viscous shallow water system. This system with friction has
been derived by Gerbeau and Perthame in [10] from the Navier-Stokes system with a
free moving boundary in the shallow water regime at the first order (it corresponds to
a small shallowness parameter). This derivation relies on the hydrostatic approximation
where the authors follow the role of viscosity and friction on the bottom.

Following [20, 18, 3, 16, 15] we can rewrite the previous system by using the so called

effective velocity v = u + 9,¢(p) with ¢'(p) = lp).

02

Ohp — axd‘(p”)axp) + 0,(pv) = 0,
p7+1 p7+1

wo) . ulp)

It is important to note that this change of unknown is true for any viscosity coefficients
(at the opposite in dimension N > 2 such change of unknown involves an algebraic
relation between the coefficients ;1 and A which precludes in particular the case of constant
viscosity coefficients (see [20, 3] for more details)).

The questions addressed here are motivated by the fact that discontinuous solutions are
fundamental both in the physical theory of non-equilibrium thermodynamics as well as in
the mathematical study of inviscid models for compressible flow. It is natural, therefore,
to express a rigorous theory which accommodates these discontinuities or shocks in the
theory of hyperbolic systems. In order to obtain such results, a key point is to work
with initial data with minimal regularity assumption as much as it is possible to do.
The results of this paper effectively gives a first direction to the existence of global weak
solution with initial density admitting shocks. More precisely we should deal with initial
density pp in BV (R) with 0 < ¢ < pg < M < 400 and initial momentum poug, povo in
M(R) the set of finite measure (including in particular Dirac masses). If 1 € M(R),
the total variation of p; is defined by:

(1.2)

PO + pudyv + ary u.

[ o—— /R wdin | o € CoR), [l@llmm <1}

where Cp(R) is the set of all real-valued functions on R vanishing at infinity. In addition
we say that pg is in BV(R) if pg is measurable, locally integrable, continuous on the left
and such that the derivative in the sense of the distribution is a finite measure. An other
way to describe the set BV (R) is to consider the function py with finite total variation
with:

N
TV (po) = sup{z lpo(z;) — po(xj+1)| N € N*, —oo <9 < -+ < any < +00}.
j=1

The set BV (R) of these functions is a Banach space when we equip it with the norm
TV (po) + |po(y)| with y € R.
We will observe that if in addition we assume that vy and pg — p belong to L?(R) then



the density is instantaneously regularizing inasmuch as the density becomes continuous.
It is interesting to compare this kind of phenomenon with what is known on the behavior
of the solutions of hyperbolic systems (typically the compressible isentropic Euler system
which corresponds to p(p) = 0). In particular when the system is strictly hyperbolic
(for a N x N system with € R) and genuinely non linear there exists a global weak
solution with small initial data in (BV(R))" (see the famous paper of Glimm [12] and
[6] for some extension in the case of a 2 x 2 system where the smallness assumption is
weaken due to the existence of Riemann invariants). Concerning the uniqueness of such
solutions, we refer to the works of Bressan et al (see [4] for a excellent review on all these
results using in particular another way than Glimm to construct the global weak solu-
tion, the so-called front tracking methods which generate a contractive L' semi-group).
It is important to note that for such hyperbolic systems there is a priori no regularizing
effects on the unknown in the sense that the solution admits shocks all along the time
(however a solution with a L*° initial data can become BV (R) instantaneously, we refer
to the scalar case with strictly convex flux which was in particular studied by Oleinik
[36]). This explains why in particular the BV (R) space is suitable for the study of the
one dimensional case since this space contains functions with shocks. The simpler case
is the solution of the Riemann problem due to Lax [28]. In particular it is known that
for regular initial data, there is creation of shocks in finite time (except if we can use a
characteristic methods, typically in the case of 2 x 2 systems where we have Riemann
invariants). It is then remarkable to observe that in the case of compressible Navier
Stokes systems the density can be instantaneously regularized even if the density seems
to be governed by a transport equation in (1.1).

Before stating our results we would like to recall briefly the existing results on the ex-
istence of global weak solution in one dimension for compressible Navier-Stokes system.
We would like to emphasize that all these results have been achieved in a framework with
finite energy initial data, indeed systematically ug belongs in particular to L?(R). It will
be not the case of our result since pgoug is in our case only a finite measure or a vortex.
The existence of global solution for initial data which are finite measure is an important
problem in mathematics and has been solved for other equations. We recall in particular
that for the incompressible Navier-Stokes equations it exists a theory on the existence of
global strong solution in dimension N = 2 for initial vorticity which belongs to the set of
finite measure (see for example [11, 9]). It exists also a theory for the existence of global
weal solution for the incompressible Euler equations in dimension N = 2 when the initial
vorticity is a measure (see [7, 31]).

In the case of compressible Navier-Stokes equations in one dimension, the existence of
global weak solutions was first obtained by Kazhikhov and Shelukin [26] for smooth
enough data close to the equilibrium (in particular the initial density pg is bounded away
from zero) with constant viscosity coefficient. The case of initial density admitting shocks
has been treated by Hoff [22] where the initial density belongs to BV (R), in addition the
author needs smallness assumption on the initial data. In [23], Hoff proved the existence
of global weak energy solution for constant viscosity coefficients provided that pg is only
bounded in L* norm and is far away from zero. In this work there is no smallness re-
striction on the initial data. In passing let us mention that the existence of global weak
solution for constant viscosity coefficients in any dimension N > 2 has been proved for
the first time by Lions in [30] and the result has been later refined by Feireisl et al [8].



The existence of global strong solution in one dimension with large initial data for initial
density far away from the vacuum has been proved for the first time by Kanel [25] (see
also [21]) in the case of constant viscosity coefficients.

The study of the compressible Navier Stokes equations with degenerate viscosity coef-
ficients is more recent and has been in particular motivated by the introduction of a
new entropy (see [2]) which provides new regularity estimate on the gradient of the den-
sity. In [24] Jiu and Xin proved the existence of global weak energy solution in one
dimension when pu(p) = pup® with o > 1 and with large initial energy data. In [33],
Mellet and Vasseur showed the existence of global strong solution when 0 < a < % for
large initial data provided that the initial data (pg — p,ug) are in H'(R) x H*(R) with
0<c<pg <M< +oo. In [18] we extends this result to the case % < a < 1 including
in particular the case of the so called viscous shallow water system ( a = 1, see [10]).

In passing we would like to give few words on the existence of global weak solution for de-
generate viscosity coefficients when IV the dimension verifies N > 2. Mellet and Vasseur
proved in [32] the stability of the global weak solution for compressible Navier-Stokes
equation with viscosity coefficient verifying the so called BD entropy (see [2]) in dimen-
sion N = 2,3 (we refer also to [2, 3] when we add friction terms). Let us mention in
particular that the case p(p) = pup with p > 0 and A(p) = 0 verifies the algebraic relation
related to the new entropy discovered in [2], it corresponds here to the so called viscous
shallow water system. For N = 2,3 the important problem of the existence of global
weak solutions has been recently resolved independently by Vasseur and Yu [39, 40] and
Li and Xin in [29].

2 Main result

We are going now to state the main results of this paper. Before we would like to recall
a very interesting result due to Hoff which can indicate that when the effective velocity
v is not sufficiently regular then there is no regularizing effects on the density inasmuch
as the density does not become instantaneously continuous.

Theorem 2.1 (Hoff [23]) Then the initial value problem (1.1) has a global weak solu-
tion (p,u) for which

p—p, pu € C([0,+00), H'(R)),
u € C((O,+oo),L2(]R)),
u(t7 ')uuaﬂcu(tv ) - P(p(t, )) + P(ﬁ) S H1<R)7 t>0,
dwu(t,-), u(t,-) € L*(R), t > 0,

(2.3)

where U is the convective derivative @ = Oyu + udyu. Additionally, given T > 0, there is
a positive constant C(T') depending on T, pi, P and on upper bounds for ||po — pllr2(w),
ol z2(gy» lloollzee» 1o 1z~ such that if o(t) = min(1,1), then:

C(T)™" < plt,) < C(T) ae, (2.4)

(ST

sup [[lp(t,-) = pll 2wy + (@) 2y + o (t)
0<t<T

+o(t)([la(®) 2 + lpdeult,) = P(p)(t,) + P(p)llr2wy) < C(1),

(2.5)
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T
/0 (19su(s, )2 + o(s) (s, )22 + o(s) [udsuls,-) = P(p)(s,) + P(B) | 2qm)
+02(s)]|0si(s, -)|2:)ds < C(T),

and for0 <17 <T

1 1 1
o (1)l e e iy + (73 ) 23y < C(D). (2.7)

1
g
7, T]xR

D=

where <u>[ is the usaul Hélder norm

t —
Ju( 33)1 u(s,y)l1 2,y €R, t,s€[r,T], (t,2) # (s,y)}.
|z —yl2 + |t —s|2

sup{

Remark 1 In the case of the constant viscosity coefficient p > 0, the effective initial
velocity has the form vg = ug — Maz(p%) and under the assumptions of the theorem 2 we

have vy € L?(R)+W~1°(R). From (1.2), we observe that the effective velocity v verifies
a damped transport equation which prevents a priori any reqularizing effects. It implies
that (995(%) is at the best in L>°(W =10 + L2) in other words it is not sufficient to show
via Sobolev embedding that the density p becomes continuous. In the next theorems, it
will be different since vo will be in L*(R).

Remark 2 In the previous theorem Hoff proved that the velocity Oyu — P(p) + P(1)
becomes reqular, however to be able to prove that P(p) becomes regular it is necessary to
obtain additional information on Oyu. It explains also why we have no regularizing effects.
The coupling with the effective velocity v is strongly since it provides an information on

02(;)-

p

We define now the initial momentum which formally verifies mg = poug (mo has to be

considered as an unknown). We define now the second momentum mj = mq + 91 (po)

(po corresponds to the initial density and we have ¢1(po) = £pf).

Let us give a definition of a global weak solution for initial data verifying when p > 0:

po > 0,mg =0 on {z €R; py(z) =0},
0<c<Lpo <M< +o0

(po — p) € L*(R), ¢1(po) € BV(R) (2.8)
my € M(R), ™ € L*(R).
Po

L m? as follows:

In the sequel we will define m, m
m = pu, m' = pu+ dx01(p) and m? = \/pu + dppa(p),

with po(p) = —t= 8zp°‘_% with a # % We refer to [30] for the definition of the Orlicz
2
space Lj(R).

Definition 2.1 A pair (p,u) is said to be a weak solution to (1.1) provided that:



e p>0a eandforp>0and anyT >0,1 <p < +o0 :

p € C([0, 400, W, . " (R)), p € L=([0,T], L™(R))
pu € L=((0,T), L*(R)), /pu € LZ<([0,T] x R)

loc

p—p € L>([0,T], Ly(R)),
€,p )
)

Dep2 007D € L2([0,T), L*(R)), 0:(p°~2) € L*(([0,T), L*(R))
m? € L*=([0,T], L*(R))

Bup™ 3 € L=([1, +00],
m' € L*((0,T), M(R)

L*(R))
)-
* (p,/pu) satisfies in the sense of distributions:

{ 0ip + Oa(y/py/pu) =0
p(0, ) = po(x).

e For any ¢ € C3°(]0, T[xR) and any T > 0:

/mo (0, d:c+/ / Vo(y/pu)dip + ((/pu)? + p7) 0z pldtda

+ (u(p)Oru, Ozp) = 0,

where the diffusion term makes sense when written as:

(2.9)

T T
o) = [ [ oteao)pudrgdnar+ [ [ /i%)(x/ﬁwamwdxdt,

with @h(p) = L1,

We obtain the main following theorems.

(2.10)

Theorem 2.2 Assume that p(p) = pp® with p,o0 > 0, a # & and P(p) = ap? with

y>1l,a>1l,v>aandy>2a—1ifa> % The initial data satisfy for p > 0:

¢1(po) € BV (R), (po — p) € L3(R),
0<c<po(z)<C<+oo foranyz eR,
Vo € L2(R), Povo € M(R)

The momentum mg is defined as follows:
mo = povo — dzp1(po), mo € M(R).
In addition theres exists €9 > 0 such that if:

1001 (p0) | M) + Imollmr) < €0,

(2.11)

(2.12)

(2.13)



then there exists a global weak solution (p,\/pu) for the system (1.1) verifying the defi-
nition 2.1. In addition there exists Tz > 0 and C' > 0 such that we have:

1
y oo s SC7
1o, Dl o751, 2) (2.14)

[ull o)~ (jo,1), 15 m)) < C

with 0 < s <1 and p(s) = 1_f25 and € > 0 sufficiently small such that p(s) —e > 1. We

have in addition for a any t > 0, there exists C > 0 sufficiently large and and C(t) > 0
depending on t such that:

(Np(t, ) < C,
[pu(t, )@y < C(1),
1

Ivpull oo 04),L2®)) < C(1+ —=)

S

170° | oo (0,0, L2(R)) < C (2.15)

o = PllLeo(0,0),L2m)) < C
1 (o
102(p2 N L2 ((0,0),22(m)) < C

_1
L 11020% 2 (| L2(j0, 1), L2 (R))+ Lo (1T 00 L2(R)) < C-

Ifo<a< % we have in addition for C' > 0:

1
2l oo poormy < C
”pHL (R+,L20(R)) S (2.16)

”axUHLQ([T[;,-i-OOLH(R)) <C.

Furthermore we have for any T > 0:

{m € ([0, T], M(R)) (2.17)

m! e C¥([0,T], M(R)),

with m = /p\/pu and m' = 0,1(p) +m.

Remark 3 The main interest of this result is to observe the two following points, first
we can deal with initial momentum mgy which are vorter. This means that we can take
mo in M(R). The second point is that p1(po) is in BV (R) and by composition theorem
po s also in BV (R).that p1(po) is in BV (R). This implies obviously that po can admits
watially some shocks.

We can now observe that these shocks at the initial time t = 0 are instantaneously
reqularizing inasmuch as we verify that p(t,-) € C(R) for any 0 < t < Tg. Indeed we
observe that:

am@l(p(tv )) = pu(t, ) + p’l}(t, )

Since pu(t,-) and pv(t,-) are in L*(R) for t >0 and ¢1(p(t,-)) — p1(p) belongs to L*(R)
for t € [0,T3], we deduce by Sobolev embedding that ¢1(p)(t,-) — p1(p) is continuous
and then p(t,-) is also continuous for any t > 0 (indeed we know that (p, %) belongs to

7



L((0, Ty, L= (R))).

We can try to explain this phenomena, in fact v verify only a damped transport equation.
In particular v has no reqularizing effect but the velocity u admits reqularizing effects. The
fact that v is sufficiently reqular and u has regularizing effects allows to prove that 0,p1(p)
is instantaneously bounded in L?(R). We can precise what we mean by sufficiently regular.
In fact if povo is at least in L'(R), we expect that for poug € M(R) we should observe
reqularizing effects on the density p. Indeed heuristically 0 p1(p(t,)) fort € [0,Ts] would
be in LY(R) + L%(R), and we know that WH(R) + HY(R) is embedded in C°(R).

In other word the reqularizing effects on the density p depends on the reqularity of the
coupling between the density and the velocity u which is expressed by the unknown pgvg.

Remark 4 The condition 0 < ¢ < pg < C < 400 is in fact deduced from (2.13) and the
fact that py — p is in L*(R) N BV (R).

Remark 5 From (2.20), we give a sense to the initial momentum mg. It is however not

clear if we can define properly ug. It would be natural now to write ug as ug = piomo with

mo € M(R). However since p% is a priori not in C(R) (the space of bounded continuous

function), the product piomo 1s not well defined. It is the same if we assume in addition
that (po—p) € Bll’oo(]R) and mg € BROO(R) (we refer to [1] for the definition of the Besov
1
20
classical paraproduct law, in fact the remainder R(my, p% — %) s not well defined.
However if we consider ug = vo + 0zp(po) this unknown is well defined since vy belongs
to L*(R) and 90(po) is in M(R). Indeed since ¢1(po) is in BV (R) and since we have
0 <c<pyg<C < Hoo, we deduce using the definition of the total variation and the
mean value theorem that p(po) is in BV (R).

In our case py and mqg have to be considered as the initial data. It is also remarkable that

instantaneously u is well defined since on [0,Tp], u(t,-) is in L'(R).

space and on the notion of paraproduct law). In this case —mg can not be defined using

Remark 6 Numerous works dedicated to the incompressible and compressible Navier-
Stokes equations concerns the existence of global strong solution with small initial data
in the case where the initial data (po,uo) have critical reqularity. By critical, we mean
that the system (1.1) is solved in functional spaces with norm invariant by the changes
of scales which leave (1.1) invariant. In the case of barotropic fluids, we can observe that
the transformations:

(p(t, ), u(t,x)) — (p(I*t,1x), lu(l?*t,1x)), 1E€R, (2.18)

have that property, provided that the pressure term has been changed accordingly. Roughly

speaking we expect that such spaces are optimal in term of reqularity on the initial data in

order to prove the well-posedness of the system (1.1). We can easily observe in particular
1

1
that BE-(R) x Bfir_l(R) with p € [1,+00], r € [1,4+00] is a good candidate since its norm
remains invariant by the transformation (2.18).
In this sense the previous result is a theorem dealing with critical initial data since
BV (R) x M(R) is critical for (2.18) if we consider initial data (pg, mo). In our case, we
need to impose the smallness assumption (2.13), it would be interesting to get a similar
result without smallness assumption even if we must work with initial data slightly more



regular.

It is natural then to try to adapt the results of [1, 13] to the case of the dimension N = 1,
in other words it comsists to prove the existence of strong solution in finite time with
initial data verifying:

0<c<po<M<+oo, po—p € BL(R), up € BY | (R).

Unfortunately it seems delicate to prove this type of results, indeed if we apply the method
develop in [1, 13] it is necessary to give a sense to the term (u(p) — p(p))Opeu with
u € LY([0,T], B, (R)), (p — p) € L>([0,T], B{ ;(R)) and p > § on [0,T] with T < +oo.
It implies that Opgu is in L'([0, T, B(f’l(]R)). Unfortunately the product (ju(p) — p(p))Opgu
is a priori not defined, indeed it we apply the classical paraproduct law, we can observe
that R((u(p) — p(p)), Ozgu) is not defined in dimension N = 1. This term is critical in
the sense that we have s + s9 + Ninf(O,]lJ — p% — p%) =0 withs; =0,s0=1, N =1,
p=1,p1=1and py =1.

It is then not obvious to prove the existence of strong solution in critical Besov spaces
in one domension, it would be however quite easy if we assume the initial data slightly
subcritical (pg — p,up) € (Bil(R) N BHG(R)) X (B%l(R) N Bil(]R)) with € > 0.

In this sense our result deals with critical initial data even if we have no result of unique-
ness.

Remark 7 This Theorem is a result of global weak solution with infinite energy space,
this is due to the fact that \/poug does not belong to L*>(R). To the best of our knowledge,
this is the first result of this type for compressible Navier Stokes equations.

We obtain now the following two corollaries. We refer to [1] for the definition of homo-
geneous Besov space.

Corollary 1 Assume that u(p) = pp® with pw,a >0 and P(p) = ap” with v > 1, a > 1
and v > «. The initial data satisfy for p > 0:

¢1(po) € BV(R), (po — p) € L3(R)
0<c<py(zr)<C <400 foranyzrecR (2.19)
ug € LQ(R), mo € M(R)

The momentum m{ is defined as follows:
mg = potio + Oxp1(po), my € M(R). (2:20)
In addition theres exists €9 > 0 such that if:

10201(po) | m(r) + Mol amr) < €0, (2.21)

then there exists T > 0 and a weak solution (p,u) for the system (1.1) verifying the



definition 2.1 on the time interval [0, T]. We have in addition:

(ue L%(0,T5), 1(R))
Ozu € L2([0’ Tﬁ]’ L2(R))

p,; e L°([0, Ty), L (R))

Opp € L>([0, T3], M(R)) (2.22)
(p—p) € L([0,Tg], L3 (R))

p € C([0,T], L, (R))

pu € C([0, Tp], M(R)")

m!' € C([0, Ts], M(R)*).

Remark 8 The previous corollary is a generalization of [22] for general viscosity co-
efficients (in [22] the author deals with constant viscosity coefficients). In the previous
theorem uq is well defined and we can deal with initial density admitting shocks since pg
is in BV (R).

Let us deal now with the case of constant viscosity coefficients, we obtain the following

theorem.

Theorem 2.3 Assume that p(p) = p with p > 0 and P(p) = ap? withy > 1, a > 1 and
~v > «. The initial data satisfy for p > 0:

m(l) € M(R)a (101(:00) € BV(R)WO € LQ(R)
0<c<po(z) <C < +oo foranyzeR (2.23)
po — p € L3 (R).

The momentum myq is defined as follows:
mo = povo — 6xg01(p0), mo € M(R) (2.24)

Then there exists a global weak solution (p,u) for the system (1.1) verifying the definition
2.1, in addition for any t > 0 we have:

lou(t, )i < Ca(t)
(ot ), j)<t,->um <)

1
IVpu(t, M2w) < C(% +1) (2.25)
lo(t,) = pllymy < C

1020l L2(L2(m)) < CCL()
L m? (| oo v 12my) < C-

In addition u belongs to Lf’o(j)_e(Hs(R)) with 0 < s < 1 and p(s) = 1+323 with € > 0

sufficiently small such that p(s) —e > 1. We have also p € C([0,+oo[, W, "(R)) and
pu € O((0, oo, M(R)").
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Remark 9 Compared with the Theorem 2.2, we have no smallness assumption on the
iniatial data.

Remark 10 As in the Theorem 2.2, we can observe reqularizing effects on the density.
In [23], the initial density verifies only po — p € L*(R) N L*°(R) and p% € L>®(R) (in
particular the assumptions on the initial data are weaken as our Theorem). In particular
the Theorem of [23] allows to deal with initial shocks on the density and a priori there is
no reasons to observe reqularizing effects on the density. One of the reasons is probably
that povo s not sufficiently reqular, indeed this terms is a priori only in W1 (R).

We recall now some classical lemma of compactness in particular the classical lemma of
Aubin-Lions.

Lemma 1 Let Xy, X, X1 Banach spaces. Assume that X is compactly embedded in X
and X is continuously embedded in X1. Let 1 < p,q < 4o00. We set for T > 0:

Wr = {u € LP([0,T], Xo), %u e L9([0,T], X1)}.

Then if:
e p < 400 then the embedding of W into LP([0,T],X) is compact.

e p =400 and q > 1, then the embedding of W into C([0,T], X) is compact.

We refer to [37] for the following Lemma which is a consequence of the Helly’s theorem.

Lemma 2 We consider a sequence (pn)nen of functions defined on [0,T] x R with values
i R satisfying the following hypotheses:

1. There exists M > 0 such that TV (pyp(t,-)) < M for all n € N.
2. |pn(t,)| < M for alln € N.

3. There exists a sequence (€, )nen which converges to 07, such that:
/ |pn(t, ) — pu(s,z)|dz < e, + M|t — s|°
R

for alln € N, all s,t € [0,T] and § > 0.

Then this sequence is relatively compact in L} ((0,T) x R).

loc
Lemma 3 Let K a compact subset of R and v¢ a sequel such that:
e v¢ is uniformly bounded in LPT(K) with o >0 and p > 1,
e v¢ converges almost everywhere to v,

then v¢ strongly converges to v in LP(K) with v € LPT*(K).
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Proof: First by the Fatou lemma v is in LPT%(K). Next we have for any M > 0:

/ |v¢ —vPdx < / |UE—’U|pd£L'+/ |v¢ — vPdx. (2.26)
K Kn{jve—v|<M} Kn{|jv¢—v|>M}

We are dealing with the second member of the right hand side, by Holder inequality and
Tchebychev lemma we have for a C' > 0:

o —of*

C
v¢ —vPde < / V= ———dr) < —. 2.27
Loy ol < (f ool <5 )

In particular we have shown the strong convergence of v¢ to v, indeed from the inequality
(2.26) it suffices to use the Lebesgue theorem for the first term on the right hand side
and the estimate (2.27) with M going to +oc. O

Section 3 deals with the proof of the theorem 2.2. In the section 4 we prove the corollaries

1. We show the theorem 2.3 which consider constant viscosity coefficients in the section
5.

3 Proof of theorem 2.2

We start by constructing a sequence (py,u,) of global strong solutions of the system
(1.1) provided that the initial data is sufficiently regular, in addition we change slightly
the viscosity coefficient. More precisely (pn,un) are solutions of the following systems:

(3.28)

atpn + ax(pnun) =0,
O(pnin) + 8x(pn“i) — Oz (pin(pn)Ozun) + 0z P(pn) = 0,

with fn(pn) = 209 + pp? with 6 € (0,3) (we will fix 6 later). In addition we assume

that:
2(my)

©1(pn) (0, ) = en®(p1(p0))

ma(0,) =

1 1
en®(mo + Oup1(po)) = enmy,

with p1(p) = Ep* if @ # 0 and ¢i1(p) = plnp if a = 0. In the Theorem 2.2, we
consider only the case o > 0. We verify easily since pg — p is in LJ(R) and we have
0<c<pg<C < +oothat pg — p € L2(R). In addition by composition theorem we
deduce that ¢1(pg) — ¢1(p) belongs to L2(R).

12



It implies from (2.19) that there exists C), s depending on n and s > 0 such that:

1m0 (0, M 1wy < llmollary + @1 (00) | By )

M (0, ) pary < llmgllamr)

10:01(pn) (0, )l () < lle1(po)ll BV (R)

0 < min(¢1(c), p1(C)) < ¢1(pn)(0,-) < max(p1(C), p1(c)) < 400

0<c<pn(0,) <C <+

01(pn(0,-)) = 21Dl rr=r) < Choslle1(po) — ©1(P)l L2 () (3.29)
[9n.(0,+) = pll s (m) < Crsllpo — pll 2w

llpn(0,-) — P||L2 <C(HPOHL°°(R) H*HLO@(R))H%(PO) 1(ﬁ)HL2(R)

[[1127,(0, )| L2(my < Hm0||L2(R
11123, (0, )| sy < C,

Lm0 (0, )| s ) < CnsHmoHLZ(R + Cns+1llp1(po) — ©1(P)ll L2(m)

We have previously used composition theorem to pass from the H*® norm on ¢1(p,(0,-))—
©1(p) to the H® norm on p,(0,-) — p. Let us mention that we can now define (0, -) and
v (0, +), indeed if we write u,(0,-) = mmn(o, -) and v,(0,-) = mm}l(o, -) , these
terms have a sense since they belong to L!(R).

In particular we deduce from (3.29) and using product in Sobolev space that we have for

Ch,s > 0 depending on n and s with s > 0:

1
T A N = s S Cn,s

[|un (0, ')HHS(R) < Chngs

(3.30)

From [33], we know that there exists a global strong solution for the system (3.28) since
(pn(0,-) — p,un(0,-)) belongs to HY(R) x HY(R) with 0 < ¢ < p,(0,-) < C < +c0. In
addition we have used the fact that 1, (p) > 2% with 6 € [0, 3).

We are now going to prove uniform estimates in n on the solutions (p",u"), in a second
time we will prove that (p™, u™),cn converges up to a subsequence to a global weak so-
lution solution (p,w) of (1.1) with (po,up) verifying the condition of theorem 2.2. We
can mention that the solution (p,,u,) here is classical in the sense that (pp,u,) is in
C*([0,400) x R). This is due to the fact that the H® regularity is preserved all along
the time. From (2.13) and (3.29) we deduce that there exists C' > 0 such that:

[lonn (0, ) L1 ) + lpnon (0, )l L1 (r) < Ceo- (3.31)

13



3.1 Uniform estimates on (p,, u,, vy,)
Estimates of p,u, and p,v, in L¥(L'(R)) for any T > 0

For simplicity of the notations, we forget in the sequel the subscript n of (py, tn, Vn, tin(pn))-
From (1.2), we recall that we have:

P'(p)p*  P'(p)p?

PO + pudypu — Op(1u(p)Opu) + v = u,
1(p) u(p)
PR Pl (3.32)
PO + pudyv + PIP = 22000,
1(p) 1(p)

We set ji(s :1/52+l—\ﬁandwehave 1 (s) = ——=—, ji'(s) = —L—. We are
Jk( ) k k ]kz( ) \/@ ]k:( ) k(52+%)%

going now to multiply the first and the second equation respectively by ji(u) and j;.(v).
Since the solution (p,u,v) is classical and is in particular in C?([0, +00) x R) we have:

/ 2 / 2
pujis(v) + pudai(v) + P;fgf vj(v) = Plf(pp))p ul(v)
PpOuji () + pudy () — O (u(p)duir(w)) + n(p)ji (w)|Opul? (3.33)
Pl(p PQ Ny P/(p)pZ y

= Ty Ry k).

We integrate now on (0,7") x R and we obtain:

. T [ P(p)p* v3(s, x)
/Rp(T,LE)jk(’U)(T,LE)dCL'jL/O /R () (s,x)\/mdsdm

_ . T P)R, | o(sa)ulsa)
_/Rpo(a:)]k(vg)(x)dx—i-/o /]R 00) (s,z) e x)+’1€d8dx.

T
/R p(T, )i (u)(T, z)da: + /0 /R 1(p) 1 (10) Bl (5, ) dsdx
= )7 (o) (x)dx — ! Pl(p)ststx
—/RPO( V(o) (@)d /0 /R ToR e SR

RCERE:

dsdz.

T / 2 2
P
+/ / (p)p (5, 2)— (s:7)

0 R u(p) ‘/u2(5’$)+%
We deduce that we have:

R R

T [ P(p)p?
| @@t + [ w@m@lar+s [ [ <0 <|v<s,x>|+\u<s,x>|>ds(d;4)

14



We pass to the limit when £ — +o00 and using the Fatou lemma we obtain:

/p(T,x)|v|(T,x)da:+/p(T,:c)|u](T,x)dx§
R R

T [ Plp)p?
/R po(a) o () |z + /R po()vo(a))dex + 3 /0 /R Do, )] + fuls. ) s

L
(3.35)

From the Gronwall lemma we deduce that for any 7" > 0:
[pv(T, )l L1y + lpw(T, )l 1wy 5.36)
/ 3.36

3 (T | EXp)p Il peod
< (lpovoll sy + lloouoll sy )e* o 1 (o=t
At this level it is important to point out that we have:
P'lp)p @ -a,
plp) — p

P'(p)p

and we are going to use the fact that v —a > 0 in order to control the L* norm of o)
in terms of the L* norm of the density p.

BD Entropy

Multiplying the momentum equation (1.2) and integrating over (0,7") x R, we obtain the
following entropy:

1 v2 x — 0 x)dx ! MS.I‘ 23x sdx
Lol () + (1160) =Ty + [ [ s )0 pP (s, )

2
<5 [ (olen @) + o) = 1) (),

(3.37)
with:

n(s):s([ P;j>dz—ljé’7)).
p

It gives when v+ a — 3 # 0:

a T 1
3 [P )+ () ~TE)Ta)de+ s [ 10,0300 P, a)dsda

<3 /R (polvol? (&) + (T(po) — T1(5))(x)da,

(3.38)
and we know that v+ a —1 > 0 since « > 0 and v > 1.

L*> estimate on the density p in finite time

From (3.36) we deduce that d,¢1(p) = pv — pu is bounded in L (LY(R)) for any T > 0
with ¢} (p) = @ (it gives p1(p) = Ep* since o > 0). Since the density p — p and m is
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bounded in C([0,T], H*(R)) for any s > 0, we deduce from the mass equation that p is
uniformly continuous. Furthermore from (3.37) we deduce that for any ¢ > 0 we have:

lim @1(p)(t,2) = ¢1(p). (3.39)
|z| =400
Now using the fact that the space W1(R) is embedded in L>°(R) we deduce from (3.36)
that for any t > 0:

le1(p(t, DL < 1(p) + 1001 (p(t, ) 1 (m)
(3.40)

~ 3 [ 2402 (.|| oo d
< @1(7) + (lpovolls ) + llpotolls ey )e* o 17t -,
The previous inequality shows that we can prove L estimates on the density p in finite
time by using bootstrap arguments. As previously, we assume that v — a > 0 and we
have for C' > 0, @ > 0 and any t > 0:

o ey 3Ct”p”z;oa(Loo(R)) (3 41)
12070 (Loomyy < CP™ 4 Clllpovoll L1 w) + llpouoll () e t : :

And it yields that for C' > 0 and « > 0:

_ 13l oo

ol ez < €5+ C'lpovollary + llpouollpgy)w e = HE=E=e, - (3:42)
Let us prove now that the density p is uniformly bounded in n in L° norm on an time
interval [0, 7] with 7% > 0 independent on n. More precisely we define by:

1
Ty, = sup{t € (0,400), [[p"(t, )|l < sup(2||pollLe, C'p4+2C" (2]l povo | m(r)+ 119201 (p0) | am(r)) * ) }

with M = sup(2||po||z=, C’'p + 20" (2]l povol| mr) + 19201 (p0) | Mm(w))-
We observe that T;, > 0 since p,, belongs to C([0,4+o00[, L°(R)) for any n € N and since
llpG|lzee < M. Let us define now T} such that:

3
3C,T*M'y—a o 3 o aln(i)
° —a T T gonnw
From the definition of 7}, and from (3.42), (3.29) we deduce that for any n € N we have:

T, >T, > 0.

It implies that py, is uniformly bounded in n in L>((0,T), L*°(R)) with T} independent
on n. In other words we have for any n € N*:

lpnll oo (0,7, 00 () < M. (3.43)

In the sequel we will prove in fact that p, is also uniformly bounded in n in L*((0, c0), L>(R)).
Now if we combine (3.43), (3.29) and (3.36) we deduce that there exists C' > 0 indepen-
dent on n such that:

| pntinl oo (0,70, 21 )y + lonVnll Loo (j0,72],21 (R))

(3.44)
10201 (po) | m(r))e

CT M7~

< (2llpovoll pmery +
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Control of the L*° norm of % in finite time

In the sequel we omit again the subscript n except when we want to emphasize on the
fact that we have an uniform estimate in n. Now we are interested in estimating the L>°
norm of 1 on a finite time 7j independent on n. As in (3.40) we have for any ¢ € [0, T.]:
and for C' > 0 large enough:

le1(p(t, ) = e1(P)llzoe < 110xe1(p(t, ) L1 ()

(3.45)
< (llpovoll 1 () + llpovoll 1 (m))

v
etCM )

Now since we have [|povollz1(r) + [[pouollL1(r)y < Ceo with C' > 0 independent on n and
with €p sufficiently small, we deduce that for T3 < T} such that:

eTBCM™™" < 9 (3.46)
we obtain that for any ¢ € [0,73] and any = € R:

e1(p(t, z)) = p1(p) — 2Ceo. (3.47)

It implies that % belongs to L*°([0, T3], L*°(R)) with T3 > 0 independent on n for ¢y > 0
small enough.

Gain of regularity on the velocity u,,

From (3.37), we deduce that for any 7" > 0 we have uniformly in n:

9,p20re~V) € L2(L*(R))

3.48

Jpv € LF(LA(R)). (345
Now from the definition of the effective velocity v we have:
2 o Liyta
\/ﬁu: \/EU_ :u(gp)axp: \/ﬁv_ K lp 8xp2(7+ 1)
2 7+a—1p2(7+a)
2 Y ) (3.49)
— o 5 (a—y 5(y+a—1
s VAN TS

From (3.48), (3.47) and since oo — v < 0, we deduce that ,/pu is uniformly bounded in
L%((0,T3) x R), it gives with T > 0 independent on n,C > 0 depending on €y and the
initial data (pg,vp) that for any n € N*:

Iv/PrunllL2((0,15)xR) < C. (3.50)

Let us prove now some additional regularizing effects independent on n on the velocity
u. It will be important in order to pass to the limit when n goes to +o0c. Let us multiply
the momentum equation of (1.1) by su and integrate over (0,t) x R with ¢ € (0,T}3), we
have then:

t t
1t/p|u|2(t,x)dx—1/ /p|u\2(s,:1:)dsda;+/ /u(p)(@xu)Z(s,x)sdsda:
2 Jr 2Jo Jr o Jr
t
+/ /saxP(p)uda;:O
0 JR
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We recall now that we have:

9 (t(I(p) —11(p)) + t0z(IL(p)u) + tP(p)dzu — (Il(p) — IL(p)) = 0.
We deduce then that we have:

t/pu| (t, da:+/ / (s :c)dsdx+t/(ﬂ(p)(t x) — 1(p))dz

(3.51)
/ / p))(s,x)dsdx + = / /p]u| s, x)dsdx.
We deduce from (3.37), (3.47) and (3.50) that u verify uniformly on [0, T}]:
Vitu € L=([0,Ts], LA(R)) and Vtdu € L*([0,Ts], L*(R)). (3.52)

We can obtain additional informations on u by using interpolation estimates. Indeed
from (3.44) we know that pu is uniformly bounded in L*([0,7p], L'(R)). We recall
that % is uniformly bounded on [0,7}3] then we deduce that u is uniformly bounded in
L>([0,Tp], LY(R)) and then is uniformly bounded in L“([O,Tg],H_%(R)) by Sobolev
embedding. It is important to mention that the bound depend only on €y and || pol| oo (r)-
By interpolation, we have for 0 < s < 1 and any ¢t € (0, T3]

1 S 1 S
A (e e < a3 (Vi ). (359)
From (3.47), (3.52) and (3 53) we deduce that u is uniformly bounded in LP(*)=¢([0, T,,], H*(R))
with s € (0,1), p(s) = 1+23 and € > 0 sufficiently small such that p(s) —e > 1.

We have finally obtained that for any ¢ € [0, 73], we have for C > 0 independent on n:

([lon(t,) = pllLew) < C
[Jn(t, )l 2 )<C Jon(t )lpw < C
1vV/30zunl| 2 (0,75, L2 () < C
1

lun(t, ) 2ey < C(1+ ﬂl> un(t M@y < © (3.54)

1020 (pn)ll L2(m) < C(1 +

[tnl Lo —((o,8), 1o (m)) < C
1
Il(;,pn)(t, Mo < C.
We deduce in particular that choosing s1(e) € (0,1) such that & — s1(e) = m gives
that 4esq(€)? —10s1(e) + (1 —¢) = O It implies that si(e) = —(1 —/1— se(l—¢€)). We

observe in fact that s1(€) —¢_0 10 We observe in particular that 2 < p(si(e)) —e < 3
and we have from (3.54) the following uniform bound:

HunHLP(S1(€))—€([07TB]><R) <C, (3.55)

with C' > 0 independent on n.
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Estimate in long time of the L° norm of the density p when o > %

We know that (pn, tn, vn)nen verify the classical energy estimate on (0, +00) x R (indeed
the initial data belongs to the energy space, in particular u,(0,-) € L?(R)), however the
energy estimate depends on the initial data and is not uniform in n (indeed the initial
velocity ug of the Theorem 2.2 is not in L*(R)). However for ¢ > t; > 0 the energy
estimate will be uniform in n. Indeed let us multiply the momentum equation of (1.1)
by u and integrating over [ti,ts] with t; € (0,73] and to > t1, it gives then:

3 LI, 2) 4 (00) =T 2o [ [ (s, 2))@r(o, ) s
1

< 5 [t utes )P + ot 2) - M)

(3.56)

From (3.51), (3.54) and (3.37) we deduce that there exists C' > 0 depending only on the
initial data such that:

to
5 [ (Pl 2.2 + (T(p) = T10) t2, ) + / [ #lots. ) @ruls.a))Pdsdo
1

<C(1+—).
t1

(3.57)

Combining (3.37) and (3.57) we deduce that for any ¢t > 0 we have for C' > 0 independent
on n:
IvPnvn(t, )l 2@y < C
1
IVPonun(t, )l 2w < C(1 + %)
1(V/s1s<ryy + V 1(Pn) Ls>15}) Ontinll L2 L2my) < C
1

a—1 1
al‘ n 2 t) : S C 1 + —
10zpn 2 (t, )l 2) < C( \/i)

(3.58)

L(yta-1)
10z 22y < C

lon(t, ) = pllLym < C

Lemma 4 When a > % and v > 2a — 1, for any t > 0 there exists C' > 0 independent

on n such that:
[n(t, )L < C. (3.59)

Proof: We omit again in the sequel the subscript n. We know that for ¢; € (0,73], we
have C' > 0 independent on n such that:

1ol oo (j0,61], L0 R)) < C- (3.60)

Following the lemma 3.7 in [24], it remains now only to prove that there exists C' > 0
independent on n such that for all ¢ > ¢; > 0, we have:

ot )z < C. (3.61)
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Since p is regular (we recall that we forget the subscript n) it yields for any ¢ > t;:
_1 a1 v _1 a1l
(03 (t,2) = p*2) (ta) = / 0y (02 (t,y) — P 2)*) (8, y)dy

<29 [ i) - P V) / 19,673 (1) Pdy) B

—0o0

(3.62)

From (3.58) we know that [*__ \8yp°‘7%(t, y)|2dy is uniformly bounded in n for t > ¢; > 0.
We have now to estimate the following term:

Tl ol _ Tl ol _
/_oolp 2 (t,y) — p* 2P 1)dyz/_oolp 2(ty) = 0 PV, ey + 1 sy

= (1) + Iy(t).

We have now for C,Cy > 0 sufficiently large and taking 5 = 1 for any ¢t > ¢; and using
(3.58):

v 1 ol _
o) = [ 1 - Py

<C/ = ", <1y
<Ci

For 5 = 1 we have now when ¢t > ¢; and C,C] > 0 sufficiently large using (3.58) and the
fact that v > 2a — 1:

(3.63)

v a1 ol _
(1) :/ 02 (t,y) — p* 2P0 1)1{|p7ﬁ|>§}dy
< 0/ p|2(28= 1)(C‘“M{lp pi>2ydy (3.64)
= C/_oo olt.y) = pP 1{\17 pl>23Y-
If 2a — 1 <~y there exists C; > 0 large enough such that:

() < 01/ 19(,9) = 7L 2y (3.65)

—00

From (3.60), (3.62), (3.63) and (3.64) we conclude the proof of (3.59). W

We deduce using the estimate (3.36) that for any ¢ > 0 and any n € N* we have for
C(t) > 0 depending only on ¢:

lonun(t, i) + lonon(t, )l Lir) < C(F). (3.66)

Estimate in long time of the L*° norm of p and % when a < %

We recall that we have now:

Ouu-+ uds — 0,2 0,0) — 0up(p) O + 0,7 =0,
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We deduce that we have for ¢ €]t;,Tp] with 0 < t; < Tp:
Oy ((t — t1)0pu) — Opu + Op(u (t — t1)0pu) — ax(“(pp)ax((t — 11)0u))
- 0u((025(0) + 0.2 (= 1)01) + 1007 =0

We set now v = (¢t — t1)0,u and we have for ¢ €]t;, T3] :

/
O — Ozu + Oy (uv) — Gaj(ui)p)(?xv) — 831:(“/()/)) Dupv) + %GM((t —t)p"H =0

Multiplying by v and integrating over (¢1,t) x R, we obtain:

/|v (t,z)dx +// sx\av(sx)stdx—//ausx) (s, z)dsdx
t1 t1

/ / s, x)v(s, x)0v(s, dsdx—i—/ / Oxp(s, x)v(s, )0zv(s, x)dsdz
t1 t1

(5 —t1)0:p" " (5, 2)0,v(s, x)dsdx = 0.

Using (3.54) we obtain then on (t1,t) with ¢ €]t1, T3], ¢ > 0 and C' > 0 independent on

t
/ v[?(t dl‘ﬂw/ /Raxv(s,fﬁ)Fdel‘ < 100wl 2221 0y, £2RY) VIVl Lo (210, £2(R))
1
wp)
P

0Pl Loo ((t1,6), L2 @) 1920 | L2 ((t1,8), L2 @) 1V | L2 (11,8, L0 (R))

Al Lo (21,1, L2 @) NPVl L2((t1,0), L2 @) 1V L2((11.), o0 (R))
+ Ct10p" M2 (1.0, 22 @) 102V L2 (01,00, 22 (R))-

Next by Gagliardo-Niremberg inequality:

1 t
/ ]v|2(t,:z:)dx+uc/ /]8$v(s,x)|2dsdx§
2 Jr t JR

10zl L2 (11,0, 2R\ VEIV | Lo (1,0, L2R)) + CEIO=p™ ™ 220000, 22 @) 100l 22((11,1),22(R))
(p) 3 1
+ C(||—p Ol oo ((t1,0),2R)) + Null oo (20,0, L2020 1 22 (4 4, 2@ 19 L2 (0 0, £2R)) -

Now using Young inequality we deduce that for C; > 0 large enough:

1 uc
ZHU”%W((tl,t),L?(R)) + 3”8171”%2((,:1,@,9(1&))

< Crl10ul 7oy 1y, 2@yt + 10207 L2 (100,229

L),
P

Bzpl oo ((tr.0),L2®)) + 1l oo 2.0, 2@) 101 2210 09 22 ()
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From (3.54) and (3.58) we deduce that for t € (1, 73], we have for C; > 0 large enough:

1 uc
ZHUH%"O((tl,t),LQ(R)) + 5 10l L2 (i1, 22 my) < €t 1) (3.67)

We have showed that for t; €]0,Tp] there exists C(t,t1) > 0 independent on n and
depending only on the initial data (po, v, uo) such that for ¢ €]t;, T3] and any n € N* we
have:

|(t — t1)Opun(t,)||12 < C(t, t1) < +o0. (3.68)

Remark 11 It is important to mention that the previous estimate is true for any a > 0.

From (3.68) and (3.54) we have obtained that for 5 €]t1, T3] with 0 < t; < T3, we have
for C' > 0 independent on n and depending only on the initial data (pg, uo, vo):

[0zun (t2, )| L2m) < C
|un(t2, 2@y < C
[on(t2; ) = pll@) < C

1
[(pn ;)(t27 Mrem® < C-

n

(3.69)

From the theorem of Mellet and Vasseur in [33], we know that there exists a global strong
solution (p,,u,) with initial data (pn(t2,-), un(t2,-)). In addition it is proved in [33] that
for t > 0 there exists C(t) > 0 depending only on ¢, [[un(t2, )| g1(r), [|on(t2; ) — AllH1(®)
and [|(pn, p%)(t27 )l Lo (r) such that for any ¢ > 0 we have:

1 ) ) ey < CL1). (3.70)
Pu

We deduce when 0 < a < % that the regular solution (p,,, u,) verify for any ¢ > ¢;:

(pn(t7 ')7 Un(t, )) = (pu(t - tla ')7 uu(t - tla ))7 (371)

This is a direct consequence of the uniqueness of the solution (p,,u,), indeed (pn,un)
is sufficiently regular such that the solution is in the class of uniqueness of (p,,u,). It
implies from (3.72) that there exists C(t) depnding only |lun(t2, )l|m1(r), lPn(t2,-) —
pllaw) and [|(pn, i)(tg, ) Lee(ry (it is important to mention that we have seen that
these norms are independent on n, in particular C(t) depends only on ¢ and (pg, ug, vo))
such that for any ¢ > 0 we have:

w;mmw»uﬂmscm. (3.72)

From (3.36) it yields that for any ¢ > 0 there exists C'(¢) > 0 independent on n such that:

[ onun(t, ')HLl(R) + lpnvn(t, ')HLl(R) <C(1). (3.73)
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Gain of integrability on the velocity u in long time when o > %

Multiplying the momentum equation (1.1) by u|ulP (with p = 2) and integrating over
(t1,t) x R with ¢; € (0,T3] and t > t1, we have then:

b
p+2

t
+/ /&UP(p)(s,x)u|u]p(s,az)dsdx: /p(tljx)|u\p+2(t1,a:)dm.
6 JR p+2Jr

p(t, )| uPT2(t, z)dx 4 (p+ 1) p(s, 2))|0pu(s, z)|*|u(s, z)|Pdsdx
® / / (3.74)

From (3.68) and (3.54), and using interpolation we know that there exists C'(¢1) > 0
independent on n such that:

|/Rp(t1,a:)\u|p+2(t1,x)dx] <Cn). (3.75)

It remains now simply to estimate the term coming from the pressure. We have then
using Young inequality for € > 0 and C, > 0 large enough with p = 2:

| / [ 0P o).yl o,

§a(p+1)|/t /p”(s,a:) Oru(s, z)|ulP (s, x)dsdx|

Q'y 1
/ / p(s, ) |0zu(s, 2)|*u(s, z)|*dsdx + C. / / p(s, x)|ul*(s, x)dsdx.
t1 t1

(3.76)
Since we have 2y — 1 > a, we deduce from (3.54) and (3.59) that we have:
¢
[ [ 2o ulul (s, )

t1 YR

t
<e [ [ utols.oplosuts,a) Plu(s.o)Pdsds (377)

t1 JR

t
2y—1—«
+ ClP I ey | AV o0 20
1

From (3.58), (3.77), (3.75) and (3.74) we deduce that for any n € N* and for any ¢; €
10, T3] we have:

1

| ittt || Lo (1,47, £0(R)) < C(t1,1), (3.78)
with C(t1,t) depending only on ¢, t; but independent on n.

Compactness when 0 < a < %

We wish now to prove that the sequence (py,, uy)nen converges up to a subsequence to a
global weak solution (p,u) of the system (1.1). Using (3.58), (3.54), (3.72) and (3.73))
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we have seen that there exists C' > 0,C(t) > 0 independent on n (with C(t) depending
only on t) such that we have for any t > 0:

IBmvn(t, M 2y < C
| /Bmtint, |2 <c<1+¢1£>

(V51 sryy + Vilpn) Lsz13)) 0t 2 12wy) < C
a_l 1
[0zpn 2 (L, )z2@®) < C(1+ —%)

Vit

HE) 2(7+o< 1) (379)

Nzzemy <€
[tnl| Lo —<(jo,15), 15 (R)) < C
Hﬂn( )= plym <C

H( aPn)( s Moo m) < C(1)

J\pnun( M@ + llonon(t )iy < C0).

with s € (0,1), p(s) = ﬁ and € > 0 sufficiently small such that p(s) —e > 1. From
(3.79), we deduce that there exists C'(T') > 0 independent on n such that for any 7> 0
we have:

lpn = Pl L2((0,7), 11 (R)) < C(T). (3.80)

In addition we have 8t(pn p) = —0z(pnuy), then from (3.79) 9:(py, — p) is uniformly
bounded in L'((0,T), H '(R)). From the Lemma 1, the diagonal process and compact
Sobolev embedding, it implies that up to a subsequence p,, converges strongly to p in
L120 (Rt x R). We deduce that up to a subsequence p,, converges almost everywhere to

p on ]0,4+00[xR. From Fatou lemma and (3.79), we obtain that there exists C(t) >
depending only on ¢ > 0 such that:

lo(t,) = pllymy < C

I o)l < €O (3.81)

Next from (3.79), we deduce that u,, is uniformly bounded in LP(*)=¢([0, Tjs], H*(R)) and
uy, is uniformly bounded in L? ([Tj,+oc0), H'(R)). Using classical paraproduct laws

loc

(see[1]) we obtain that for ¢ €]0,73] and 0 < s < 3:

T tey-yn () sy < ) = pll ooy nt, oo
T 6 Pt ) = D)l ey < I t) = Plag a8l oo

1R (un(t, ), (on(ts ) = DDl g s gy < Non(t ) = Pl @y llun(t: ll sy

We deduce from (3.79) and (3.80) that pnun is unlformly bounded in L9) ([0, Tﬁ] H*(R))+
LPE)=¢([0, Tp), H*(R)) with 0 < s < ( 5 and (S) i+ p(s) - (p(s) = 15 and € > 0
sufficiently small such that p(s) —e > 1). In particular since p(s) —e > ¢(s) > 1, we have

proved that pju, is uniformly bounded in L) ([0, Tj], H*(R)).
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From (3.79), we observe that u, and (p,—p) are uniformly bounded in L*([T, +oc[, H'(R)),
by product of Sobolev space we deduce that p,u, is bounded in L, ([T, +oc[, H'(R)).
We have finally proved that p,uy, is bounded in L} (RT, H*(R)) for 0 < s < ﬁ with

€ > 0 sufficiently small.

We recall now that we have:

Ot (pnun) = _8:E(Pnu721) — Oza(n(Pn)tn) + Or(UnOz (tin(pn))) + &T(a(p% —p)).

Let us deal with the term 0, (un0y(pn(pn))), from (3.79) we know that 9, (un(pn)) is
uniformly bounded in L*(RT, L?(R)) and u,, is uniformly bounded in L? (RT, L%(R)), we
deduce that 0, (u,0z(in(pn))) is uniformly bounded in L} (R*T, W~L1(R)). We proceed

loc

similarly for the other terms and we deduce by Sobolev embedding that 0;(ppuy) is
uniformly bounded in L} (R*, H=*(R)) with s; sufficiently large.

loc

Since we have seen that p,u, is bounded in L} (RT, H*(R)) for 0 < s < ﬁ with
€ > 0 sufficiently small, using the lemma 1 we show that p,u, converges strongly up to a
subsequence to m in L}OC(IR{JF, L120 -(R)). It implies in particular that up to a subsequence

PnUy converges almost everywhere to m in |0, +00[xR. We define now u as u = % which

is well defined since % belongs to L (R" x R).
From Fatou lemma, we have for any ¢ > 0:

IvBu(t, 2@ < O+ )

lm(t, )l Ly ) < C(#)-

<

(3.82)

From (3.79) we observe that w, is uniformly bounded in LP(*)=¢([0, Tj], H*(R)) and is
also uniformly bounded in L ([T}, +oc[, L*(R)) N L?([Tj, +oo[, H'(R)). By Gagliardo-
Niremberg we deduce that u, is uniformly bounded in L*([Tj,+oo[, L®(R)). By in-
terpolation it implies that u, is uniformly bounded in L®([Ts, +oo[, L°(R)). Now tak-
ing s = €1 > 0 sufficiently small and using the fact that w, is uniformly bounded in
LP)=<([0, T), H*(R)), we deduce by Sobolev embedding that u,, is uniformly bounded
in L2T<2([0, T, L2 (R)) with €2 > 0 sufficiently small and po > 2. It implies in particular
that there exists C' > 0 independent on n and ez > 0 sufficiently small such that:

HunHLla;cQ(RerR) <C. (3.83)
Using the Lemma 3, Lemma 1, (3.79), (3.83) and the fact that up to a subsequence
(Prs Un, My )nen converges almost everywhere to (p, u, m), we deduce that up to a subse-
quence:

e (pn, p%)neN converges strongly to (p, %) in LV (R* x R) for any 1 < p < +o0.

loc

e For any T > 0, (pn)nen converges strongly to p in C([0,T], W, *(R)) for any
1<p<+ooande>0.

® Uy, \/Pnly, My, converges strongly in L?;;EQ (RT x R) for €3 > 0 sufficiently small.

In particular since \/ppvy, is uniformly bounded in L*>(R*, L?(R)), we deduce that up to
a subsequence (y/pnvn)nen converges weakly in L (R*, L2(R)) to mg3. Since \/ppv, =
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V/Prin + O0zp2(prn), we have seen using the previous informations that (\/pnvn)nen con-
verges in the sense of the distributions to \/pu+ 9,¢2(p) = m?. It implies that mg = m?.
Now using the Fatou lemma for weak convergence we deduce that there exists C' > 0
such that:

[m2]| oo m+ L2(m)) < C- (3.84)

Since (pn, Un)nen is a regular solution, we have for any test function ¢ € C§°([0, +00[xR)
after integration by parts:

+oo
/0 /R (Prtin (5, 2)Ba9(5, ) + pnti2 (5, 2)00(5, ) + fin(Pr) tin(5, 2)Ppapl(s, )

+ Ou(pn(pn)) un(s, 2)0up(s, ) + pl(s,2)0pp(s, z))ds dx + /anun(o, x)p(0,2)dz = 0.

(3.85)
From (3.79), we know that 0, (un(pn)) is uniformly bounded in L*(R*, L?(R)), then
up to a subsequence 9, (pn(pn)) converges weakly in L2(RT, L%(R)) to v. Since jin(pn)
converges to u(p) in L} (R* x R) for any 1 < p < 400 using dominated convergence, we
deduce that v = 9,u(p) in the sense of the distributions. Now since we have seen that
u, Oz converges strongly in L2(RT, L2(R)) up to a subsequence to ud,¢ we deduce that

up to a subsequence we have:

400 +o0
lim /Rax(ﬂn(pn))un(s,x)({)xgp(s,x)dxds:/0 /Rax(,u(p))u(s,x)@xcp(s,x)dq:ds

n—-+o0o 0

(3.86)
Proceeding similarly for the other terms we have proved that (p,u) is a global weak
solution in the sense of the definition 2.1. It is important in particular to observe that
my, (0, ) converges to mg in the sense of the measure and we have then:

lim pnun((),x)cp((),x)d:v:/ng(x)gp((),x)dx. (3.87)

n—-+o0o R

We proceed also similarly for the mass equation. From (3.79) (vn)nen is uniformly
bounded in L>®(R*, L?(R)) and converges weakly * to v in L>(RT, L?(R)). From the
Fatou properties for the weak convergence we deduce that for any ¢ > 0:

(vl o.,2R)) < C
I(VsLgsnyy + Lo, Outll 3 2wy < ©

_1

1920%72 || L2((0,135), L2 (R))+ Lo (175 400l L2 () < C (3.88)
1yt

10202V 12 f2(m)) < C

lull Lo (0,1, 15 () < C-

Compactness when o > 1

This case is more delicate essentially because pi is a priori not uniformly bounded in
n

L>(R*, L>°(R)). We only know that there exists T > 0 independent on n such that —=
is uniformly bounded in L*°([0, 73], L>°(R)). In particular we have the same estimates
on (pn, Un,vn) and (p,u,v) on the time interval [0,73] ((p,u,v) are defined in a similar
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way).
The main difficulty is to prove that p, and a certain momentum m,, = pgl Uy CONVErges
almost everywhere up to a subsequence to p and m.

Convergence almost everywhere of (p,,)nen

From (3.58) and (3.59), we have for any ¢ € C§°(R) with suppy C| — M, M|, there
exists C(t1) > 0, C > 0 independent on n such that for ¢; €]0, T3]

a_l
102 (Lo Loo (11,400, L1 (R)) < Cllov/Prllnoe (1 400, 2®) 102Pn | Loo (81 400],L2(R))
+ HPg3x80||Loo([t1,+oo[,L1(R))
< ([lell ooy + 10zl oo (r))C(M, 21).
(3.89)
with C'(M,t1) depending only on ¢1, M. Next we have:

Ot(ppp) = (1 — ) ppy Oxtty, — Oz (P Un) + Orp Py tn.

From (3.59) and (3.58), we deduce that ¢ p2dyu, is uniformly bounded in L?([t, +oo[, L*(R)),
9z (¢p%uy) is uniformly bounded (since a > 3) in L®([t1, +00[, W 12(R))), dpep pSuy, is
uniformly bounded in L ([t1, +oc[, L?(R))). It implies that 9;(pp2) is uniformly bounded
in L2 ([t1, +oo[, W~12(R))). From the Lemma 1, we deduce that p converges strongly

loc
up to a subsequence in C([tl,T],Lﬁ}C(R))) for any 1 < 81 < 400 and T > t1. Up to
a subsequence it implies that p% converges to p® almost everywhere on [t1, +o0[xR. In
particular up to a subsequence p,, converges almost everywhere to p on [t1, +00[xR.

Now using the same arguments as the proof for & < 3 on ]0,¢] with ¢ €]0,7j], we obtain
that p, converges almost everywhere on ]0,¢1] X R to p up to a subsequence. Indeed we
can use similar ideas since we know from (3.54) that (pn, %)neN is uniformly bounded
in L*>°([0, T3], L>°(R)). We have finally proved that p, converges almost everywhere to p

on |0, +oo[xR. From (3.59) we deduce that for any ¢ > 0 we have for C' > 0:

ot )l oo w) < C- (3.90)

In addition it implies using the dominated convergence and (3.59) that p;, converges up

to a subsequence to p? in Li (RT x R).

Convergence almost everywhere of (pSu,) ey when a > 1

We set my, = pSu,, we deduce from (3.58) and (3.59)that there exists C(t;) > 0 such
that for ¢t1 €]0,Tp] and t > ¢1:
102 (Pt ) | L2([t1.41, L2 (R)) Lo (1.0, (®R)) < C (1108 Ot || L2((ty 41, 22R)) 107 || Lo (81,17, 50 ()

a1l
+110e(pn )l oo (1,4, 2®)) I/Prtin | Loo (1.4, L2(R)))
< C(t1)7

(3.91)
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and:

ool
P unll oo 0,2y < IV/Prtunll Loo(ier g, L2@p llon 2 [lzoo (1, 11,Lo0 (m)) (3.92)
< C(ty).

Next we have:

a—1

Or(ppun) = pp lat(Pnun) + prunOipy,
= 8x(ﬂn(pn)pn 19 un) - 8x(pn )Nn(pn)axun - 8z(pgui) + 3x(ﬂf{71)l)nui

ary B
- m%p%*“ '~ (a = 1)pfundpun — prusde(pd ")
13 pn(pn) pai%
= 0, (n(pn)pi A gtun) — (0 = )220, (0) v/ b (pr) Dgtin —2s — D (o2 p5 )
P tin(pn)
a a a
— (= 1)pg uppd Optiy, — ﬁz—laxp?ﬁa 1
o=
Here since o > 1 it is important to point out that from (3.59), —22—— is uniformly

’ \V4 Hn(pn)
bounded in L>®(R*, L>°(R)). From (3.58) and (3.59) it yields that for C' > 0,C(t1) > 0

independent on n:
10 un) | 221t HLH = RL o W1 R+ L2 AL R L (] W1 (R)

< C([lpn(pn)pi HL°° (ftr.81, Lo @) 107 Oxtin| L2, 41,22 (R))

Mn pn
1 20) ol o120 | o (P Ot 2 .22 |

Pn
: : — Lo (t1.1, L ()
o2 Vinlpn)

+ ||Pnu2||Loo ([t1,8,1" R))Hﬂﬁ_1||Loo([t1,t],Loo + 13T oo ((t87,00 (R))
1(a—1)

_1

+ ||pnun||L°° (ftr,8,22®) lPR
< C(ty).

| Loo (ft1,81, 250 (R)) ||Pﬁ Oztn| L2 ([t, 4,12 (R))

(3.93)
We have seen that (p%u,)nen+ is uniformly bounded in L2 ([t1,+oo], WLEL(R)) and

loc
(D(p2un))nen- is uniformly bounded in L7 ([t1, +o00[, W, "*°(R)) for s > 0 large enough
by Sobolev embedding.
From (3.91), (3.92), (3.93), the diagonal process and Lemma 1, we deduce that (p%up,)nen
converges strongly up to a subsequence to m in Ll Le([t1, +00[xR). In addition up to a
subsequence, it implies that pQu, converges almost everywhere on [t1, +00[xR to m.

Note that we can already define the velocity u with u(t,z) = Zlf((ttf)) on the set {(t,z) €

RT x R; p(t,z) > 0}. Let us verify now that m, = 0 almost everywhere on the set
{(t,z) € RT xR; p(t,x) = 0}. Indeed we have for any ¢ > 0 and using the Fatou Lemma
and (3.58):

a 2
/ lim inf deﬁhm inf /pn]un|2(t,x)dx
{ptay<ry  "F pp T (t x) noteo Jr
1
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with C' > 0 independent on n. It implies that m, = 0 almost everywhere on the set
{(t,z) e RT X R; p(t,x) = 0}. We have then:

e m,(t,r) = 0 almost everywhere on {(t,z) € Rt x R; p(¢,z) = 0}.

o u(t,z) = % on {(t,z) € RT x R; p(t,x) > 0} and u(t,z) = 0 on {(t,z) €

RT x R; p(t,z) = 0}.

We can observe that u is not uniquely defined on {(¢,z) € RT x R; p(t,z) = 0}. Now
from (3.78) and the Fatou lemma we deduce that there exists C(¢,¢1) > 0 such that for
any t > t; we have:

1
P ull Loo 1ty L4m)) < C(t1,1). (3.94)
Similarly from (3.66) we have for any ¢ > 0:
lpu(t, e < C). (3.95)
We are going now to prove the strong Ll200 convergence of \/ppty.

Lemma 5 We have for any T > 0 and any compact K of R:

T
/0 /K Bt @)n(t, @) — v/B(E, 2)ult, @) Pdtdz —pso0 0. (3.96)

This limit is true up to a subsequence.

Proof: Following the proof of the case a < % (since (pn, +)nen is uniformly bounded

)
Pn
on [0,Tp]), we know that up to a subsequence we have for any compact K:

T
/ ’ / (s 2)un(t, &) — v/B(t 2)u(t, 2) 2dtde —sms o0 0. (3.97)
0 K

Let us deal now with the case T" > Tjs. We have seen that /p,u, converges almost
everywhere to \/pu on the set {(t,x) € [ti,+oo[xR; p(t,x) > 0} with t; €]0,Tp]. It
implies that we have for any 7' > 0 using dominated convergence, (3.59) and taking
M >0 with K1 = KN {(t,z) € [t1,T] xR; p(t,x) > 0}:

T
/ /K ‘\/[Tn(t, m)un(t, x)1{|un‘(t7x)§M} - \/ﬁ(t, a;)u(t, x)1{|u|(t7x)§M} |2dtd1‘ —n——+oo 0.
31 1

(3.98)
We have now using (3.78), (3.94) and (3.59) that there exists C' > 0 independent on n
such that:

T
/ / Bt 2)tin (£, 2) P g1 00y a1y
t1 Kn{(t,x)€[t1,T|xR; p(t,x)>0}

C T
= Mz/ / pulun|A(t, 2)dtdx (3.99)
t1 JEN{(t,x)€t1,TIxR; p(t,z)>0}

(T,
S (M2 ) _>M—)+OO 07
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similarly we have:

T
/./ /(b )t 2) L.y i
t1 JEKN{(t,x)€[t1,TIxR; p(t,x)>0}

O(T.t

(3.100)

On the set {(t,z) € [t1, +o0[xR; p(t,x) = 0}, we have for any M > 0:

VP tn (t, )| L, (ta)<my < M/pr(t, ) —nsioo 0= /plul(t, z).

From convergence dominated and Tchebytchev lemma we deduce that:

T
/ / /P (t, @) (t, ) [Pdtds — 5100 0. (3.101)
t1 JKN{(t,x)e[t1,T]xR; p(t,x)=0}

From (3.97), (3.98), (3.99), (3.100), (3.101) and the fact that \/pu = 0 on {(t,z) €
[t1, +0o[xXR, p(t,x) = 0} we deduce (3.96). O

Let us prove now that the sequel (p,un)nen converges in the sense of the distribution to
pu. Indeed we have for any 7' > 0, any K a compact of R and C(T, K) > 0:

llpntn — pull Lo, (1)) < C(T K) ([IvPrll oo (o171, (7)) 1V Prtin — /Ul 20,7, 22 (56
+ IWen = Vol 2o,m),22 ) 1V Pull L2011, 22 (k) ) -
(3.102)
From (3.96), (3.59), convergence dominated and the fact that ,/p, converges almost
everywhere to ,/p we deduce that p,u, converges to pu in L} (R x R). Now from
(3.59), (3.78), (3.94), (3.55) and by interpolation we deduce that p,u, converges to pu
in L2 (R* x R).

loc

Let us deal now with the term of viscosity, we have then for any ¢ € C§°(R* x R):
oo o 1
| [ mntonsun . a)dupttardodt == [~ [ 637 ot 0)0plt,x) o
o Jr o Jr
1 o o
o [ dunlttnpttydndt — [ [ oulunon))t 0t 2)0usplt, ).
nJjo JR 0o JR

We have only to consider the case of the interval [t;,+oo[ with ¢; €]0,T}] since the
procedure follows the proof of the case a < 3 on [0, Tjs]. We know from (3.58) and (3.78)
that we have for any t € [t, +ool:
a—3 1. 032 1 | otf=3
[0zpn 2t ) L2m) + gHPn 2on(ts )| 22wy + %Hpn Ozpn(t, 2w < C(t1)
1
[pnun(t, )Lawy < C(t t1).
(3.103)

We have now:

a 191 s
unax(ﬂn(pn)) = %\/ pnunaxpz 2 4+ ﬁpﬁun Pn 48;1:pn-
2
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From (3.103), we have setting 6, € (0,1) such that 6 — 2 = 61(a — 3) + (1 — 61)(0 — 2)

(this is true because we have a > 1 and 6 < %) and for any t > t;:

/R P25t 2) Dapn (1, ) P

3

2(0—2 _ 2(a—
< (AP ) 0upalt ) a0 [ D 0,2)100p1,) )

< 2= ().
Using Holder’s inequality, (3.103) and (3.104), we deduce that we have:
9 +oo 1 0_§
\/ / Pty pn * Ozppn(t, ) 0pp(t, z)dtdx|
n t1 R
o, 1 1 03 1

0 1
< C(suppp) (|00 oo m+xR) + 1)5Hpﬁun\|Loo([t1,+oo[,L4(R))

9—2
X [lpn * Ozpnl Loo ([t1 400, L2(R))

0
< C(suppp)C (1) (|00l oo mt+ xr) + 1)@-

We deduce then that:
4] +o0 1 9_5
/ / P Un Pn 48xpn(t7 I)ax(p(t, x)dtdx —n—0 0.
n t1 R
It is easy now to verify that:
o [ [ 1 g3
n/ / P Un Pn 4axpn(tax)ax90(tax)dtdx —n—0 0.
0 R
We have finally proved that:
4] +o0 1 9_5
n/ / Py, pr * Oppn(t, )0pp(t, x)dtdx —p_0 0.
0 R
Similarly taking 6 = i, we obtain from (3.103):

1 o
/ /piun(t,x)amnp(t, x)dxdt —p,0 0.
nJo JR

We can prove easily now that up to a subsequence:

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

oe a—2 o0 a—1L
— M/ /pn 2/ Prtn(t, ©)0prp(t, )dxdt —/ / %,/pnunaxpn 20pp(t, x)dzdt
0 R 0 R&®— 3

—n—too —M/ /pa_é\/ﬁu(t,x)amgo(t,x)dmdt—/ / ra
o Jr 0o JrRO—

1
2
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2

_1
Indeed since &Upz ? is uniformly bounded in Lj ,

_1 _
subsequence dypn 2 converges weakly in L?([t1, +0o[xR) to v. Since On

1 .
to p*2 in L2,

([t1,+oo[xR), it implies that up to a
: converges
([t1, +o0o[xR) via the dominated convergence, we deduce that ampﬁ_%
converges in the sense of the distribution to v = &Cpo‘_%. Now using the fact that \/ppup,

converges strongly to ,/pu in L2 ([t1,+o0[xR), we obtain the convergence of the second

term on the left hand side of (3.110) (indeed on the time interval [0,¢;] we proceed as in
the previous section with 0 < t; < Tpg). We proceed similarly for the other term.

We have proved finally that (py,,u,) converges in the sense of the distribution to a global
weak solution (p,u) of the system (1.1).

Finally we can prove the estimates (2.15) by using Fatou lemma in the framework of the
weak convergence.

Compactness when % <a<l

We proceed as in the previous section excepted that it suffices to use the Lemma 1 for
the unknown m,, = ppu,. Indeed we observe that we have from (3.58) and (3.59) with
t1 E]O, Tg]:

l[ontin| oo (1 00l 22(R)) < C(t1), (3.111)

and since:
Or(pnun) = _896(/)71“%) + Oz (pin (pn) Ozun) — Ox(apy),

we have then:
[[ontin || Loo ([t oo, W11 (R)) +L2([t1, ool H—L (R)) + L= ([t1, 4o W-L+oo(m)) < C(t1).  (3.112)

We can then apply the Lemma 1 and conclude as in the previous section.
Continuity in time of the momentum pu and m!
Proposition 3.1 For any T > 0, m and pv belongs to C([0,T], M(R)*).

Proof: VERIFIER CETTE PARTIE!
From (3.36), the sequence (p,un)nen is uniformly bounded in n on [0,7] in M(R) when
llpbug |l < M, indeed there exists M (T") > 0 such that for any ¢t € [0,7] we have:

lontn(t, )l pmey < M(T).

We are now going to prove that for any ¢ € Co(R), (pnun(t,-), ) is uniformly continuous
in n on [0,7]. Indeed we have using the momentum equation of (1.1), the Fubini theorem
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when ¢ > s > 0 and (3.58), (3.59), (3.54) and (3.78) that for any ¢ € C§°(R):
| pnun 7 (pnun(s )7()0)|
’/ / Pnu (7,2) + O (pin (pn) Oxin ) (7, ) — (0 P(pn)) (7, 2)]p() dT dx|
-1/ [ (7,2) + 0, ) a7 ) + Pl ) )} 0rile) dr da
+ [ [ mnlontr)n(r,a)0spta)drdal
S/ (lonll oo et Lo (m) 1L j0,175) (T)uin (T, ')||%2(R) + ‘|1tZT5(7)mun(Ta')H%Q(R))”az@HLOO(R)dT

t
1
+/ (Lo,751 (VT IV PrOpn (pn) (T, ')HL?\\VP?||Lw(R+,Lw(R))7Hun(ﬂ')HL2(R)\|5x<PHLoo(R)

+ Loy (7) VPl 22 @) | VPO @n (pn) || L2 ) 00 oo () AT
+ 1P(on) | oo et Lo (my) Ozl L1 () (E = 8)

t
+/ (Lo, 71 (D 1) | oo e 2o Ry 1 (7, ) | 2 ) 100 2 ()

H Mn(pn)

1
+ L1, (7) | prun (7, ')\|L4(R)Ham¢||Lg(R T || Loo R+, Lo (R)) ) AT
Pn

<Ot = s[4+ [t = s[*") (1 + 10zl oo @) + [10xpll L1 ®) + 10220l Loe @) + 1022l L1 ) )

with a3 > 0. We note that we have used the fact that wu, is uniformly bounded in
L37¢([0, T3], L*(R)) with € > 0 small enough.
By a density argument and the fact that p,uy, is uniformly bounded in L*°([0, 7], M(R))
it implies that for ¢ € Cyo(R), (prun(t,-), ) is uniformly continuous in n on [0,7]. In
other words the sequence (ppun)nen is equicontinuous on [0, 7] for the weak * topology
on M(R) when ||pgugllrr < M.

Using the Ascoli theorem on the metric space B(0, M (T')) p(r) endowed with the weak
* topology (this is true because Cy(R) is separable), we deduce that up to a subsequence
pPnln(t, ) converges uniformly to m(¢,-) on [0,7] in the weak * topology of M(R). In
particular it implies that m belongs to C([0,T], M(R)x) for any 7' > 0. The proof is
similar for m?2. O

4 Proof of the Corollary 1

We proceed as in the proof of the theorem 2.2, we use in particular the same regularizing
process. We have then a sequence (pn,un)nen solution of the system (3.28) and we
want to verify that up to a subsequence this sequence converges in the sense of the
distributions to a weak solution of the system (1.1). Compared with the theorem 2.2,
we have no estimate as (3.37) since vy does not belong to L?(R). However we have the
classical energy estimate, indeed this is due to the fact that u, (0, ) is uniformly bounded
in L?(R). Multiplying the momentum equation of (3.28) and integrate over (0,7) x R
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we have then:

1/ (pn(T, 2)|un (T, z)|* + ((pn(T, z)) — 1(p)))dx
/ /un pn(5,2))(Opun (s, x))2dxds (4.113)
<5 [ (o 0.9/t 0.0) + ([1(p0,2) - T(p)))

Now proceeding as in the proof of the theorem 2.2, we establish that there exists T > 0,
C > 0 independent on n such that:

1
H(?7pn)HLoo([O,Tg],LOO(]R)) <C. (4.114)

n

From (3.36), we deduce that there exists C' > 0 independent on n such that:

[onunl| Lo (j0,15], 1 (®)) T [|Pnnll Loo (j0,75], 1 (R))

cTy
< ([lpntn (0, ) 1wy + 1P vn (0, )l L1 (r))e™"? (4.115)
< e "
It implies in particular from (4.114) and (4.115) that for any ¢t € [0,7}p], there exists
C > 0 independent on n such that:

y—a
5 (t, My < C+ee™s . (4.116)

From (4.114), (4.116), composition theorem we deduce that for C' > 0 independent on n
and any t € [0, Tj]:

on(t. ) By < C(1+e0e”s ). (4.117)

We wish now to prove that p, converges almost everywhere on ]0,75] x R up to a sub-
sequence. We are going to use the lemma 2. To do this, we must prove each assumption
of the lemma 2. First we have since p, is regular on [0,73] x R and for any increasing
—00 < 29 < -+ < xny < 400 and any t € [0,7p] we have from (4.115) and (4.114) for
C >0

N-1 N— o
Z lpn(t, Tiv1) — pu(t, ;)| < Z / Oz pn(t, z)dz|
— (4.118)
< CEO€CTg a.
From (4.114) , we have for any ¢ € [0, Tj3]:
lon(t,0)| < C (4.119)
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From the mass equation, we deduce now that for any compact K € R we have from
(4.113), (4.114), Sobolev embedding and for C' > 0 independent on n:

t
1n(t, ") = pnls: gy < / 100 (Pt (" ) 1 10y '
t
Pn
< / (VIRTI st a1V st

Hn (pn

(4.120)
+||81‘P1(Pn)(ta')HL%K)H%(@')HLOO Yl (€, ) 1wy ) ds
< OVEt—s(1+VIK)).

From the Lemma 2 by localizing the argument (it suffices to consider the sequel (¢pp)nen
with ¢ € C§°(R) and to use the diagonal process), we deduce that up to a subsequence
(pn)nen converges strongly in L} ([0,75] x R). It implies in particular that up to a
subsequence (py,)nen converges almost everywhere to p on [0,73] x R. From (4.114) and
the dominated convergence theorem we deduce that:

e pn, p% converges strongly in LP ([0,T5] x R) for any 1 < p < +o00 to respectively

p7 and p“.
From (4.113) and (4.114) we observe that w,, is uniformly bounded in L2([O, Ts), HY(R)).
Up to a subsequence (up)neny converges weakly to w in L?([0,73], H'(R)). Since p

converges strongly to p® in L ([0,T] x R), pn(pn)0sun converges to u(p)oyu in the
sense of the distribution on [0, T3] x R.

Easily we can prove now that:
® (pnun)nen converges up to a subsequence to pu in D’'([0, T3] x R).
e p,u? converges up to a subsequence to pu® in D'([0, 73] x R).

Indeed it suffices to use the arguments developed in [30]. To finish since 9, py, is uniformly
bounded in L*®([0,Tp], L*(R)) we deduce that up to a subsequence 9,p, converges *
weakly to O,p in L>°([0,Tg], M(R)).

In addition we have the following estimates for C' > 0 large enough by using the Fatou
lemma for weak convergence:

[wll oo 0,150, 22(R)) < C
HVUHL2([O,T5],L2(R)) <C

1
(o, ;)HLOO([O,T/g],Lw(]R)) <C (4.121)

10zl oo (jo,75), M) < C
1o = Pl o (0,15, L3 (R)) < C-

In addition from (4.113), (4.114), (4.115) and Sobolev embedding, we deduce that p, — p
is uniformly bounded in L*°([0, T3], H 3 (R)). From the mass equation 0;p, is uniformly in
L>([0,Tg], W=bL(R)). Using the Lemma 1, we deduce that (p,)nen converges strongly
to p in C([0,Tp), Lj, .(R)) for 1 < p < +o0.

Following the same argument than in the previous section, we prove also that (ppun)nen
converges to pu in C([0, Ts], M(R)*).
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5 Proof of the theorem 2.3

Let (po, uo, v9) verifying the assumptions of the Theorem 2.3, we define now the regular-
izing initial data (pfj = jn * po, My = jn*mo) with L,, a regularizing kernel. From [25, 33]
since (p§ — p,u?) belongs to H(R) x H'(R) and we have 0 < ¢ < pft < M < 400, we
know that there exists a global strong solution (py,u,). In addition since the regularity
H*® with s > 1 is preserved this solution (pp,uy,) is in C*°(RT x R). We are going now to
prove uniform estimates in n on the solution (p,, uy), for the simplicity in the sequel we
forget the subscript n. When we will have sufficiently uniform estimates, we will verify
that (pp,u,) converges up to a subsequence in a suitable functional space to a global
weak solution (p,u) of (1.1).

Similarly we have the following entropy:

a T 1
;/R(p|v‘2(T,x)+(H(p)—H(ﬁ))(T,:B)dx—i—M/O /R\axm(w—l)‘z(s,x)dsdx

<5 [ (olol?(a) + (M) =TI ()

(5.122)

L™ estimate of % and p in L* norm on a finite time intervall

In this case the only difference is the way that we are going to use to prove L estimate
on p and 1. We can show the estimate (3.36) in a similar way as the proof of the Theorem
2.2. We deduce as (3.40) that we have for C' > 0 large enough independent on n and any
t>0:

o5 Jo 1P (0)p(s,) oo ds

(5.123)
Since we have pv = pu + pd, In p, we deduce in particular that for any ¢ > 0 we have
using (5.122):

[pu(t, ) Lrwy + [lput, )L gy < Clpovollrm) + lpovoll L (w))

I p(t, )l < C(IIn(p)] + (|82 (o, )l L1 ()

(5.124)
< C(Im(p)] + (lpovoll () + llpouoll 1))

e Jo 1P (@)p(s)llnocdsy

And it yields that for C’ > 0 since

C’te’Y” I“PHL]?O(LOO(]R)))
(5.125)
Let us prove now that p and % are bounded in L* independently on any n and on an

time interval [0, T*] with 7™ independent on n. More precisely we define by:

110 pl| oo (oo (my) < C' (11 p] + (lpovoll 1wy + [lpovoll 1wy )e

T, = sup{t € (0,+00), [|In p" (¢, )| oo (w) < M.},

with My = sup (2] In po ||z, (| 1n p| + 2(||povoll 1) + llpotoll L1 (w)))). We observe that
T,, > 0 since In p,, belongs to C([0, +o00[, L>°(R)) for any n € N (indeed this is due to the
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regularity of the solution (py,, uy)) and since || In pfj ||z~ < M;. Let us define now T5 such
that:

3
C'T: equ o 3 o ln(i)
e~ 2 =5 and Ty = Cren
From the definition of T}, and from (5.125) we have for any n € N:

T, > 15 > 0.

We have then proved that In p” is uniformly bounded in n in L*°((0,7%), L*°(R)) with
T5 independent on n. In particular this gives:

1
(o, ;)HLOO([O,TQLLOO(]R)) <M (5.126)

Now proceeding as in the previous section we can show additional regularity information
on the velocity u and p, we have in particular for any ¢ > 0 there exists C' > 0 independent
on n such that: )
IVonun(t, )2y < C(—=+1)

o " Vi (5.127)
1(Vs1s<1y + Lia1y)Oatinll L2 (12my)) < C-

We recall in addition that from (5.122) we have also for any ¢t > 0 and C' > 0 independent
on n:
[vPnvn(t, )|l < C
ITL(pu(t,)) — TU(p) | 1 ey < C (5.128)
3(-1)
10z (pia rzemy) < C.

From (5.127), (5.128) and the definition of the effective velocity v, we deduce that for
any t > 0 and C > 0 large enough:

1 1
||8x(m)”L2(R) < C(% +1). (5.129)

Control of the L*° norm for long time of p and %

We are going to follow the method develop by Hoff in [23]. First for any t; < to < T with
t1 €]0, T3] and zg € R, then there exists z; and a constant C(7") > 0 depending only on

T such that we have:
{ ‘iL’o —$1| S C(T)

C(T)™t < plte, z1) < C(T). (5.130)

We observe that there exists C > 0 such that:

lim inf(T1(p) ~ T1(p)) > .
p—>

We deduce in particular that there exists § > 0 such that:
-1
II(p) — (p) = 5
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Then if for any R > 0 we have:

sup

p(tQa .TL‘) < 53
z€[zo—R,x0+R)]

then we have from the previous estimate and (5.122) (with C1 > 0 depends on the initial
data (po,uo)):

C'R < /R(H(p(tg,a:) —1II(p))dx < Ci.

In particular R can not goes to 0. We proceed similarly for the case p(t2,z1) > C(T).
We use now the characteristic method, we set for ¢; €]0, ] and ¢ € [t1, ta] with to > ¢;:
d
7% (8) = ult, X5(s))

Xj(tg) =€ R, 7=0,1.

d Xl(t)
%AL(t) = —/ Ozgu(t, x)dz

Xo(t)

We set AL(t) = log p(t, X1(t)) — log p(t, Xo(t)). From (1.1) we deduce that:

1 Xl(t) ,
T /Xo(t) (Os(pu)(t, z) + Ox(pu®)(t, ) + 0. P(p)(t, x)da
d

_%I(t) — AP(t),

where I(t) = ;((O lét)) pu

(t.2)dz and AP(t) = P(p(t, X1(t))) = P(p(t, Xo(#))). We observe
now as in [23] that «(t) AL()

= is positive. We deduce then that we have the following

= AP()
ordinary differential equation:

d

d

—AL AL(t) = ——1(1).

LALE) +aALE) = 2 1)
We deduce that we have for any ¢ € [t1,t2]:

IAL(H)| < |AL(t)] + [I(t)] + [1(t)] + / e~ I 0T o ()[1(5)|ds.

(5.131)
t1

For the latter, we take X; > Xy. We observe easily that for any ¢ € [t1,t2] we have from
(5.127) and for C' > 0 large enough:

I(t) < [[Vpult, ez llvell L2 (xow),x: )
1 _
<O+ %)(1 + ot ) = pllLy)

(5.132)
X ((|Xo(t) = X1(8)]® + | Xo(t) — X1(8)'™7 + [ Xo(t) = X, (1))

It remains now only to estimate | X(t) — X (t)|, next we have:

d X1(t)

— (X1 — Xo)(t) = / Oru(t, x)dx

dt Xo(t)
1 1 rXi®)

<5000 -Xo@) +5 [ (@2t
2 2 JXo(t)



Using (5.127) we get:

1(s)
Xl(t) — Xo(t) < Xl(tl) Xo(tl) / ( ( ) X() dS +/ /X S ac)dxds

t1
§|IL’1—.T0|+/(X1() X() dS—l—/ / 8u sx
t1

ﬂm—mujk&u Xo(s))ds +

t1 1

From Gronwall lemma and (5.130) we deduce that for ¢; <t < to < T, we have:
[ X1(t) = Xo(t)| < CU(T, 1), (5.133)

with C1(T,t1) depending only on 7" and ¢;. Combining (5.132) and (5.133), there exists
a continuous fonction C' such that for t; <t < t9 < T, there exists C1(T,t;) such that:

I(t) < C1(T, ). (5.134)
Now using (5.131) and (5.134) we get for any ¢; <t <ty <T:
|AL(t)] < |AL(t1)| +5C(T, t1). (5.135)
Now since (%(tl, -), p(t1,-)) is uniformly bounded in n in L*°(R), we deduce that:
[1n p(ta, xo) — In p(te, z1)| < C(T,t1). (5.136)

From (5.130) and (5.136), we deduce that for any to with 0 < t; < t9 < T and any zp € R
there exists C'(T,t1) such that:

C(t1,T) ' < p(ta, w0) < C(T,t1).

It implies in particular that we have for C'; an increasing continuous function and any

t>t 1
1(p(t, "), ;(t, WML~ < Ci(t, ). (5.137)

If we summarize the previous estimates (5.127), (5.128), (5.129) and (5.137), we have
proved that for any ¢t > 0 there exists C' > 0 and C a continuous increasing function not
depending on n such that:

” pnun( ) pnvn( ))HLl < Cl( )
mem;a»uwgam

IV/Prun(t, )l 2w )<C(7+1)

1(Vs1(s<1y + Lis1y)Oatnll 2 (r2my) < € (5.138)
Vonvn(t, )z < €

lon(t, ) = PllLym) < C

10zpnll L2(L2(r)) < CCL(E)

102pn(t, )| 2w <CC’1()(\}E

+1).
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Compactness arguments

From (5.138) we deduce that p, is uniformly bounded in L? (H'(R)). In addition from
(5.138) and from the fact that O;p, = —0.(pnun) we deduce that atpn is uniformly
bounded in L{S (W~54(R)) and is bounded uniformy in n in L E(W“ 2(R)). Using
the Aubin-Lions lemma 1, we deduce that the sequence (py)nen converges up to a sub-
sequence in Lloc(HlSoc(R)) with 0 < s < 1 to p. It implies in particular that up to a
subsequence (pp)nen converges almost everywhere to p. From convergence dominated
and (5.138) we show that p;, converges to p? in LT (R x R") for any 1 < p < +c0. In

addition from (5.138) for any ¢ > 0, there exists C(¢) > 0 such that we have:
1
H(;(L-%;KL'DHLWUM < C(t). (5.139)

Proceeding as for (3.53), we deduce that w,, is uniformly bounded in n in L (j)fe(H *(R))
with 0 < s < 1 and p(s) = 1+23 with e > 0 sufficiently small such that p(s) —e > 1. Now
using paraproduct law we deduce that we have for any ¢ > 0 and 0 < s < %:

1(on = PYun(t, )l s @) <

_ 5.140
(6, M2 19 ,->—pum+Hpnu,-)—pHH1<R>Hun<t,->\|H, (5.140)

-

2(R)

Combining the fact that at w, is uniformly bounded in n in L? p(s) = ‘(H*(R)) and (5.138)

loc
we deduce that ppu, is uniformly bounded in Llo(c)(Hs(R)) with ¢(s) = min(2, p(s)) and
s€[0,3].
Now we recall that we have 0;(pnun) = —0x(pnu2) + pdsztn — 0. P(pr), taking s = 0 we
3
have seen that u2 is bounded in L? (L'(R)) and p,, is uniformly bounded in L{°,(L*°(R))
3

then p,u? is uniformly bounded in L2 _(L'(R)). Proceeding similarly we observe by
Sobolev embedding that 0;(pnu,) is bounded uniformly in L} (H*2(R)) with so > 0
large enough. Using the Aubin-Lions lemma 1 we deduce that p,u, converges strongly
up to a subsequence to m in in L?O(CS) (Hj,.(R)) with g(s) = min(2,p(s)) and s € [0, 3].
By Sobolev embedding We deduce that p,u, converges strongly to m in Lj oc(LZQOC(R))
Now since (pp)nen and ( ~)nen converges respectively to p and 1 in P (RT x R) for

loc
1 < p < 400 on every compact and from the fact that ,T is unlformly bounded in

LS (L>*(R)) we deduce that u, converges up to a Subsequgnce strongly to % = u in

LZQO CE(LIZO .“(R)) with € > 0 and (uy)nen converges up to a subsequence almost everywhere
to u.

All these estimates are now sufficient to show that (pn,un)nen converges up to a subse-
quence in the sense of the distribution to a global weak solution (p,u).

In addition using Fatou lemma and weak convergence, we deduce from (5.138) that for
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any t > 0 there exists C' > 0 and Ci(t) > 0 such that:
lou(t, )z ) < C1(t)
1
H(p(t7 ')7 ;(tv ')HLOO < Cl(t)
1
IVpu(t, Mr2@) < C(W +1) (5.141)

lo(t,) = pllym) < C
L1020l 222 ()) < CCL(D).

In addition u belongs to LI ™ (H*(R)) with 0 < s < 1 and p(s) = 125 with € > 0
sufficiently small such that p(s) — e > 1. In addition as in the previous proof, we can
show that p is in C([0, +-o0[, W, 7P (R)) and pu is in C([0, T], M(R)*).

This achieves the proof of the Theorem 2.3.
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