
HAL Id: hal-01716111
https://hal.science/hal-01716111v1

Preprint submitted on 23 Feb 2018 (v1), last revised 4 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Stability and the Security of the Tangle
Quentin Bramas

To cite this version:

Quentin Bramas. The Stability and the Security of the Tangle. 2018. �hal-01716111v1�

https://hal.science/hal-01716111v1
https://hal.archives-ouvertes.fr

The Stability and the Security of the Tangle

Quentin Bramas1

1ICUBE, University of Strasbourg
bramas@unistra.fr

Abstract

In this paper we study the stability and the security of the Tangle, which is the distributed
data structure at the base of the IOTA protocol. The contribution of this paper is twofold.
Firstly we present simple model to analyze the Tangle and give the first formal analyzes
of the average number of unconfirmed transactions and the average confirmation time of a
transaction.

Secondly we define the notion of assiduous honest majority that captures the fact that the
honest nodes have more hashing power than the adversarial nodes and that all this hashing
power is constantly used to create transactions. This notion is important because we prove
that it is a necessary assumption to protect the Tangle against double-spending attacks, and
this is true for any tip selection algorithm (which is a fundamental building blocks of the
protocol) that verifies some reasonable assumptions. In particular, the same is true with the
Markov Chain Monte Carlo selection tip algorithm currently used in the IOTA protocol.

Our work shows that either all the honest nodes must constantly use all their hashing
power to validate the main chain (similarly to the bitcoin protocol) or some kind of authority
must be provided to avoid this kind of attack (like in the current version of the IOTA where
a coordinator is used).

The work presented here constitute a theoretical analysis and cannot be used to attack
the current IOTA implementation. The goal of this paper is to present a formalization of the
protocol and, as a starting point, to prove that some assumptions are necessary in order to
defend the system again double-spending attacks. We hope that it will be used to improve
the current protocol with a more formal approach.

1 Introduction

Since the day Satochi Nakamoto presented the Bitcoin protocol in 2008 [1], the interest in
Blockchain technology has grown continuously. More generally, the interest concerns Distributed
Ledger Technology, which refers to a distributed data storage protocol. Usually it involves a num-
ber of nodes (or processes, or agents) in a network that are known to each other or not. Those
nodes may not trust each-other so the protocol should ensure that they reach a consensus on the
order of the operations that they can perform, in addition to other mechanism like data replication
for instance.

The consensus problem has been studied for a long time [2, 3] providing a number of funda-
mental results. But the solvability of the problem was given in term of proportion of faulty agents
over honest agents. But in a trustless network, a adversary can simulate an arbitrary number of
nodes in the network. To avoid that, proof systems like Proof of Work (PoW) or (PoS) are used
to link the importance of an entity with some external properties (processing power in PoW) or
internal properties (the Stake in PoS) instead of simply the number of nodes it controls. The
solvability of the consensus is now possible only if less than half of the hashing power is controlled
by an adversary (the proportion is reduced to 1/3 if the network is asynchronous).

Bitcoin and the other blockchain technologies are one form of distributed ledger that uses PoW
or PoS to elect one node that is responsible for writing data in the blockchain for a given period of
time. The ”random” selection and the incentive a node may have to execute honestly the protocol

1

make the whole system secure, as it was shown by several formal analysis [1,4]. Usually, there are
properties that hold with high probability i.e., with a probability that tends to one quickly as the
time increases. For instance, the order between two transactions do not change with probability
that tends to 1 exponentially fast over the time in the Bitcoin protocol, if the nodes executing
honestly (or rationally) the protocol have more than the majority of the hashing power.

In this paper we study another distributed ledger protocol called the Tangle, presented by
Serguei Popov [5] that is used in the IOTA cryptocurrency to store transactions. Very few academic
papers exists on this protocol, and there is no previous work that formally analyzes its security.

According to the protocol a PoW has to be done when broadcasting a transaction. This PoW
prevents an adversary from spamming the network. However, it is not clear in the definition of the
Tangle whether this PoW is also important for its security i.e., avoiding double-spending attack.

In the Tangle, the weight of a set of nodes corresponds to the amount of work they contain.
When a new transaction is appended to the Tangle, it references two previous transactions, called
tips. The algorithm selecting the two tips is called a Tip Selection Algorithm. It is a fundamental
parts of the protocol as it is used to reach a consensus. The TSA currently used in the IOTA
implementation uses the PoW contained in each transaction to select the two tips.

The main contribution of our paper is to prove that if the TSA depends only on the PoW, then
the weight of the honest transactions should exceed the hashing power of the adversary to prevent
a double-spending attack. This means that honest nodes should constantly use their hashing
power and issue new transactions, otherwise an adversary can attack the protocol even with a
small fraction of the total hashing power. Our results is interesting because it is true for any tip
selection algorithm i.e., the protocol cannot be secure by simply using a more complex TSA.

The remaining of the paper is organized as follow. Section 2 presents our model and the Tangle.
In Section 3 we analyze the average confirmation time and the average number of unconfirmed
transactions. In Section 4 we prove our main theorem by presenting a simple double-spending
attack. Then, we discuss our results in Section 5 and conclude the paper in Section 6.

2 Model

2.1 The Network

We consider a set N of processes, called nodes, that are fully connected. Each node can send a
message to all the other nodes (the network topology is a complete graph). We will discuss later
the case where the topology is sparse.

We assume nodes are activated synchronously. The time is discrete and at each time instant,
called round, a node reads the messages sent by the other nodes in the previous round, executes
the protocol and, if needed, broadcast a message to all the other nodes. When a node broadcast
a message, all the other nodes receive it in the next round. Those assumptions are deliberately
strong as they make an attack more difficult to perform.

2.2 The DAG

In this paper, we consider a particular kind of distributed ledger called the Tangle, which is a
Direct Acyclic Graph (DAG). Each node u stores at a given round r a local DAG Gur (or simply
Gr or G if the node or the round are clear from the context), where each vertex, called site,
represents a transaction. Each site has two parents (possibly the same) in the DAG. We say a site
directly confirm its two parents. All sites that are confirmed by the parents of a site are also said
to be confirmed (or indirectly confirmed) by it i.e., there is a path from a site to all the sites it
confirms in the DAG (see Figure 1). A site that is not yet confirmed id called a tip. There is a
unique site called genesis that does not have parents and is confirmed by all the other sites.

If the Tangle is used to store the balance of a given currency (like the IOTA cryptocurrency),
then a site represents a transaction moving funds from a sender address to a receiver address.
Two sites are conflicting if they try to move the same funds to two different receivers i.e., if

2

1|12

2|10

2|10
4|8

3|6

3|7 6|6

6|5
9|4

7|3

10|2

12|1

11|1

Figure 1: En example of a Tangle where each site has a weight of 1. In each site, the first number
is its score and the second is its cumulative weight. The two tips (with dashed border) are not
confirmed yet and have cumulative weight of 1.

both executing transactions results in a negative balance for the sender. A site may store several
transactions or other kind of messages, but we can assume without loss of generality that it is a
single transaction.

At each round, each node may sign one or more transactions. For each transaction, the node
selects two parents. The signed transaction becomes a site in the DAG. Then, the node broadcast
the site to all the other node.

DAG extension

Definition 1. Let G be a DAG and A a set of sites. If each site of A has its parents in A or in
the tips of G, then we say that A is an extension of G and G ∪ A denotes the DAG composed by
the union of sites from G and A. We also say that A extends G.

One can observe that if A extends G, then the tips of G forms a cut of G ∪A.

Definition 2. Let A be a set of sites extending a DAG G. We say A completely extends G (or
A is a complete extension of G) if all the tips of G ∪ A are in A. In other word, the sites of A
confirm all the tips of G.

The local DAG of a node may contain conflicting sites. If so, the DAG is said to be forked (or
conflicting). A conflict-free sub-DAG is a sub-DAG that contains no conflicting sites.

2.3 Tip Selection Algorithm

When signing a transaction and issuing site s, a node u has to select two parents i.e., two previous
sites in its own version of the DAG (which appears to be the same as the other nodes at the
beginning of the round if nodes are synchronized and the latency if 1). According to the protocol,
this is done by executing an algorithm called the tip selection algorithm (TSA). The protocol says
that the choice of the parents must be done among the sites that have not been confirmed yet
i.e., among tips. Also, the two selected parents must not confirm, either directly or indirectly,
conflicting sites.

We denote by T the TSA, which can depend on the implementation of the protocol. For
simplicity, we assume all the nodes use the same T algorithm. As pointed by previous work [5],
the TSA is a fundamental factor of the security and the stability of the Tangle.

For our analysis, we assume T depends only on the topology of the DAG, on the weight of each
site in the DAG and on a random source. It is said to be statefull if it also depends on previous
output of the TSA by this node, otherwise we say it is stateless.

The algorithm T is executed by a node when issuing a transaction i.e., when adding a site to
the DAG. T depends on the current version of the DAG and has access to a random source (that
is assumed distinct for two different nodes). The random source is used to prevent different nodes
to select the same parents when adding a site to the DAG at the same time. When a node has to
issue two or more transactions, to avoid selecting the same parent for two consecutive transactions,
a node add the first site to its own DAG right after the algorithm T has computed the parents for

3

a transactions. Then, the next execution of T selects the two parents of the other site in the DAG
including the first site. However, two distinct nodes cannot cooperate during the same round so
two transactions issued by two different nodes may end up having one or two common parents.

Local Main DAG The local DAG of a node u may contain conflicting sites. For consistency, a
node u can keep track of a conflict-free sub-DAG mainu(G) that it considers to be its local main
DAG. If there are two conflicting sites a and ā in the DAG G, the local main DAG contains at
most one of them.

The main DAG of a node is used as a reference for its own view of the world, for instance
to calculate the balance associated with each address. Of course this view may change over the
time. When new transactions are issued, a node can change its main DAG, updating its view
accordingly (exactly like in the bitcoin protocol, when a fork is resolved due to new blocks being
mined). When changing its main DAG, a local node may discard a sub-DAG in favor of another
sub-DAG. In this case, several sites may be discarded. Of course, we want to avoid such situation
or at least ensure that the probability for a site to be discarded tends quickly to zero with time.

The tip selection algorithm decides what are the tips to confirm when adding a new site.
Implicitly, this means that the TSA decides what sub-DAG is the main DAG. In more detail, the
main DAG of a node at round r is the sub-DAG confirmed by the two sites output by the TSA.
Thus, a node can run the TSA just to know what is its main DAG and even if no site has to be
included to the DAG.

One can observe that, to reach consensus, the TSA should ensure that the main DAG of all
the nodes contain a common prefix of increasing size that represents the transactions everyone
agree on.

2.4 Weight and Hashing Power

When a transaction is signed and become a site in the DAG, a small proof of work (PoW) is done.
The difficulty of this PoW is called the weight of the site. Initially, this PoW has been added
to the protocol to prevent a node to spam a huge number of transactions. In order to issue a
site of weight w a processing power (or hashing power) proportional to w needs to be consumed.
Without loss of generality, we assume that the hashing power denotes the maximum number of
sites issued by the nodes.

With the PoW, spamming requires a large amount of processing power, which increases its
cost and reduces its utility. For simplicity that the weight of each site is 1.

Then, this notion is also used to compute the cumulative weight of a site, which is the amount
of work that has been done to deploy this site and all sites that confirm it. Similarly, the score of
a site is the sum of all weight of sites confirmed by it i.e., the amount of work that has been done
to generate the sub-DAG confirmed by it, see Figure 1 for an illustration.

2.5 Adversary Model

Among the nodes, some are honest i.e., they follow the protocol, and some are malicious and
behave arbitrarily. For simplicity, we can assume that only one node is malicious and we call this
node the adversary. The adversary is connected to the network and receive all the transactions
like any other honest node. However, it can create (and sign) transactions without broadcasting
them, called hidden transaction (or hidden sites).

When an honest node issues a new site, the two sites output by T must be two tips, at least in
the local DAG of the node. Thus, one parent p1 cannot confirm indirectly the other p2, because
in this case the node is aware of p2 having a child and is not a tip. Also, a node cannot select a
site as parent that it has already picked for a previous site, thus the number of children cannot
exceed the number of nodes in the network. This implies the following property.

4

Property is 1. In a DAG constructed with a TSA, a site cannot have one parent that confirms
the other one. Moreover, the number of children of each site is bounded by the number of nodes
in the network.

The first property should be preserved by an adversary as it is easy for the honest nodes to
check and discard a site that does not verify it.

Assiduous Honest Majority Assumption The cumulative weight and the score can be used
(among other thing) by a node to select its main DAG. However, even if it is true that a heavy
sub-DAG is harder to generate than a light one, there is no relation yet in the protocol between
the weight of sites and the hashing power capacity of honest nodes.

We define the assiduous honest majority assumption as the fact that the hashing power of
honest nodes is constantly used to generate sites and that it is strictly greater than the hashing
power of the adversary. In fact, without this assumption, it is not relevant to look at the hashing
power of the honest nodes if they do not constantly use it to generates new sites.

Thus, under this assumption, the cumulative weight of the honest DAG grows according to
the hashing power of the honest nodes, and the probability that an adversary generates more sites
than the honest nodes in a given period of time tends to 0 as the duration of the period tends to
infinity. Conversely, without this assumption, an adversary may be able to generates more sites
than the honest nodes, even with less available hashing power.

In the Tangle white paper [5] it is mentioned that, if the tip selection algorithm is a simple
random tip selection (select two non-conflicting tips randomly), then there should be an assiduous
honest majority to prevent an attacker from performing a double-spending attack. However,
another tip selection algorithm called Markov Chain Monte Carlo (MCMC) is presented, suggesting
that the assiduous honest majority assumption is no more necessary to prevent a double spending
attack. To close this discussion, we show in this paper that in a trustless network, and under
reasonable assumptions about the protocol, the assiduous honest majority assumption is necessary.

3 Average Number of Tips and Confirmation Time

In this section we study the average number of tips depending on the rate of arrival of new sites.
The Tangle white paper [5] contains some errors that have been confirmed in a series of simulation
done by [6].

In this section, like in previous analysis [5], we assume that tip selection algorithm is the simple
random tip selection that select two tips uniformly at random. Moreover, to be more general, we
consider that each site takes h rounds to be received by all the nodes. h can be seen as the latency
of the network.

We denote by N(t) the number of tips at time t and λ(t) the number of sites issued at time
t. One can assume λ(t) follow a Poisson distribution of parameter λ. Each new site confirms two
tips and we denote by C(t) the number of sites confirmed at time t, among those confirmed sites,
Ctips(t) represents the number of tips i.e., the number of sites that are confirmed for the first time
at time t. Due to the latency, if h > 1, a site can be selected again by the TSA. We have:

N(t) = N(t− 1) + λ(t)− Ctips(t)

Like in the previous work, we assume that the model converges to a stationary state and we look
only at the average values of the variables. The convergence might be justified by the fact that
if N(t − 1) is above average, the tip selection algorithm will likely select more than λ(t) tips,
hence decreasing the number of tips. Conversely, if N(t− 1) is below average, the number of tips
increases.

In the stationary state, we can assume for simplicity that exactly λ sites are issued, so that

N = N − λ+ Ctips (1)

5

Where N and Ctips are respectively the average number of tips and the average number of con-
firmed tips at a given round. So we want λ = Ctips. Of course the number of selected tips Ctips
depends on h and on the number of tips in the previous round N .

The following theorem shows the exact like between N , λ and h, and is is used to compute the
values of Table 1 that shows several approximate values of N for different values of h.

Theorem 1. In the stationary state, the average number of tips N is solution to the following
equation:

1

N2λ

N−C∑
i=0

N !

i!

{
2λ

N − i

}
=

1

2
where C = λ+

λ2(h− 1)

N

where h is the latency and λ is the average number of new sites issued every round.

Proof. To better understand the general case, we start with h = 1. Then we have Ctips = C. We
want the average number of tips N such that the number C of tips selected by the TSA is λ in
average. To solve the equation C = λ, we view it as a “balls into bins” problem [7] where bins
are tips and a ball is thrown in a bin if the tip is selected by the TSA. The number of selected
tips corresponds to the number of non-empty bins after throwing 2λ balls into N bins. Let now
calculate the probability that the number of non-empty bins is at least λ.

All possible outcomes have the same probability 1/N2λ to occur. Among all those outcomes,
the number of ways one can obtain exactly i empty bins is exactly

N !

i!

{
2λ

N − i

}
Where

{
2λ
N−i

}
= S(N−i)2λ is a Stirling number of the second kind representing the number of ways

to partition a set of 2λ into N − i non-empty sets. Thus, the probability P (N, 2λ, λ) to have more
than λ non-empty bins is exactly

P (N, 2λ, λ) =
1

N2λ

N−λ∑
i=0

N !

i!

{
2λ

N − i

}
The stability of the equation (1) occurs when P (N, 2λ, λ) = 1/2, which occurs for N less

than 1.258λ. A more complete analysis should be done in order to have an exact value, but our
numerical approximation shows that this bound is true for all values of λ (a very little improvement
might be done when λ is large). One can observe than if P (N ′, 2λ, λ) ≥ 1/2, then N ≤ N ′, thus
the value 1.258λ is an upper bound for N .

When h > 1, then Ctips ≤ C. In this case, part of the site selected by the TSA are already
selected in past rounds. When stability is reached, Ctips = λ. Among the N visible tips, λ(h− 1)
of them are not tips anymore, so there is a proportion N

N+λ(h−1) of sites that are still tips. Since

in average the proportion of selected tips compared to selected sites is the same, we have:

Ctips = λ = C
N

N + λ(h− 1)

which gives

C = λ+
λ2(h− 1)

N

By the same analysis as the case h = 1 we give the probability P (N, 2λ,C) to have more than

C = λ+ λ2(h−1)
N non-empty bins is exactly

P (N, 2λ,C) =
1

N2λ

N−C∑
i=0

N !

i!

{
2λ

N − i

}
(2)

The stationary state of equation (1) is obtain for a value N that verifies P (N, 2λ,C) = 1/2.

6

h 1 2 3 4 5 10
N 1.255λ 2.58λ 3.71λ 4.85λ 5.89λ 11.12λ

Conf 1.255 2.58 3.71 4.85 5.89 11.12

Table 1: An upper bound on the average number of tips N depending on the latency h and on
the number of new sites per round λ. Conf is the Expected number of rounds before the first
confirmation. Those values are approximations of N such that P (N, 2λ,C) ≥ 1/2 obtained from
equation (2). The approximation may not be true for small value of λ (see figure 3).

0 20 40 60 80 100 120 140 160 180 200
0.4

0.6

0.8

1

1.2

1.4

λ

C
on
f

1.255

Figure 2: Expected number of round before the first confirmation, depending on the arrival rate
of transaction, when h = 1. We see that 1.255 is an upper bound. Recall that λConf refers to
the average number of tips at a given time.

Approximate values for such N are given in table 1. The value N = 1.258λ when h = 1 is
consistent with the value found by simulations in previous work [6].

Now that we have the average number of tips, the average confirmation time Conf of a tip
is simply given by the fact that, at each round, a proportion λ/N of tips are confirmed. So
Conf = N/λ rounds are expected before a given tip is confirmed.

4 The Mirror Attack

Our attack is based on a double spending attack i.e., the adversary signs and broadcast a transac-
tion to transfer some funds to a seller to buy a good or a service, and when the seller gives the good
(he consider that the transaction is finalized), the adversary broadcast a transaction that conflicts
the first one and broadcast other new transactions in order to discard the first transaction. When
the first transaction is discarded, the seller is not paid anymore and the funds can be reused by
the adversary.

The original motivation for our attack is as follow: after the initial transaction to the seller,
the adversary generates the same sites as the honest nodes, forming a sub-DAG with the same
topology as the honest sub-DAG (but including the conflicting transaction), hence the name mirror
attack. Having no way to tell the difference between the honest sub-DAG and the adversarial sub-

7

0 20 40 60 80 100 120 140 160 180 200
1.4

1.6

1.8

2

2.2

2.4

2.8

λ

C
on
f

2.58

Figure 3: Expected number of round before the first confirmation, depending on the arrival rate
of transaction, when h = 2. We see that 2.59 is an upper bound when ignoring small values of λ.
Recall that λConf refers to the average number of tips at a given time.

DAG, the latter will be selected by the honest nodes at some point. This approach may not work
if the latency of the network is high, because the sub-DAG of the adversary is always shorter
than the honest sub-DAG, which is potentially detected by the honest nodes. To counter this,
the adversary can generate a sub-DAG that has not exactly the same topology, but that has the
best possible topology for the tip selection algorithm. The adversary can then use all its available
hashing power to generate this conflicting sub-DAG that will at some point be selected by the
honest nodes. We keep the name mirror attack from the original motivation behind it.

For this attack we use the fact that a TSA selects two tips that are likely to be selected by the
same algorithm thereafter. For simplicity we captured this with a stronger property: the existence
of a maximal deterministic TSA.

Definition 3 (maximal deterministic tip selection algorithm). A given TSA T has a maximal
deterministic TSA Tdet if Tdet is a deterministic TSA and for any DAG G, there exists NG ∈ N
such that for all n ∈ N the following property holds:

Let Adet be the extension of G obtained with NG + n executions of Tdet. Let A be an arbitrary
extension of G generated with T of size at most n, conflicting with Adet, and let G′ = G∪A∪Adet.
We have:

P(T (G′) ∈ Adet) ≥ 1/2

Theorem 2. Without the assiduous honest majority assumption, and if the TSA has a maximal
deterministic tip selection, the adversary can discard one of its transaction that has an arbitrary
cumulative weight.

Proof. Without the assiduous honest majority assumption, we assume that the adversary can
generate strictly more sites than the honest nodes. Let W be an arbitrary weight. One can see W
has the necessary cumulative weigh a given site should have in order to be considered final. Let
G0 be the common local main DAG of all node at a given round r0. At this round our adversary
can generate two conflicting sites confirming the same pair of parents. One site a is sent to the
honest nodes and the other ā is kept hidden.

8

G

Gtips

A

Adet

increase the weight

increase the

of children

Figure 4: A and Adet are two possible extensions of G. The rectangle site conflicts with all site
in Adet so that when executing the TSA on G ∪ A ∪ Adet, tips either from A or from Adet are
selected. The strategy to construct Adet can be either to increase the number of children of Gtips
or to increase their weight ; both ways are presented here.

The adversary can use Tdet the maximal deterministic TSA of T to generate continuously
(using all its hashing power) sites extending G ∪ {ā}. While doing so, the honest nodes extend
G ∪ {a} using the standard TSA T . After rW rounds, it can broadcast all the generated sites to
the honest nodes. The adversary can choose rW so that (i) the probability that it has generated
NG more sites than the honest nodes is sufficiently high, and (ii) transaction a has the target
cumulative weight W .

After receiving the adversarial extension, by definition 3, honest nodes will extend the ad-
versarial sub-DAG with probability greater than 1/2. In expectation, half of the honest nodes
start to consider the adversarial sub-DAG as their main DAG, thus the honest nodes will natu-
rally converge until they all chose the adversarial sub-DAG as their main DAG, which discard the
transaction a.

If the bandwidth of each channel is limited, then the adversary can start broadcasting the sites
of its conflicting sub-DAG at round rW , at a rate two times greater than the honest nodes. This
avoids congestion, and at round rW +rW /2 all the adversarial sub-DAG is successfully received by
the honest nodes. Due to this additional latency, the number of sites in the honest sub-DAG might
still be greater than the number of sites in the adversarial sub-DAG, so the adversary continues
to generate and to broadcast sites extending its conflicting sub-DAG and at round at most 2rW ,
the adversarial extension of G received by the honest nodes has a higher number of sites than the
honest extension.

So the same property is true while avoiding the congestion problem.

Now we have our main theorem, we show that any TSA defined in the Tangle white paper has
a corresponding maximal deterministic TSA. To do so we can see that to increase the probability
for the adversarial sub-DAG to be selected, the extension of a DAG G obtained by the maximal
deterministic TSA should either increase the weight or the number of direct children of the tips of G
as shown in Figure 4. We now prove that the three TSA presented in the Tangle white paper [5], (i)
the random tip selection, (ii) the MCMC algorithm and (iii) the Logarithmic MCMC algorithm, all
have a maximal deterministic TSA, which implies that the assiduous honest majority assumption
is necessary when using them (recall that we do not study the sufficiency of this assumption).

4.1 The Random Tip Selection Algorithm

The random tip selection algorithm is the simplest to implement and the easiest to attack. Since
it chooses the two tips uniformly at random, an attacker just have to generates more tips than

9

the honest nodes in order to increase the probability to have one of its tips selected.

Lemma 1. The Random TSA has a maximal deterministic TSA.

Proof. For a given DAG G the maximal deterministic Tdet always chooses as parents one of the l
tips of G. So that, after n+ l newly added sites Adet, the tips of G∪Adet are exactly Adet and no
other extension of G of size n can produce more than n + l tips so that the probability that the
random TSA select a tip from Adet is at least 1/2.

Corollary 1. Without the assiduous honest majority assumption, the Tangle with the Random
TSA is susceptible to double-spending attack.

4.2 The MCMC Algorithm

The MCMC algorithm is more complex than the random TSA. It starts by initially put a fixed
number of walker on the local DAG. Each walker performs a random walk towards the tips of the
DAG with a probabilistic transition function that depends on the cumulative weight of the site it
is located to and its children. In more details, a walker at a site v has a probability pv,u to move
to a child u with

pv,u =
exp(−α(w(v)− w(u)))∑
c∈Cv

exp(−α(w(v)− w(c))
(3)

Where the set Cv is the children of v, and α > 0 is a parameter of the algorithm.
The question to answer in order to find the maximal deterministic TSA of MCMC algorithm

is: what is the best way to extend a site v to maximize the probability that the MCMC walker
chooses our sites instead of another site. The following Lemma shows that the number of children
is an important factor. This number depends on the value α.

Lemma 2. Suppose a MCMC walker is at a site v. There exists a constant Cα such that if v has
Cα children of weight n, then, when extending v with an arbitrary set of sites H of size n, the
probability that the walker move to H is at most 1/2.

Proof. When extending v with n sites, one can choose the number h of direct children, and then
how the other sites extends those children. There are several ways to extends those children which
changes their weights w1, w2, . . . , wh. The probability pH for a MCMC walker to move to H is
calculated in the following way:

SH =

h∑
1

exp(−α(W − wi))

SH = Cαexp(−α(W − n))

S = SH + SH

pH = SH/S

The greater the weight the greater the probability pH . Adding more children, might reduce
their weights (since H contains only n sites). For a given number of children h, there are several
way to extends those children, but we can arrange them so that each weight is at least n− h+ 1
by forming a chain of length n − h and by connecting the children to the chain with a perfect
binary tree. The height li of a children i gives it more weight. So that we have wi = n − h + li.
A property of a perfect binary tree is that

∑h
1 2li = 1. We will show there is a constant Cα such

that for any h and any l1, . . . , lh, with
∑h

1 2li = 1, we have

10

SH ≥ SH

Cα exp(−α(W − n)) ≥
h∑
i=1

exp(−α(W − wi))

Cα ≥
h∑
i=1

exp(−α(h− li)) (4)

Surprisingly, one can observe that our inequality does not depend on n, so that the same is true
when we arrange the sites when extending a site v in order to increase the probability for the
walker to select our sites.

Let fh : (l1, . . . , lh) 7→ e−αh
∑h

1 exp(αli). So the goal is to find an upper bound for the function
fh that depends only on α.

The function fh is convex (as a sum of convex functions), so the maximum is on the boundary
of the domain, which is either

(l1, . . . , lh) = (1, 2, . . . , h)

or
(l1, . . . , lh) = (dlog(h)e, . . . , dlog(h)e, blog(h)c, . . . , blog(h)c)

For simplicity, let assume that h is a power of two so that the second case is just ∀i, li = log(h).
In the first case we have

fh(1, . . . , h) = exp(−αh)
exp(α(h+ 1))− exp(−α)

exp(−α)− 1
=

exp(α)− exp(−α(h+ 1))

exp(−α)− 1

which tends to 0 when h tends infinity, so it admits a maximum C1
α

In the second case, we have

fh(1, . . . , h) = exp(−αh)h exp(α log(h))

which again tends to 0 when h tends infinity, so it admits a maximum C2
α By choosing Cα =

max(C1
α, C

2
α) we have the inequality (4) for any value of h.

Lemma 3. The MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips.
Let T be the number of tips times the number Cα defined in Lemma 2. The T first executions

of Tdet select a site from Gtips (as both parents) until all site from Gtips as exactly Cα children.
The next executions of Tdet selects two arbitrary tips (different if possible). After T executions,

only one tip remains and the newly added sites form a chain.
Let NG = 2T . NG is a constant that depends only on α and on G. After NG + n added sites,

each site in Gtips has a Cα children with weight at least n. Thus, by Lemma 2, a MCMC walker
located at a site v ∈ Gtips moves to our extension with probability at least 1/2. Since this is true
for all sites in Gtips and Gtips is a cut. All MCMC walker will end up in Adet with probability at
least 1/2.

One can argue that this is not optimal and we could have improved the construction of the
extension to reduce the number of sites, but we are mostly interested here in the existence of such
a construction. Indeed, in practice, the probability for a walker to move to our extension would
be higher as the honest sub-DAG A is not arbitrary, but generated with the TSA. Our analyze
shows that even in the worst configuration, the adversary can still generate an extension with a
good probability of being selected.

Corollary 2. Without the assiduous honest majority assumption, the Tangle with the MCMC
TSA is susceptible to double-spending attack.

11

4.3 The Logarithmic MCMC Algorithm

In the Tangle white paper, it is suggested that the MCMC probabilistic transition function can
be defined with the function h 7→ h−α = exp(−α ln(h)). In more details, a walker at a site v has
a probability pv,u to move to a child u with

pv,u =
(w(v)− w(u))−α∑
c∈Cv

(w(v)− w(c))−α
(5)

Where the set Cv is the children of v, and α > 0 is a parameter of the algorithm. The IOTA
implementation currently uses this function with α = 3.

With this transition function, the number of children is more important than their weight.

Lemma 4. The logarithmic MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips.
Let T be the number of tips.
Tdet always selects two sites from Gtips in a round-robin manner. After kT executions (k ∈ N),

each site from Gtips has 2k children.
Let n be the number of sites generated with Tdet and A an arbitrary extension of G. Let

v ∈ Gtips and Cv be the number of children of v that are in A and Cdet = 2n/T be the number of
children of v generated by Tdet.

With w(v) the weight of v, we have that w(v) ≤ 2n and Cdet ≤ w(v) − n ≤ n Let p be the
probability that a walker located at v chooses a site generated by Tdet. We have

p ≥ Cdet(w(v)− 1)−α

Cv(w(v)− n)−α

≥ Cdet(2n)−α

Cv(Cdet)−α
=

Cdet
CvTα

= 2n
T 1−α

Cv

With T a constant and Cv bounded, we have that p tends to infinity as n tends to infinity. This
is true for each site of Gtips, so after a given number of generated site NG, the probability that a
LMCMC walker located at any site of Gtips moves to a site generated by by Tdet is greater than
1/2.

Corollary 3. Without the assiduous honest majority assumption, the Tangle with the Logarithmic
MCMC TSA is susceptible to double-spending attack.

5 Discussion

5.1 Sparse Network

The case of sparse networks intuitively gives more power to the adversary as it is more difficult
for the honest nodes to coordinate. Let assume that the communication graph is arbitrary. It can
be a geometric graph (eg. a grid), a small-world graph with a near constant diameter, or anything
else. In order for the protocol to work properly, we assume that for each link between two nodes,
there is enough bandwidth to send all the sites generated by the honest nodes and that the usage
of each link is a constant fraction of its available capacity. For simplicity we can assume that no
conflict occurs from the honest nodes so that, without adversary, the local DAG of each node is
its main DAG. Due to multi-hop communications, the local DAGs of the honest nodes may differ
but only with respect to the sites generated during the last D rounds, where D is the diameter of
the communication graph.

Take an arbitrary node u in this graph. We connect our adversary to node u, so that every
sites received by u at round r is received by our adversary at round r + 1.

12

In this arbitrary network, the attack is exactly the same, except for the number of rounds rW
that the adversary waits before revealing the conflicting sub-DAG. Indeed, rW should be greater
to take into account the propagation time and ensure that that the first adversarial site a has
a cumulative weight greater than W in all the honest nodes (typically we should wait D more
rounds compared to the previous case). As in the previous case, the adversary can broadcast its
conflicting sub-DAG while ensuring not to induce congestion, for instance, at a rate two times
greater than the honest. The topology of the network does not change the fact that after at most
2rW +D rounds, all the honest nodes have a greater probability to choose the adversarial sub-DAG
for their next transactions.

5.2 Trusted Nodes

The use of trusted nodes is what makes IOTA currently safe against this kind of attacks. Indeed,
a coordinator node regularly add a site to the DAG, confirming an entire conflict-free sub-DAG.
Trusted sites act like milestones and any site confirmed by a trusted site is considered irreversible.
However if the trusted node is compromised or is offline for too long, the other nodes are left alone.

The current implementation of IOTA uses a trusted node called the coordinator and plans to
either remove it, or replace it by a set of distributed trusted nodes.

One can observe that the crypto-currency Byteball [8] uses a special kind of trusted nodes
called witnesses. They are also used to resolve conflicts in the DAG.

An important question could be: is the use of trusted node necessary to secure a distributed
ledger based on a DAG?

5.3 Avoiding Forks

In the current protocol, conflicting sites cannot be confirmed by the same site. Part of the
community already mentioned that this can cause some problem if the latency is high (i.e., if
diameter of the communication graph is large). Indeed, by sending two conflicting sites to two
different honest nodes, half of the network can start confirming one transaction, and the other half
the other transaction. When a node finally receives the two conflicting transactions (assuming
that the convergence of is instantaneous) a single site will be assumed correct and become part of
all the main DAG of all the honest node. However all the sites confirming the other conflicting site
are discarded, resulting in wasted hashing power and increase in confirmation time for those site
as a reattachment must occur. The cost for the adversary is small and constant and the wasted
hashing power depends on the maximum latency between any two nodes.

On way to avoid this is to include conflicting sites in the DAG (like in the Byteball protocol [8]
for instance), by issuing a site confirming the two conflicting sites and containing the information
of what site is considered valid and what site is considered invalid. This special site called decider
site would be the only site allowed to confirm directly or indirectly two conflicting sites. This
has the advantage that all the site confirming the invalid one remains valid and do not need to
be reattached. However, the same thing can happen if the adversary send two conflicting decider
sites to two end of the network. But again, a decider site could be used to resolve any kind of
conflict, including this one. Indeed, this may seems like a circular problem that potentially never
ends, but every time a decider is issued, a conflict is resolved and the same conflict could have
happened even without the decider site. So having decider site should no change the stability of
the Tangle and only help avoiding reattaching sites.

6 Conclusion

We presented a model to analyze the Tangle that is more precise than in previous work and we
used it to study the average confirmation time and the average number of unconfirmed transaction
at any given round.

13

Then, we defined the notion of assiduous honest majority that captures the fact that the
honest nodes have more hashing power than the adversarial nodes and that all this hashing power
is constantly used to create transactions. We proved that for any tip selection algorithm that has a
maximal deterministic tip selection (which is the case for all currently known TSA), the assiduous
honest majority assumption is necessary to prevent a double-spending attack on the Tangle.

Our analyze shows that honest nodes cannot stay at rest, should be continuously sign transac-
tions (even empty ones), and use all their hashing power to increase the weight of their local main
sub-DAG. If not, their hashing power cannot be used to measure the security of the protocol, like
we see for the Bitcoin protocol. Indeed, having a huge number of honest nodes with a very large
amount of hashing power cannot prevent an adversary from attacking the Tangle if the honest
nodes are not using this hashing power. This conclusion may seem intuitive, but the fact that it
is true for all tip selection algorithms (that have a deterministic maximal TSA) is something new
that have not been proved before.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of
faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980. [Online]. Available:
http://doi.acm.org/10.1145/322186.322188

[3] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with
one faulty process,” Journal of the ACM (JACM), vol. 32, no. 2, pp. 374–382, 1985.

[4] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and appli-
cations,” in Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2015, pp. 281–310.

[5] S. Popov, “The tangle. white paper,” 2016. [Online]. Available: https://iota.org/
IOTA Whitepaper.pdf

[6] B. Kuśmierz, “The first glance at the simulation of the tangle: discrete model,” 2016.
[Online]. Available: http://iota.org/simulation tangle-preview.pdf

[7] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and prob-
abilistic analysis. Cambridge university press, 2005.

[8] A. Churyumov, “Byteball: a decentralized system for transfer of value,” 2016. [Online].
Available: https://byteball.org/Byteball.pdf

14

http://doi.acm.org/10.1145/322186.322188
https://iota.org/IOTA_Whitepaper.pdf
https://iota.org/IOTA_Whitepaper.pdf
http://iota.org/simulation_tangle-preview.pdf
https://byteball.org/Byteball.pdf

	Introduction
	Model
	The Network
	The DAG
	Tip Selection Algorithm
	Weight and Hashing Power
	Adversary Model

	Average Number of Tips and Confirmation Time
	The Mirror Attack
	The Random Tip Selection Algorithm
	The MCMC Algorithm
	The Logarithmic MCMC Algorithm

	Discussion
	Sparse Network
	Trusted Nodes
	Avoiding Forks

	Conclusion

