
HAL Id: hal-01716067
https://hal.science/hal-01716067v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint selection in metric learning
Hoel Le Capitaine

To cite this version:
Hoel Le Capitaine. Constraint selection in metric learning. Knowledge-Based Systems, 2018,
�10.1016/j.knosys.2018.01.026�. �hal-01716067�

https://hal.science/hal-01716067v1
https://hal.archives-ouvertes.fr

Constraint Selection in Metric Learning

Hoel Le Capitaine

Ecole Polytechnique de Nantes, LS2N UMR CNRS 6004, FRANCE

Abstract

A number of machine learning and knowledge-based algorithms are using a metric, or a distance,
in order to compare individuals. The Euclidean distance is usually employed, but it may be more
efficient to learn a parametric distance such as Mahalanobis metric. Learning such a metric is
a hot topic since more than ten years now, and a number of methods have been proposed to
efficiently learn it. However, the nature of the problem makes it quite difficult for large scale
data, as well as data for which classes overlap. This paper presents a simple way of improving
accuracy and scalability of any iterative metric learning algorithm, where constraints are obtained
prior to the algorithm. The proposed approach relies on a loss-dependent weighted selection of
constraints that are used for learning the metric. Using the corresponding dedicated loss function,
the method clearly allows to obtain better results than state-of-the-art methods, both in terms of
accuracy and time complexity. Some experimental results on real world, and potentially large,
datasets are demonstrating the effectiveness of our proposition.

1. Introduction

The concept of distance, and more generally of norm, as well as the notion of similarity, are
essentials in machine learning, data mining and pattern recognition methods, and more generally
in all applications where data is used for analysis and decision making. In particular, observa-
tions are grouped together depending on this measure in clustering, or compared to prototypes
in classification. However, it is also well known that these measures are highly dependent of the
data distribution in the feature space [29]. Historically, methods that are considering this distri-
bution, or this manifold, into account are unsupervised (i.e. no class labels are available). Their
objective is to project the data into a new space (whose dimension may be lower, for dimen-
sionality reduction, or potentially larger, through kernelization) in which usual machine learning
methods are used. The first, most established and widely used of these methods is certainly the
Principal Component Analysis. In this kind of approach, called manifold learning, the objective
is to preserve the geometric properties of the original feature space while decreasing its dimen-
sion so as to obtain a useful projection of the data in a lower dimensional manifold, refer to e.g.
MDS, ISOMAP, LLE, SNE (see [31] and references therein), or more recently t-SNE [30], a
Student-based variation of SNE.

Thereafter, class label information have been used in order to guide this projection, partic-
ularly by focusing on easing the prediction task (see e.g. Fisher linear discriminant analysis

Email address: hoel.lecapitaine@univ-nantes.fr (Hoel Le Capitaine)
Preprint submitted to Elsevier March 9, 2017

and its variants). Here again, the objective is to project the data into a new space that is linear
combination of the original features.

More recently, researchers tried to directly learn the distance (or similarity) measure in the
original feature space, without projection.1

Figure 1: Initial data set where three classes (denoted as red, blue and yellow circles) are overlapping (up), and projected
data set where discrimination is easier (bottom).

As opposed to manifold learning, which is unsupervised, metric learning uses some back-
ground (or side) information. For instance, in the seminal paper of Xing et al. [35], the metric
learning problem has been formulated as an optimization problem with constraints. The basic
assumption behind this formulation is that the distance between similar objects should be smaller
than the distance between different objects. Therefore, we generally consider whether pairs or
triplets of observations as the constraints of the optimization problem. More formally, given
two observations xi and xj lying in Rp, one wants to minimize the distance d(xi,xj) if these
two observations are considered as similar, and maximize the distance if they are considered as
dissimilar [35]. Alternatively, if the constraints are under the form of triplets of observations,
we may minimize the distances d(xi,xj) between similar objects and maximize the distances
d(xi,xk) between dissimilar objects, as in [5].

Depending on the application, this concept of similar and dissimilar objects can be obtained
through their class labels for supervised problems, or with must-link and cannot-link, or side
information for semi-supervised problems [35]. This information can also be obtained interac-
tively with the help of the user, where online learning algorithms are therefore well suited for
this kind of application.

Due to the ever growing size of available data sets, online metric learning has also received
a lot of interest. As opposed to batch learning where the entire learning set is available, online

1We will see that in fact, using a Mahalanobis distance is equivalent to perform a linear projection of the data, and
then compute the Euclidean distance in this new space.

2

learning processes one observation (or pairs, triplets) at a time. Based on the output of each
iteration, these approaches rely on getting a feedback of the quality of the metric (for instance a
specified loss), and updating the parameters accordingly. This process is repeated until conver-
gence of the metric. The results given by these methods are not as good as batch algorithms, but
allows to tackle larger problems [3].

The vast majority of metric learning approaches are using, as metric, the squared Maha-
lanobis distance between two p-dimensional objects xi and xj defined by

d2A(xi,xj) = (xi − xj)
TA(xi − xj) (1)

where A is a p × p positive semi-definite (PSD) matrix. Note that if A = I , d2A reduces to the
squared Euclidean distance. In this setting, the learning task consists in finding a matrix A that is
satisfying some given constraints. In order to ensure that (1) defines a proper metric (i.e. a binary
function holding the symmetry, triangle inequality and identity properties), A must remain PSD.
Note that in the following, we denote this distance as dA(xi,xj). Note also that the matrix A is
often the inverse covariance matrix of the data X = {x1, · · · ,xn}.

In practice, it may be intractable, so that several solutions have been proposed. The first
one consists in relaxing the metric constraints. For example, in [3], the authors use a bilinear
similarity function defined by s(xi,xj) = xTi Axj . In this specific case, A is not required to be
PSD, so that optimization is facilitated.

Another solution consists in considering a factorization of A as LTL. This decomposition
presents two major advantages over A. First, the PSD constraint on A is ensured and second,
one can project the data into lower dimensional spaces by using the projection matrix L. In
particular, if the rank of the matrix A is k, then the matrix L ∈ Rk×p is used to project the data
into a k-dimensional space (k < p). Indeed, some simple algebraic manipulations show that one
can write d2A(xi,xj) as ‖Lxi−Lxj‖2. This projection, similarly to manifold learning, allows to
better separate the data for a classification task, see an example in Figure 1. In this sense, metric
learning can also be seen as a supervised dimensionality reduction technique.

One of the most important step in metric learning is to define the constraints with respect to
the available information (class labels, relative constraints). In particular,

The vast majority of learning algorithms are choosing the constraints by randomly selecting
pairs (or triplets) of observations that satisfy the constraint, and then feed this pair (triplet) as a
constraint into the learning process. However, such random selection have several drawbacks.
First it may not focus on the most important regions of the feature space (e.g. boundary of the
classes), and second it remains constant over time, without taking into account the current metric.

In this paper, we propose to dynamically set the weight of constraints as a function of the cur-
rent metric. In particular, the importance of less satisfied constraints (controlled by a margin) are
up-weighted, and well satisfied constraints are down-weighted. Such constraints selection allows
to focus on difficult observations of the feature space (often lying at the boundaries of classes).
Note that the proposed approach is not restricted to a particular metric learning algorithm. More
precisely, it can be used in any iterative metric learning algorithm. Before presenting in detail
the proposed approach let us briefly describe some existing metric learning algorithms.

2. Metric learning and related works

The literature on metric learning is continuously growing, so that the presentation given here
only mentions the most common and well known methods. The interested reader can refer to

3

surveys on this topic, see e.g. [36, 14, 2]. The general formulation of metric learning is to find A
such that `(A, C) + λR(A), where ` is a loss function penalizing unsatisfied constraints, with C
is the set of constraints. λ is a trade-off parameter between regularization and the loss, and R(A)
is regularizer. This model is generally casted as a constraint optimization problem

minR(A)

s.t. `(A, i) ≤ 0,∀i ∈ C

Large Margin Nearest Neighbors (LMNN, [34]) is one of the early attempts to learn a Maha-
lanobis distance metric as a convex optimization problem over the set of PSD matrices. The loss
function is composed of the linear combination of two terms εpull and εpush. The first term aims
at penalizing large distances between an observation and other observations sharing the same
label, while the second term objective is to penalize small distances between observations from
different classes. The loss function is then casted as a semidefinite program. Note that there no
regularization term in the objective function so that LMNN is prone to overfitting. Another well
known problem, related to the proposed approach, is that the selection of neighbors is initially
made using Euclidean distance, which may not be adapted.

Information-Theoretic Metric Learning (ITML, [5], [11]) formulates the distance learning
problem as that of minimizing the differential relative divergence between two multivariate Gaus-
sian distribution under constraints on the distance function. In this approach, the regularizer
R(A) is taken as the LogDet divergence between successive At. The main benefit is that it en-
sures that A remains positive semidefinite. Constraints are incorporated through slack variables,
and the optimal matrix A is obtained by successive Bregman projections.

It is related to an information-theoretic approach, which mean that there exists a simple
bijection (up to a scaling function) between the set of Mahalanobis distances and the set of equal
mean multivariate Gaussian distributions.

This method can handle general pairwise constraints, meaning it is sufficiently flexible to
support a variety of constraints. ITML does not require eigenvalue computation or semi-definite
programming, which allows it to be both efficient and fast for many problems. However, the com-
putational complexity of updating in this algorithm is O(cp2), the cost increases as the square of
the dimensionality. Therefore, this method is not suitable, at least in place, for large-dimensional
datasets.

The Online Algorithm for Scalable Image Similarity (OASIS) [3] is an online dual approach
using the Passive-Aggressive [4] family of learning algorithms. It learns a similarity function
with a large margin criterion and an efficient hinge loss cost. Its goal is to learn a parameterized
similarity function of the form SW (xi,xj) = xTi Wxj . With this formulation, W plays a similar
role as A in metric learning. As in the metric learning formulation, the objective function can
be written as the sum of a regularizer on W , the Frobenius norm, and a soft margin on the loss
function.

OASIS uses a triplet (xi,xj ,xk) as the input for each iteration, meaning that class labels
are unnecessary. More precisely, only an order of preference is needed (e.g. xi closer to xj
than xk). In the proposed approach, there is no need for positive or symmetry constraints on the
learned matrix. In particular, the bilinear similarity may not satisfy triangular inequality property.
Removing this constraint allows to obtain a faster algorithm than when imposing a PSD metric
matrix. Moreover, experiments show that iterative learning converges to a matrix W that is close
to symmetry.

Some other propositions adopt different approaches. For example, Maximally Collapsing
4

Metric Learning algorithm (MCML, [10]) relies on the simple geometric intuition that an ideal
approximation of the equivalence relation is that all points of the same class should be mapped
into a single location in the feature space, and points belonging to different classes should be
mapped to other locations. In the training process, each time a new class or point is added to
the training dataset, the distance between each training point and all the other points must be
calculated. This leads to considerable computational complexity.

To deal with this problem, Mensink et al. developed a class-independent method (NCM,
[22]) that has an almost zero cost when a new class is added. The NCM model is very similar to
MCML, as it defines a distribution and makes this as close to ideal as possible. However, when
defining the distribution, NCM only uses the distances between the point and each class mean.
Therefore, new classes and training points can be added at near zero cost, with the drawback of
loosing some local information for each sample.

A proposition, given in [8], is more similar to our proposition, while presenting some dif-
ferences. In their paper, the authors propose to use an exploitation-exploration criteria based on
posterior probabilities. Therefore they impose the use of such a classifier, or at least an estima-
tion posterior probabilities. In this work, the enhancement can be used in any stochastic metric
learning algorithm, without any restriction on the kind of classifier being used. Moreover, the ap-
plication they have in mind is to classify data, so that the criterion used focus on the uncertainty
of the results provided by the classifier. In this paper, we focus on the direct loss suffered from
using only the distance, whatever the application (classification is a possible one, among others).

Finally, the authors, in [27], propose a boosting-like algorithm for metric learning. While
the idea of using the principle of boosting is similar to our proposition, they are using it to
decompose the learning process to a linear positive combination of rank-one matrices, instead of
setting local weights to individuals as in our approach. Consequently, the two methods do not
focus on the same points, and may even be used together to produce an even more fast metric
learning algorithm. The same remark applies for the bagging approach proposed in [39], where
the authors present a solution for which several metric matrices A are learnt.

In [33] and [13], the authors, relying on the theory of learning with good (dis-)similarity
functions [1], propose some other heuristics to select examples. In particular, in [33], their
approach relies on AdaBoost, where several learners are trained on different subsets. In [13], the
authors propose a selection that is promoting diversity. In practice, sample points are selected
so that the average similarity between samples belonging to different classes is small. In other
terms, it is maximizing the between-class variance of a subset of the data. In both cases, the
objective is to provide a classifier, so that it is not the same objective as our proposition.

Our approach also differs from usual instance selection for nearest neighbor algorithms [7],
where a weight is given to the distance between two samples, whereas we propose to set a weight
on samples.

In [19], the authors also consider that points near the boundaries are important in order to
obtain a good metric. More precisely, for each observation xi, the a most different observations
{xj}j=1,a of the same group, and the k most similar observations {xk}k=1,a of a different group
are used to build the constraint triplet (i, j, k). However, this selection occurs only once, at the
beginning of the process, and do not change during the learning of the metric. Consequently, this
choice of triplets may be particularly unadapted to the data (since Euclidean is used without any
prior). This approach is used in the experimental part, and is called Liu & Vemuri.

In [21], Mei et al., starting from the same observations, propose to update the triplets at
each iteration, as in our proposition. For each iteration, the performance of the current metric
is estimated from the degree of disorder implied by this metric. More precisely, the number of

5

time distance between observations from different groups are lower than the distance between
observations from the same group increases the disorder of the metric. Depending on this per-
formance, triplets are dynamically selected so that points near boundaries are used as constraint
points. This change of triplets over the iterations gives more interesting results than the triplet
selection method proposed in [18]. However, they only focus on points near boundaries; We
propose to focus on points near boundaries, while also keeping also observations that are far
from the boundaries. These observations are important because they allow to regularize the met-
ric which would be too much over fitted if only boundaries are considered. Furthermore, their
approach require the computation of the distance matrix between all sample pairs, which can
be very time consuming, and even untractable for large data sets (as mentionned in [20]). This
approach is used in the experimental part, and is called Mei et al.

Finally, note that we restrict here to the description of global metric learning algorithms: a
unique metric matrix A is learned for the entire data set. Some other approaches propose to learn
a matrix by class [34] , or multi-task metrics [23]. Naturally, the proposition could also be used
with non linear (i.e. kernelized or local metric learning, see e.g. [32], [28]) methods.

This paper is organized as follows. We first present in section 3 the problem of learning a
metric in unevenly distributed feature spaces, and propose a way to choose the samples that will
really help to learn this metric, in a fashion similar to active learning. Then we provide some
experiments on some real world data sets in section 4. Finally, some comments and perspectives
are drawn in section 5.

3. Dynamic local weights for metric learning

3.1. Problem and proposed approach
The problem of metric learning, when tackled by using a Mahalanobis distance, can be

viewed as learning a linear projection of the data, and then compute a simple Euclidean distance
in this new space. This approach gives better results than using the Euclidean distance on the
original space because of the distribution of the data. However, it generally needs heavy compu-
tation in cases where Euclidean distance could be sufficient. Indeed, the Euclidean distance gives
satisfying results in regions where classes are well separated, and a specific treatment should be
done only within the region of overlapping classes. In other words, a focus should be given on
difficult regions in terms of discrimination. The learned metric matrix should mostly depend on
the individuals that are difficult to classify. This can be done using various approaches, and we
present in this paper a proposition related to instance selection, and the principle of boosting.
The samples selected for the learning of the metric are the samples for which the classification is
the hardest.

Many propositions have been made on this topic, going from uncertainty based sampling,
query by committee, to density based sampling, see e.g. [26]. They can roughly be classified
into two categories, whether they focus on exploration, or on exploitation.

In this paper, we propose to weight each incoming observation, and to update those weights
for the next iteration according to the previous result, in an online fashion. More precisely, we
are defining a loss corresponding to the residual error committed with the current metric matrix
A. For each iteration, the loss is computed using the metric, and used for updating the weights
of each observation. As mentioned earlier, the more the error, the more the probability to be
selected during the next iteration.

There are different type of constraints in metric learning. They can be classified in the fol-
lowing four categories

6

• Class labels for which only one object xi is considered

• Pairwise labels that generally implies that similar objects belong to the same class, whereas
different objects belong to different classes. In practice, we define a set S of index pairs
(i, j) corresponding to similar objects (xi,xj), and a set D of index pairs (i, k) corre-
sponding to dissimilar objects (xi,xk). S and D are built using the class labels.

• Triplet labels as its name indicate, involves three different objects xi, xj and xk. In this
scenario, the constraint is formulated as finding a pair (i, j) in S, and another pair, with
same object i, (i, k) in D, the triplet being (i, j, k). As in the pairwise case, S and D are
built using the class labels. Expressed as a constraint, we have d(xi,xj) ≤ d(xi,xk).

• Relative labels[18] are considering four different objects xi, xj , xk and xl for writing
the constraint. In this setting, xi and xj are chosen so that their distance is lower than
the distance between xk and xl : d(xi,xj) ≤ d(xk,xl). Contrary to pairwise or triplet,
relative constraints are often used in modeling vague domain knowledge. Note however,
that if i = k or j = k, this approach reduces to a triplet one.

Naturally, for each of these approaches, the loss function should be different. In the sequel, we
propose a loss function adapted to the different type of constraints.

Depending on the framework used by the learning algorithm, this loss may be a function
of a pair of similar objects (xi,xj) ∈ S, or a function of three objects i, j, k for which we
have (i, j) ∈ S and (i, k) ∈ D. For each of the possible type of constraints, we propose a
corresponding loss function that can be used for setting the weight of each constraints during
next iteration. Let us consider the case of pair-wise constraints. The associated constraint can be
written using a bound γ on the desired distance (that should be small), for instance, let say that
dA(xi,xj) ≤ γ, because xi and xj are similar.

Therefore, we may now define the hinge loss incurred when using the current A for (xi),
denoted `i, as

`i = max(0, dA(xi,xj)− γ) (2)

Conversely, if xi and xk are in different groups, we define the corresponding loss as

`i = max(0, γ − dA(xi,xk)) (3)

In the second case, for triplet constraints, we may consider a combination of the two distances
dA(xi,xj) and dA(xi,xk). In particular, we set a margin between the two : the latter must be
larger than the former. In other terms, dA(xi,xk)− dA(xi,xj) ≥ γ. Again, using an hinge loss
formulation, we obtain

`i = max(0, γ − dA(xi,xk) + dA(xi,xj)) (4)

Finally, for relative constraints, adding the margin γ leads to consider the following loss function

`i = max(0, γ − dA(xk,xl) + dA(xi,xj)) (5)

For all losses (2), (3), (4) and (5), if the constraints are satisfied, then the loss `i is zero, and is
increasing as the difference between the actual and the expected distance is increasing. Note that
we used a margin that is equal to 1. This may be also a parameter that one can estimate during
the learning phase of the algorithm. In particular, depending on local information the required

7

margin should be adapted. Note also that in this paper, we are using a hinge loss, but other losses
such as squared hinge, exponential loss, or logistic loss may also be used.

Without any prior on the distribution of the data, we uniformly draw the samples in the fea-
ture space. As the metric is being learned, it appears that attention should not focus on certain
locations of the feature space, because discrimination in this part of this space is easy (in par-
ticular, far from the boundary between classes). On the contrary, in regions where classes are
overlapping, learning the metric becomes harder. Therefore, we should select those hard samples
more frequently, in order to learn the metric for these specific parts of the feature space. In order
to do so, we propose to modify the way sample are selected when the metric is updated according
to some incoming pairs or triplet of samples. More precisely, the new weight for the sample xi
during the next iteration t+ 1 is a function of the previously defined losses, and we define it as

wt+1
i =

1

Zt+1
wti e

(δαi) (6)

where Zt+1 is a normalization factor ensuring that
∑
i w

t+1
i = 1, and αi is defined, for normal-

ization purpose on the error committed by A, as follows

αi =
`i

dA(xi, •)
, (7)

where `i is obtained using (2), (3), (4) or (5), and • is xj for (2), and xk for (3). For (4) and (5), •
is also given by xk. A large loss `i, denoting that the constraints imposed for xi are not respected,
will increase the probability of it to be selected during the next iteration. Conversely, a null loss
implies that the weight remains constant (up to the normalization). An additional parameter, δ,
is controlling the rate change of the weights. A large value will converge very fast, but may
miss some important points. In the following, this parameter is fixed using cross-validation. The
corresponding algorithm is given in Algorithm 1. Note that without prior information, the initial
metric matrix A0 is the identity I , and the weights are uniformly distributed.

3.2. A synthetic example
In this section, we give an illustrative example on an synthetic toy dataset. The dataset is

composed of two classes (O and ◦), each following a two-dimensional normal distribution, that
are slightly overlapping in the feature space, see Fig. 2. Weights of each individual are encoded
as a color, ranging from yellow (low weight) to red (large weight). The three plots correspond
to the weights prior to the algorithm, after 50 iterations, and after 100 iterations, respectively. In
this example, the weight rate δ is set to 0.1, and the margin γ is set to 1. As expected, weights
are converging quite fast so that weights are large (i.e. red) in overlapping areas (where one
wants to focus the attention of the learning algorithm), and low (i.e. yellow) in regions where
discrimination is easy (i.e. the metric matrix is not discriminant for those individuals, and using
A as identity is sufficient to obtain good results). Note that weights do not differ that much
between 50 and 100 iterations, meaning that convergence is fast for this simple case.

4. Experiments

4.1. Experimental setup
In this section, we provide some experiments on various datasets. We present some results

on different data sets coming from the UCI repository [17]. In particular, we are considering the
8

Figure 2: A two-class (◦ and O) toy dataset, and the evolution of individual weights over iterations : initialization (left),
50 iterations (middle) and 100 iterations (right). Color corresponds to the weight, from 0 (yellow) to 1 (red). As can be
seen, the weights of samples lying near the separation of the two classes are increasing over time, while the other are
decreasing.

9

Algorithm 1 Loss-dependent Weighted Instance Selection (LWIS) for Metric Learning
Input: data X : n× p matrix,
A0 : the initial metric matrix,
δ : weight rate,
S, D : similarity and dissimilarity constraints
Output: A metric matrix
· A← A0,
· draw w as an uniform distribution on n,
repeat
· randomly sample of X according to w, to find whether
· a pair (xi,xj) of similar objects,
· a pair (xi,xk) of dissimilar objects,
· a triplet (xi,xj ,xk) such that (i, j) ∈ S and (i, k) ∈ D,
· a quadruplet (xi,xj ,xk,xl) such that d(xi,xj) < d(xk,xl)

· update A according to the algorithm in use
· compute the loss ` incurred with A on the pair using (2) and (3), or on triplet using (4), or
relative using (5)
· update weights w using (6)

until convergence of A
returns A

data set with different characteristics of dimension, volume and distributions. Numerical details
are given in the Table 1.

For comparison purpose, we consider the popular metric learning algorithm ITML [5]. We
do not provide the results of using the Euclidean distance and using the inverse of the covariance
matrix of the data for A, because they have already been unfavorably compared to ITML so that
results gain clarity without these results. Moreover, the aim of this experiment is to compare the
constraint (here triplet) selection method. Naturally, the solution proposed in this paper can be
applied to other metric learning approaches using random sampling during the learning of the
projection matrix L (or directly the positive semi-definite matrix A), e.g. [12]). Depending on
the application, the metrics of evaluation are different. In this paper, we consider the task of
classification, where we are only interested in the most similar object(s) of the query.

dataset #features #observations #classes

Balance 4 625 3
Wine 12 178 3
Iris 4 150 3
Ionosphere 34 351 2
Seeds 7 210 3
PenDigits 64 1797 10
Sonar 60 208 2
Breast Cancer 30 569 2

Table 1: The eight data sets used for experimental evaluation and a summary of their main statistics.

10

If one wants to perform the task of ranking individuals, then it should consider the k most
similar objects, and evaluate their consistency with respect to the query with usual information
retrieval metrics (e.g. precision, recall, F-measure). In all experiments, the weight learning rate
δ is set to 1, and the margin γ is set to 2. A study of the influence of the parameters δ and γ is
provided at the end of the numerical experiments.

In this experiment, we are comparing the metric obtained by the standard ITML algorithm
(denoted as Random), and how it can be improved by our proposition, noted as LWIS. In partic-
ular, we are using Algorithm 1, where the update of A is given by the ITML procedure. More
precisely, for all selection methods, the matrix A is updated by

At+1 = At + βAt(xi − xj)(xi − xj)
TAt, (8)

where (i, j) are the index of the constraint observations, and β is a projection parameter com-
puted internally (see [11] for details). Note that this algorithm takes as input pairs of observations
that are similar (S) or dissimilar (D), so that it can be referred to a pairwise label constraint. In
order to adapt this algorithm to generated triplet constraints, we adopt the following principle.
From a given triplet (i, j, k), we easily obtain two pairs (i, j) ∈ S and (i, k) ∈ D. The two other
triplet selection methods that we consider are the one proposed in [19], noted Liu & Vemuri, and
the one proposed in [21], noted Mei et al. We stress out that we are not evaluating the metric
learning algorithm, but the impact of constraint selection when using these methods, with the
baseline metric learning algorithm ITML. For each experiment, the number of constraints varies
from 50 to approximately twice the number of individuals of the data, as it is commonly done in
such evaluation, see e.g. [15] and [18].

The four approaches are then compared with two-fold cross validation, with k = 3 for k-NN
classification. Each experiment consists of 10 runs, and the mean value is indicated for each
number of constraints, as well as the confidence interval at the 95 % level for the mean value.
Running times are also indicated for each data set in the same plot, in magenta color. Results are
given in Figure 3 and Figure 4.

The code for the experiments has been implemented in Python, and test were run on a Intel
Core i7, 2.7 GHZ CPU, with 8 GB RAM.

4.2. Numerical results

The results of this first experiment clearly indicate that our method consistently results in
a better predictive accuracy than the three other approaches for all the considered data sets.
Moreover, the running (learning) time of LWIS is better than the running time of Mei et al and
Liu & Vemuri. Without any inspection during the iterations, the random selection method is
clearly faster than the three other approaches for all data sets. This can be easily explained by
the fact the constraints are randomly selected prior to the algorithm. The same behavior appears
for the method of Liu & Vemuri. Constraints are selected prior to the algorithm, according to the
position of the observations in the feature space. Therefore, during the learning process, no time
is lost for considering new weights. This is naturally not the case of our method and the method
proposed by Mei et al. The consequence is that the performance of these two approaches clearly
outperform the two others. The price of this performance for Mei et al is that it computes the
distance matrix in each iteration, therefore resulting in potentially very long running times (see
e.g. the PenDigits datasets, where the number of observations is moderately large, and see next
subsection for a detail analysis on a large scale problem). Our method also change the weights
at each iteration, but the cost is very moderate, since it only compute the distances implied in the

11

current constraint, using the current metric At. Consequently, the running time of our method is
similar to prior selection methods (Random and Liu & Vemuri).

During the experiments, it also appeared that prior selection methods (Random and Liu &
Vemuri) tends to converge in a fewer number of iterations than online selection methods (Mei
et al. and our method), and so particularly when the number of constraints is low. This can
be explained by the fact that having constant constraints implies that the same information is
used again and again, until the metric does not change anymore. On the other hand, changing
the constraints very often does not facilitate the convergence of the algorithm. Nonetheless, the
method proposed by Liu & Vemuri, takes often more time than our method, and particularly
when the size of the data increases. For instance, the running times are almost all the same,
except for the PenDigits data set, for which the number of observations is equal to 1797. In this
case, Liu & Vemuri method clearly takes more time, due to the distance matrix computation prior
to the algorithm.

It is interesting to point out that the predictive accuracy is increasing as the number of given
constraints is also increasing for all data sets except Balance-Scale and Wine. Finally, one can
note that the variance of the accuracy tends to decrease as the number of constraints increases,
whatever the selection method.

Figure 3: Results for 4 datasets : Seeds, Iris, Balance Scale and Wine, from left to right. Time values (in magenta, right
axis) do not use the same axis as accuracy (left axis).

In order to compare multiple constraint selection methods over multiple datasets, a combi-

12

Figure 4: Results for 4 datasets : Ionosphere, Pendigits, Sonar and Wisconsin Breast Cancer, from left to right. Time
values (in magenta, right axis) do not use the same axis as accuracy (left axis).

nation of a Friedman test and a Nemenyi post-hoc test is used, following the recommendations
of [6]. Let Rij be the rank of the j-th method on the i-th dataset. The Friedman test compares
the average ranks Rj over all datasets. Under the null-hypothesis, stating that two similarity
measures are equivalent, their ranks should be equal (here Rj = 2.5 for all j). The Friedman
statistic is given by

χ2
F =

12N

ns(ns+ 1)

∑
j

R2
j −

ns(ns+ 1)2

4

 (9)

where N , the number of datasets, and ns the number of constraint selection methods, are big
enough, typically N > 10 and ns > 5.

The Friedman test proves that the average ranks are significantly different from the mean
Rank Rj = 2.5 expected under the null hypothesis. The corresponding p-value is almost zero,
so that the null hypothesis is rejected at a high level of confidence.

If the null hypothesis is rejected, the Nemenyi post-hoc test is proceeded. The performance
of two similarity measures is significantly different if the corresponding average ranks differ by
at least the critical difference, defined by

CD = qα

√
nc(nc+ 1)

6N
, (10)

13

where qα values are based on the Studentized range statistic divided by
√
2, (see [6] for details).

Figure 5 illustrates the results of the Friedman test for all pairs of constraint selection methods.
As can be seen, a statistically significant difference is observed for the couples (LWIS, Liu &
Vemuri) and (LWIS, Random) (in green).

LWIS - Liu & Vemuri Mei et al. - Liu & Vemuri Random - Liu & Vemuri Mei et al. - LWIS Random - LWIS Random - Mei et al.

0
5

10

Boxplots (of the differences)

LWIS - Liu & Vemuri ; PostHoc P.value: 3e-04
Mei et al. - Liu & Vemuri ; PostHoc P.value: 0.14345
Random - Liu & Vemuri ; PostHoc P.value: 0.86598
Mei et al. - LWIS ; PostHoc P.value: 0.21259
Random - LWIS ; PostHoc P.value: 0.00533
Random - Mei et al. ; PostHoc P.value: 0.52744

Figure 5: Results of the Friedman test for all pairs of constraints selection methods

In a second experiment, we study the influence of the margin γ on the quality of the results.
In this experiment, the number of constraints is set to the number of individuals of the data
set, and the margin varies from 1 to 5. Note that, due to the formulation of the constraints of
ITML, we are using the loss defined by the Eq. (2) and (3) for the experiments. Corresponding
results (accuracy) are given in Table 2 (without confidence interval for clarity). For consistency,
each run is repeated ten times, and mean accuracy is reported in the table. Bold values indicate
the best performance obtained for each dataset. For both parameter δ and γ, the difference of
running time when changing the parameter is not statistically significant, so that it is not plotted
for clarity. From this table, one can see that setting γ to 2 generally gives good results (3 first
rank out of 8), but having γ = 3 or γ = 5 also gives interesting results (2 first rank out of 8). In
order to deeply analyze the statistical difference between the values of γ, we conduct a Friedman
test, as recommended in [6]. The Friedman statistic of these results is equal to 5.962, which is
lower than the critical value 9.200 at the level 5%. Consequently, the null hypothesis, stating that
all margins lead to the same performance, is not rejected. A change of margin is not statistically
significant. No post-hoc tests are necessary in this case.

The third experiment is about the study of the influence of the learning parameter δ. For this
experiment, we consider only three datasets (for brevity): Balance-Scale, PenDigits and Wis-
consin Breast Cancer. For each of the datasets, the parameter δ belongs to one of the following
values: 10−4, 10−3, 10−2, 10−1, 100, 2, and the corresponding average (over 10 runs) accu-
racy is reported. Corresponding results are given in Figure 6. From Figure 6, one can draw the
following comments. From the three figures, we can remark that there no δ value for which the
maximum is reached, whatever the data set. In particular, this maximum is respectively reached
for δ = 10,−2, δ = 1, and δ = 10−4. In the previous experiments, this parameter δ was con-

14

dataset Margin γ
1 2 3 4 5

Balance Scale 78.84 81.06 81.15 79.61 78.84
Wine 89.83 91.18 90.84 91.52 91.86
Iris 95.2 96 95.6 94 95.75
Ionosphere 82.65 84.48 83.18 83.83 83.29
Seeds 90.53 91.42 92.07 91.07 90.76
PenDigits 96.50 97.05 96.25 96.73 96.42
Sonar 79.71 78.80 78.44 80.43 80.97
Breast Cancer 95.34 95.01 94.68 95.27 95.01

mean 88.56 89.375 89.06 89.05 89.11

Table 2: Accuracy of LWIS as a function of the margin γ

Figure 6: An illustration of the relationship between accuracy and the learning rate δ, ranging from 10−4 to 2. Exper-
imental results based on three datasets: Wisconsin Breast Cancer (left), PenDigits (middle) and Balance Scale(right).

15

Constraints Observations Method
LWIS Random Mei et al. Liu & Vemuri

100

n = 1000 0.69 0.18 84.88 0.69
n = 5000 1.03 0.55 2124.38 11.44
n = 10, 000 1.87 1.51 8670.17 47.43
n = 20, 000 10.40 5.95 33568.96 178.31
n = 50, 000 21.67 13.89 – 868.46
n = 250, 000 109.46 89.90 – 20658.49

1000

n = 1000 6.51 5.60 100.32 5.26
n = 5000 6.23 5.19 2441.93 20.22
n = 10, 000 8.62 7.36 9694.46 62.44
n = 20, 000 15.89 11.74 38874.78 236.46
n = 50, 000 456.3 244.68 – 912.73
n = 250, 000 2017.38 1258.07 – 21549.55

Table 3: Running times, in seconds, with a varying number of observations and constraints for the Forest Cover Type
data set.

stant, and equal to δ = 1, but searching the value adapted to the data, through grid search, should
improve the result of the method. Nonetheless, one can observe that the difference between
maximum accuracy and minimum accuracy is not larger than 2%, whatever the dataset.

4.3. A large scale experiment : Forest cover type

We now conduct an experimental study on a larger data set, both in terms of volume and
dimension: Forest cover type. The observations are taken from four wilderness areas in Roosevelt
National Forest. The number of observations is n = 581012 Each observation is a 30 x 30 meter
cell, described by p = 54 geographical and physical features. The associate task is to predict the
cover type of each cell, among the seven different cover types. It is freely available from the UCI
machine learning repository [17]. In metric learning, the metric is often defined by its associated
matrix A. Since the dimension of A is a function of the dimension of the data, this parameter is
critical when it increases. In this section, we studied how the running time of LWIS scales with
the size of the training set. In particular, the number of randomly selected observations sampled
from the initial 581,012 ones varies from 1,000 to the entire data set, so that we can inspect
the impact of increasing the volume of the data. The number of constraints also varies, for the
same reasons as in the experiments of the previous subsection. A first run consists in using only
100 constraints, and then inspect the changes in a second run by using 1,000 constraints. The
corresponding results are given in Figure 7, left and right, respectively.

Here again, whatever the number of observations and the number of constraints, LWIS per-
forms better than the three other methods, closely followed by Mei et al. for a relatively small
number of observations. It shows the effectiveness of our method, even with large (in volume
and dimension) data sets. As can be observed, whatever the number of constraints, the accuracy
increases as the number of observations increases, and reach its maximum when all observations
are considered. It appears that adding constraints for this data set does not improve the perfor-
mance of nearest neighbor classification. We give in Table 3 the run times, in seconds, with a
varying number of observations and constraints for the Forest Cover Type data set.

16

Figure 7: Results of the two algorithms for the Forest Cover Type dataset. The number of constraints is set to 100 (left)
and 1000 (right).

17

Figure 8: Distribution (frequency) of the weights of constraints for the Forest Cover Type data set at different iterations.
From left to right: initialization, after 20 iterations, and after 50 iterations.

As can be seen, both Mei et al. and Liu & Vemuri approaches scale quadratically with the
number of observations, hence they are untractable for a large volume of data. As expected, the
fastest method is still the random one, and the slowest the one that is computing the distance
matrix in each iteration (Mei et al.). Naturally, when increasing the number of constraints, the
running time also increases, but the impact is not as important as one could expect.

In Figure 8, the distribution of weights along 50 iterations are given, starting from the ini-
tialization (left), after 20 iterations (middle) and after 50 iterations (right). As can be observed,
distribution starts from an uniform one, and quickly reach a bell-shaped distribution. On the last
histogram, one can see that the majority of observations get a weight around 0.0016 and 0.0017,
a few (near boundaries) points get larger weights, and the rest, considered as easy to classify,
get low weights. Note that there are no constraints with weight to zero, meaning that all the
constraints can be potentially selected.

5. Conclusion

In this paper, we presented a simple way of improving accuracy and scalability of iterative
metric learning algorithms, where constraints are obtained, or built, prior to the algorithm. The
proposed approach relies on a loss-dependent weighted selection of constraints that are used
for learning the metric. The loss depends on the current metric and evaluates the difficulty of
classification for the considered observations. By using this dedicated loss function, the method
clearly allows to obtain better results than state-of-the-art methods, both in terms of accuracy and

18

time complexity. Compared to other difficulty-based constraint selection methods, the difference
in time complexity is particularly important for large, in volume and dimension, data sets.

Among the perspectives we have in mind, let us mention the study of the convergence and
stopping criterion of the method, by the help of works on early stopping in boosting, see e.g. [38].
Furthermore, we want to work on the adaptation of this framework to online learning algorithms.
In this version, we consider a batch version where constraints are given weights, but this is
impossible for the online setting : constraints arrive one at a time. One first solution to this
problem is to locally set the importance of an incoming constraints according to the density
of loss within the neighborhoods of already considered data, or following some stream based
sampling approaches [25]. Regret bounds can be easily retrieved in this context.

Finally, in the conducted experiments, the size (in terms of volume) of the considered data
sets is rather small, with the notable exception of Forest Cover Type. We would like to conduct
some experiments and study the adaptability and the scalability of the proposed method to large
scale problems (e.g. data where the number of individuals is larger than one million, and the
number of features greater than one thousand). We will also provide a deeper study on other,
more recent, metric learning algorithms that are using random constraint selection, e.g. [18],
[24]. The same study can be conducted on random-based constraint selection for similarity
learning algorithms, as in [16] and [37], or for similarity measures dedicated to information
systems presenting data uncertainty [9].

References

[1] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity functions. Machine
Learning, 72(1-2):89–112, 2008.

[2] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 9(1):1–151, 2015.

[3] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image similarity through
ranking. The Journal of Machine Learning Research, 11:1109–1135, 2010.

[4] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-aggressive
algorithms. The Journal of Machine Learning Research, 7:551–585, 2006.

[5] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic metric learning.
In Proceedings of the 24th international conference on Machine learning, pages 209–216. ACM, 2007.

[6] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

[7] Joaquı́n Derrac, Isaac Triguero, Salvador Garcı́a, and Francisco Herrera. Integrating instance selection, instance
weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(5):1383–1397, 2012.

[8] Sandra Ebert, Mario Fritz, and Bernt Schiele. Active metric learning for object recognition. In Pattern Recognition,
pages 327–336. Springer, 2012.

[9] Carl Frelicot and Hoel Le Capitaine. Block similarity in fuzzy tuples. Fuzzy Sets and Systems, 220:53–68, 2013.
[10] Amir Globerson and Sam Roweis. Metric learning by collapsing classes. Advances in neural information process-

ing systems, pages 451–458, 2005.
[11] Prateek Jain, Brian Kulis, Jason V Davis, and Inderjit S Dhillon. Metric and kernel learning using a linear trans-

formation. The Journal of Machine Learning Research, 13(1):519–547, 2012.
[12] Rong Jin, Shijun Wang, and Yang Zhou. Regularized distance metric learning: Theory and algorithm. In Advances

in neural information processing systems, pages 862–870, 2009.
[13] Purushottam Kar and Prateek Jain. Similarity-based learning via data driven embeddings. In Advances in neural

information processing systems, pages 1998–2006, 2011.
[14] Brian Kulis. Metric learning: A survey. Foundations & Trends in Machine Learning, 5(4):287–364, 2012.
[15] Nimit Kumar and Krishna Kummamuru. Semisupervised clustering with metric learning using relative compar-

isons. Knowledge and Data Engineering, IEEE Transactions on, 20(4):496–503, 2008.
[16] Hoel Le Capitaine. A relevance-based learning model of fuzzy similarity measures. IEEE Transactions on Fuzzy

Systems, 20(1):57–68, 2012.

19

[17] M. Lichman. UCI machine learning repository, 2013.
[18] Eric Yi Liu, Zhishan Guo, Xiang Zhang, Vladimir Jojic, and Wei Wang. Metric learning from relative comparisons

by minimizing squared residual. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages
978–983. IEEE, 2012.

[19] Meizhu Liu and Baba C Vemuri. A robust and efficient doubly regularized metric learning approach. In Computer
Vision–ECCV 2012, pages 646–659. Springer, 2012.

[20] J. Mei, M. Liu, Y. F. Wang, and H. Gao. Learning a mahalanobis distance-based dynamic time warping measure
for multivariate time series classification. IEEE Transactions on Cybernetics, 46(6):1363–1374, June 2016.

[21] Jiangyuan Mei, Meizhu Liu, Hamid Reza Karimi, and Huijun Gao. Logdet divergence based metric learning using
triplet labels. In Proceedings of the Workshop on Divergences and Divergence Learning (ICML’13), 2013.

[22] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Metric learning for large scale image
classification: Generalizing to new classes at near-zero cost. In ECCV 2012, pages 488–501. Springer, 2012.

[23] Shibin Parameswaran and Kilian Q Weinberger. Large margin multi-task metric learning. In Advances in neural
information processing systems, pages 1867–1875, 2010.

[24] Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, and Hong-Jiang Zhang. An efficient sparse metric
learning in high-dimensional space via l 1-penalized log-determinant regularization. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 841–848. ACM, 2009.

[25] Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo estimation of error
reduction. ICML, Williamstown, 2001.

[26] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):1–114,
2012.

[27] Chunhua Shen, Junae Kim, Lei Wang, and Anton Van Den Hengel. Positive semidefinite metric learning using
boosting-like algorithms. The Journal of Machine Learning Research, 13(1):1007–1036, 2012.

[28] Yuan Shi, Aurélien Bellet, and Fei Sha. Sparse compositional metric learning. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2014.

[29] Amos Tversky. Features of similarity. Psychological review, 84(4):327, 1977.
[30] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. The Journal of Machine Learning

Research, 9:2579–2605, 2008.
[31] Laurens Van der Maaten, Eric O Postma, and H Jaap van den Herik. Dimensionality reduction: A comparative

review. Journal of Machine Learning Research, 10(1-41):66–71, 2009.
[32] Jun Wang, Alexandros Kalousis, and Adam Woznica. Parametric local metric learning for nearest neighbor classi-

fication. In Advances in Neural Information Processing Systems, pages 1601–1609, 2012.
[33] Liwei Wang, Cheng Yang, and Jufu Feng. On learning with dissimilarity functions. In Proceedings of the 24th

international conference on Machine learning, pages 991–998. ACM, 2007.
[34] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest neighbor classifica-

tion. The Journal of Machine Learning Research, 10:207–244, 2009.
[35] Eric P Xing, Michael I Jordan, Stuart Russell, and Andrew Y Ng. Distance metric learning with application to

clustering with side-information. In Advances in neural information processing systems, pages 505–512, 2002.
[36] Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Technical Report, Department of

Computer Science and Engineering, Michigan State University, pages 1–51, 2006.
[37] Dezhong Yao, Peilin Zhao, Chen Yu, Hai Jin, and Bin Li. Sparse online relative similarity learning. In Data Mining

(ICDM), 2015 IEEE International Conference on, pages 529–538. IEEE, 2015.
[38] Tong Zhang and Bin Yu. Boosting with early stopping: convergence and consistency. Annals of Statistics, pages

1538–1579, 2005.
[39] Peng-Cheng Zou, Jiandong Wang, Songcan Chen, and Haiyan Chen. Bagging-like metric learning for support

vector regression. Knowledge-Based Systems, 65:21–30, 2014.

20

	Introduction
	Metric learning and related works
	Dynamic local weights for metric learning
	Problem and proposed approach
	A synthetic example

	Experiments
	Experimental setup
	Numerical results
	A large scale experiment : Forest cover type

	Conclusion

