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A Coq formalisation of SQL’s execution engines

V. Benzaken É. Contejean Ch. Keller
E. Martins

CNRS, Université Paris Sud, LRI, France

Abstract
In this article, we use the Coq proof assistant to specify and verify the

low level layer of SQL’s execution engines. To reach our goals, we first
design a high-level Coq specification for data-centric operators intended
to capture their essence. We, then, provide two Coq implementations of
our specification. The first one, the physical algebra, consists in the low
level operators found in systems such as Postgresql or Oracle. The second,
SQL algebra, is an extended relational algebra that provides a semantics
for SQL. Last, we formally relate physical algebra and SQL algebra.
By proving that the physical algebra implements SQL algebra, we give
high level assurances that physical algebraic and SQL algebra expressions
enjoy the same semantics. All this yields the first, to our best knowledge,
formalisation and verification of the low level layer of an RDBMS as well
as SQL’s compilation’s physical optimisation: fundamental steps towards
mechanising SQL’s compilation chain.

1 Introduction
Data-centric applications involve increasingly massive data volumes. An impor-
tant part of such data is handled by relational database management systems
(RDBMS’s) through the SQL query language. Surprisingly, formal methods
have not been broadly promoted for data-centric systems to ensure strong safety
guarantees about their expected behaviours. Such guarantees can be obtained
by using proof assistants like Coq [25] or Isabelle [26] for specifying, proving and
testing (parts of) such systems. In this article, we use the Coq proof assistant
to specify and verify the low level layer of an RDBMS as proposed in [24] and
detailed in [15].

The theoretical foundations for RDBMS’s go back to the 70’s where re-
lational algebra was originally defined by Codd [11]. Few years later, SQL,
the standard domain specific language for manipulating relational data was de-
signed [9]. SQL was dedicated to efficiently retrieve data stored on secondary
storage in RDBMS’s, as described in the seminal work [24] that addressed the
low level layer as well as secondary memory access for such systems, known
in the field as physical algebra, access methods and iterator interface. SQL and
RDBMS’s evolved over time but they still obey the principles described in those
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works and found in all textbooks on the topic (see [15, 23, 12, 5] for instance).
In particular, the semantic analysis and logical optimisation of a SQL query
could yield an expression of an (extended) relational algebra. Then an evalu-
ation strategy for the optimised algebraic expression, called a query execution
plan (QEP) in this setting, is produced. QEP’s are composed by physical alge-
bra operators. Yet there are no formal guarantees that the produced QEP and
algebraic expression do have the same semantics. One contribution of our work
is to open the way to formally provide such evidences.

To reach our goals, we first design a high-level, Coq specification for data-
centric operators intended to capture their essence. Rather than choosing an
extended algebra such as the ones presented in [15, 23, 22], we seeked for a very
abstract, generic, thus extensible, specification as we plan to address other data
models and languages than relational ones.

We, then, provide two implementations of our specification in Coq. The
first one consists in low level operators as found in systems such as Postgresql
and described in main textbooks on the topic [15, 23]. One specificity and
difficulty lied in the fact that, when evaluating a SQL query, all those operators
are put together, and for efficiency purposes, database systems implement, as
far as possible, on-line ([19]) versions of them through the iterator interface.
At that point there is a discrepancy between the specifications that provide
collection-at-a-time invariants and the implementations that account for value-
at-a-time executions. To fill up the gap, we exhibit non trivial invariants to
prove that our on-line algorithms do implement their high-level specification.
Moreover, those operators are shown to be exhaustive and to terminate. The
second implementation is SQL algebra (syntax and semantics), an algebra that
hosts SQL. By hosting we mean that there is an embedding of SQL into this
algebra which preserves SQL’s semantics. Due to space limitations, such an
embedding is out of the scope of this paper and is described in [6]. We relate
each algebraic operator to our high level specification by proving adequation
lemmas providing strong guarantees that the operator at issue is a realization
of the specification.

Last, we formally bridge both implementations. By proving that the phys-
ical algebra implements SQL algebra, we give strong assurances that the QEP
and the algebraic expression resulting from the semantics analysis do have the
same semantics. This last step has been eased thanks to the efforts devoted to
the design of our high-level specification. All this yields the first, to our best
knowledge, formalisation and verification of the low level layer of an RDBMS as
well as SQL’s compilation’s physical optimisation: fundamental steps towards
mechanising SQL’s compilation chain.

Organisation We briefly recall in Section 2 the key ingredients of SQL com-
pilation and database engines: extended relational algebra, physical algebra
operators and iterator interface. Section 3 presents our Coq high-level speci-
fication that captures the essence of data-centric operators. In Section 4, we
formalise the iterator interface and physical algebra, detailing the necessary
invariants. Section 5 presents the formal specification of SQL algebra. We
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formally establish, in Section 6, that any given physical operator does imple-
ment its corresponding logical operator. We draw lessons, compare our work,
conclude and give perspectives in Section 7.

2 SQL’s compilation in a nutshell
Following [15] SQL’s compilation proceeds into three broad steps. First, the
query is parsed, that is turned into a parse-tree representing its structure. Sec-
ond, semantics analysis is performed transforming the parse tree into an ex-
pression tree of (extended) relational algebra. Third, the optimisation step is
performed: using relational algebraic rewritings (logical optimisation) and based
on a cost model 1, a physical query execution plan (QEP) is produced. It not
only indicates the operations performed but also the order in which they will
be evaluated, the algorithm chosen for each operation and the way stored data
is obtained and passed from one operation to another. This last stage is data
dependent.

We present the main concepts through the following example that models a
movie database gathering information about movies (relation movie), movies’
directors director, the movies they directed and relation role carrying infor-
mation about who played (identified by his/her pid) which role in a given movie
(identified by its mid). On Figure 1 we give for a typical SQL query the corre-
sponding (Postgresql)2 QEP issued as well as the AST obtained after semantic
analysis and logical optimisation.

select lastname from people p, director d, role r, movie m
where d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and

m.mid = d.mid and m.year > 1950;

5
Index Join

5
Index Join Index Scan on

movie
Index Cond: (mid = d.mid)

Filter Cond: year > 1950
5

Hash Join

(r.mid,r.pid) =

(d.mid,d.pid)

Index Scan on

people
Index Cond: (pid = d.pid)

Seq Scan on

role

Hash

(d.mid, d.pid)

Seq Scan on

director

σ
(m.mid = d.mid)

∧ year > 1950

5

movie
σ

(p.pid = d.pid)

5

people
σ

(r.mid = d.mid)

∧ (r.pid = d.pid)

5

role director

Figure 1: A typical SQL query, its QEP and logical AST.
1The model exploits system collected statistics about the data stored in the database.
2The IJ nodes are expressed in Postqresql as Nested loop combined with an Index scan

but corresponds to an index-based join.
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The leaves (i.e., relations) are treated by means of access methods such as
Seq Scan or Index Scan (in case an index is available); a third access method
usually provided by RDBMS’s is the Sort Scan which orders the elements in
the result according to a given criteria. In the example, relations role and
director are accessed via Seq Scan, whereas people and movie are accessed
thanks to Index Scan. The product of relations in the from part is reordered
and the filtering condition is spread over the relevant (sub-product of) relations.

Intuitively, each physical operator corresponds to one or a combination of
algebraic operators: σ (selection), × (product), completed with π (projection)
and γ (grouping) (see Section 5.1 for their formal semantics).

Conversely, to each operator of the logical plan, σ,×, . . ., potentially cor-
responds one or more operators of the physical plan: the underlying database
system provides several different algorithm’s implementations. For the cross
product, for instance, at least four such different algorithms are provided by
mainstream systems: Nested Loop, Index Join, Sort Merge Join and Hash
Join. For the selection operator the system may use the Filter physical oper-
ator.

The situation is made even more complex by the facts that a QEP contains
some strategy (top-down, left-most evaluation) and that some physical operators
are implemented via on-line algorithms. Hence a filtering condition which spans
over a cross-product between two operands, in an algebraic expression, may
be used in the corresponding QEP to filter the second one, by inlining the
condition for each tuple of the first operand. This is the case for instance
with the second join of Figure 1 where the second operand is an Index-Scan.
Therefore the pattern x×IJ (Index Scan y Index Cond :a = x.a′) corresponds
to σy.a=x.a′(x× y).

Unfortunately not all physical operators support the on-line approach and
materialising partial results (i.e., temporarily storing intermediate results) is
needed: the Materialise physical operator allows to express this in Postgresql
physical plans. Table 1 summarises our contributions where the colored cells
indicate the Coq specified and implemented operators.

3 A high-level specification for data-centric op-
erators

In the data-centric setting, data are mainly collections of values. Such values
can be combined and enjoy a decidable comparison. Operators allow for ma-
nipulating collections, that is to extract data from a collection according to a
condition (filter), to iterate over a collection (map), to combine two collections
(join) and, last, to aggregate results over a collection (group).

Since collections may be implemented by various means (lists with or without
dupplicates, AVL, etc), in the following we shall call these implementations
containerX’s. The content, that is the elements gathered in such a containerX,
may be retrieved with the corresponding function contentX and we also make a
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Iterator interface operators
Section 3 Section 4, φ algebra Section 5

data
centric

operators
simple index

based
sort

based
SQL

algebra

map Seq Scan
Index scan

Bitmap index scan
Sort scan r, π

join Nested loop
Block nested loop

Hash join
Index join

Sort merge join ×

filter Filter σ

group Group γ

bind Subplan env
accumulator Aggregate, Hash, Hash aggregate aggregate

Intermediate results storage operators
Materialize

Table 1: Synthesis

last assumption, that there is a decidable equivalence equivX for elements. The
function nb– occX is defined as the the number of occurrences of an element in
the contentX of a containerX modulo equivX3.

We then characterise the essence of data centric operations performed on
containers. Operators filter and map are a lifting of the usual operators on lists
to containers.
Definition is– a– filter– op

contentA contentA’ (f : A → bool) (fltr : containerA → containerA’) :=
∀ s, ∀ t, nb– occA t (fltr s) = (nb– occA’ t s) ∗ (if f t then 1 else 0).

Definition is– a– map– op contentA contentB (f : A → B) (mp : containerA → containerB) :=
∀ s, ∀ t, nb– occB t (mp s) = nb– occ t (map f (contentA s)).
Unlike the first two operators which make no hypothesis on the nature of

the elements of a containerX, joins manipulate homogeneous containers i.e., their
elements are equipped with a support supX which returns a set of attributes, and
all elements in a containerX enjoy the same supX, which is called the sort of the
container. Let us denote by A1 (resp. A2, resp. A) the type of the elements of
the first operand (resp. the second operand, resp. the result) of a join operator
j. Elements of type A are also equipped with two functions projA1 and projA2,
which respectively project them over A1 and A2.
Definition is– a– join– op sa1 sa2

contentA1 contentA2 contentA (j : containerA1 → containerA2 → containerA) :=
∀ s1 s2, (∀ t, 0 < nb– occA1 t s1 → supA1 t = sa1) →

(∀ t, 0 < nb– occA2 t s2 → supA2 t = sa2) →
((∀ t, 0 < nb– occA t (j s1 s2) → supA t = (sa1 ∪ sa2))

∧
(nb– occA t (j s1 s2) = nb– occA1 (projA1 t) s1 ∗ nb– occA2 (projA2 t) s2))

3X will be A, A’, B, according to the various types of elements and various implementations
for the collection. A particular case of nb– occX is nb– occ which denotes the number of
occurrences in a list.
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∗ (if supA t = (sa1 ∪ sa2) then 1 else 0).
Intuitively, joins allow for combining two homogeneous containers by taking

the union of their sort and the product of their occurrence’s functions.
The grouping operator, as presented in textbooks [15], partitions, using mk– g,

a container into groups according to a grouping criteria g and then discards some
groups that do not satisfy a filtering condition f. Last for the remaining groups
it builds a new element.
Definition is– a– grouping– op (G : Type) (mk– g : G → containerA → list B) grp :=
∀ (g : G) (f : B → bool) (build : B → A) (s : containerA) t,
nb– occA t (grp g f build s) = nb– occ t (map build (filter f (mk– g g s))).

All the above definitions share a common pattern: they state that the num-
ber of occurences nb– occX t (o p s) of an element t in a container built from
an operator o applied to some parameters p and some operands s, is equal to
fo,p(t, nb– occX (g t) s), where fo,p is a function which depends only on the oper-
ator and the parameters. This implies that any two operators satisfying the
same specification is– a– ...– op are interchangeable. For grouping, the situation is
slightly more subtle, however the same interchangeability property shall hold
since nb– occA t (grp g f build s)) depends only on t and contentA s for the grouping
criteria used in the following sections.

Tuning those definitions was really challenging: finding the relevant level
of abstraction for containers and contents suitable to host both physical and
logical operators was not intuitive. Even for the most simple one such as filter,
we would have expected that the type of containers should be the same for input
and output. It was not possible as we wanted a simple, concise and efficient
implementation.

4 Physical algebra
All physical operators that can be implemented by on-line algorithms rely on a
common iterator interface that allows them to build the next tuple on demand.

4.1 Iterators
A key aspect in our formalisation of physical operators is a specification of such
a common iterator interface together with the properties an iterator needs to
satisfy. We validate this interface by implementing standard iterative physical
operators, namely sequential scanning, filtering, and nested loop.

Abstract iterator interface An iterator is a data structure that iterates
over a collection of elements to provide them, on demand, one after the other.
Following the iterator interface given in [15] and in the same spirit of the for-
malisation of cursors presented in [14], we define a cursor as an abstract object
over some type elt of elements that must support three operations: next, that
returns the next element of the iteration if it exists; has– next, that checks if such
an element does exist; and reset, that restarts the cursor at its beginning. In
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Coq, this can be modelled as a record4 named Cursor that contains (at least) an
abstract type of cursors and these three operations:

Record Cursor (elt : Type) : Type :=
{ cursor : Type;

next : cursor → result elt ∗ cursor;

has– next : cursor → Prop;
reset : cursor → cursor;
[...] (∗ Some properties, see below ∗) }.

Due to the immutable nature of Coq objects, the operations next and reset
must return the modified cursor. Moreover, since next must be a total function,
a monadic construction is used to wrap the element of type t that it outputs:

Inductive result (A:Type) :=
| Result: A → result A

| No– Result: result A
| Empty– Cursor: result A.

The constructor Result corresponds to the case where an element can be
returned, and the two constructors No– Result and Empty– Cursor deal with the
cases where an element cannot be returned, respectively because it does not
match some selection condition (see Sec. 4.1) or because the cursor has been
fully iterated over.

We designed a sufficient set of properties that a cursor should satisfy in
order to be valid. These properties are expressed in terms of three high-level
inspection functions (that are used for specification only, not for computation):
collection returns all the elements of the cursor, visited returns the elements visited
so far, and coherent states an invariant that the given cursor must preserve:

Record Cursor (elt : Type) : Type := { [...]
collection : cursor → list elt;
visited : cursor → list elt;
coherent : cursor → Prop; [...] }.

Given these operations, the required properties are the following:
Record Cursor (elt : Type) : Type := { [...]

(∗ next preserves the collection ∗)
next– collection : ∀ c, coherent c → collection (snd (next c))) = collection c;
(∗ next adds the returned element to visited ∗)
next– visited– Result :
∀ a c c’, coherent c → next c = (Result a, c’) → visited c’ = a :: (visited c);

next– visited– No– Result :
∀ c c’, coherent c → next c = (No– Result, c’) → visited c’ = visited c;

4We could also use a module type, but the syntax would be heavier and less general.
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next– visited– Empty– Cursor :
∀ c c’, coherent c → next c = (Empty– Cursor, c’) → visited c’ = visited c;

(∗ next preserves coherence ∗)
next– coherent : ∀ c, coherent c → coherent (snd (next c));
(∗ when a cursor has no element left, visited contains all the elements of the collection ∗)
has– next– spec : ∀ c, coherent c → ˜ has– next c → (collection c) = (rev (visited c));
(∗ a cursor has new elements if and only if next may return something ∗)
has– next– next– neg : ∀ c, coherent c → (has– next c ←→ fst (next c) <> Empty– Cursor);
(∗ reset preserves the collection ∗)
reset– collection : ∀ c, collection (reset c) = collection c;
(∗ reset restarts the visited elements of the cursor ∗)
reset– visited : ∀ c, visited (reset c) = nil;
(∗ reset returns a coherent cursor ∗)
reset– coherent : ∀ c, coherent (reset c); [...]}.

The ...– coherent and ...– collection axioms ensure that coherent and the collection
of elements are indeed invariants of the iterator. The ...– visited axioms explain
how visited is populated. Finally, the has– next– spec axiom is the key property to
express that all the elements have been visited at the end of the iteration.

Last, we require a progress property on cursors (otherwise next could return
the No– Result value forever and still satisfy all the properties). Progress is stated
in terms of an upper bound on the number of iterations of next before reaching
an Empty– Cursor:
Record Cursor (elt : Type) : Type := { [...]

(∗ an upper bound on the number of iterations before the cursor has been fully visited ∗)
ubound : cursor → nat;
(∗ this upper bound is indeed complete ∗)
ubound– complete : ∀ c acc, coherent c → ˜ has– next (fst (iter next (ubound c) c acc)); }.

where iter f n c acc iterates n times the function f on the cursor c, returning a pair
of the resulting cursor and the accumulator acc augmented with the elements
produced during the iteration.

We will see that these properties are strong enough both to combine iterators
and to derive their adequacy with respect to their algebraic counterparts.

First instance: sequential scan The base cursor implements sequential
scan by returning, tuple by tuple, all the elements of a given relation, represented
by a list in our high-level setting. It simply maintains a list of elements still to
be visited named to– visit and its invariant is stated as:
Definition coherent (c : cursor) : Prop :=

Cursor.collection c = (rev (Cursor.visited c)) ++(to– visit c).
meaning that the collection contains the elements visited so far and the elements
that remain to be visited. A natural upper bound on the number of iterations
is the number of elements to visit:
Definition ubound (c:cursor) : nat := List.length (to– visit c).
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Second instance: filter Filtering a cursor returns the same cursor, but with
a different function next and accordingly different specification functions. Given
a property on the elements f : elt → bool, the function next filters elements of the
underlying cursor:
Definition next (c : cursor) : result elt ∗ cursor :=

match Cursor.next c with
| (Result e, c’) ⇒ if f e then (Result e, c’) else (No– Result, c’)
| rc’ ⇒ rc’
end.

This is where No– Result is introduced when the condition is not met. Accordingly,
the functions collection and visited are the filtered collection and visited of the
underlying cursor and an upper bound on the number of iterations is the upper
bound of the underlying cursor:
Definition collection (c : cursor) := List.filter f (Cursor.collection c).
Definition visited (c : cursor) := List.filter f (Cursor.visited c).
Definition ubound (q : cursor) : nat := Cursor.ubound q.

Third instance: nested loop The nested loop operator builds the cross-
product between an outer cursor and an inner cursor: the next function returns
either the combination of the current tuple of the outer cursor with the next
tuple of the inner cursor (if this latter exists) or the combination of the next
tuple of the outer cursor with the first tuple of the reset outer cursor (see Fig. 2).

Algorithm 1 Nested Loop-Join
for each tuple o ∈ O do

for each tuple i ∈ I do
Add the tuple <o,i> to visited

end for
end for

Figure 2: Nested Loop-Join

Specifying such a cursor becomes slightly more involved. For correctness,
one has to show the invariant stating that the elements visited so far contain
(i) the last visited element of the outer cursor combined with all the visited
elements of the inner cursor; and (ii) the other visited elements of the outer
cursor combined with all the collection of the inner cursor.
Definition coherent (c: cursor) : Prop :=

(∗ the two underlying cursors are coherent ∗)
Cursor.coherent (outer c)

∧
Cursor.coherent (inner c)

∧
match Cursor.visited (outer c) with
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(∗ if the outer cursor has not been visited yet, so as the inner cursor ∗)
| nil ⇒ visited c = nil

∧
Cursor.visited (inner c) = nil

(∗ otherwise, the visited elements are a partial cross−product ∗)
| el :: li ⇒ visited c = (cross (el::nil) (Cursor.visited (inner c))) ++

(cross li (rev (Cursor.collection (inner c))))
end.

where cross builds the cross product of two lists. For progress, an upper bound
for the length of this partial cross-product is needed:
Definition ubound (c:cursor) : nat :=

Cursor.ubound (inner c) +
(Cursor.ubound (outer c) ∗ (S (Cursor.ubound (Cursor.reset (inner c))))).

where a successor on the upper bound on the inner cursor has been added for
simplicity reasons. The proof of completeness is elaborate and relies on key
properties on bounds for cursors stating in particular that the bound decreases
when next is applied to a non-empty cursor:
Lemma ubound– next– not– Empty:
∀ c, coherent c → fst (next c) <> Empty– Cursor → ubound (snd (next c)) < ubound c;

Materialisation Independently from any specific operator, materialising an
iterator is achieved by resetting it, then iterating the upper bound number of
times while accumulating the returned elements. We can show the key lemma
for adequacy of operators: materialising an iterator produces all the elements
of its collection.
Definition materialize (c : cursor) :=

let c’ := reset c in List.rev (snd (iter next (ubound c’) c’ nil)).
Lemma materialize– collection c : materialize c = collection c.
We used the same technique to implement the grouping operator by, instead of
simply accumulating the elements, group them on the fly.

4.2 Index-based operators
Having an index on a given relation is modelled as a wrapper around cursors:
such a relation must be able to provide a (possibly empty) cursor for each value
of the index. The main components of an indexed relation are: (i) a type
containers of the internal representation of data (which can be a hash table, a B-
tree, a bitmap, . . . ), (ii) a function proj, representing the projection from tuples
to their values on the attributes enjoying the index, (iii) a comparison function P
on these attributes (which can be an equality for hash-indices, a comparison for
tree-based indices, . . . ) and (iv) an indexing function i that, given a container
and an index, returns the cursors of the elements of the container matched by
the index (w.r.t. P). This is implemented as the following record:
Record Index (elt eltp : Type) : Type :=
{ containers : Type; (∗ representation of data ∗)

proj : elt → eltp; (∗ projection on the index ∗)
P : eltp → eltp → bool; (∗ comparison between two indices ∗)
i : containers → eltp → Cursor.cursor; (∗ indexing function ∗) [...] }.
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As for sequential iterators, we state the main three properties that an index
should satisfy. Again, these properties are expressed in terms of the collection
of a container, used for specification purposes only.
Record Index (elt eltp : Type) : Type := { [...]

ccollection : containers → list elt; (∗ the elements of a container ∗)
(∗ the collection of an indexed cursor contains the filtered elements of the

container w.r.t. P ∗)
i– collection : ∀ c x, Cursor.collection (i c x) =

List.filter (fun y ⇒P x (proj y)) (ccollection c);
(∗ a fresh indexed cursor has not been visited yet ∗)
i– visited : ∀ c x, Cursor.visited (i c x) = nil;
(∗ a fresh indexed cursor is coherent ∗)
i– coherent : ∀ c x, Cursor.coherent (i c x) }.

First instance: sequential scan Let us start with a simple example: se-
quential scan can be seen as an index scan with a trivial comparison function
that always returns true, and a trivial indexing function that returns a sequen-
tial cursor. It is thus sufficient to use the following definitions and the properties
follow immediately:
Definition containers := list elt.
Definition P := fun – –⇒ true.
Definition i := fun c –⇒SeqScan.mk– cursor c.

Let us see how this setting models more interesting index-based algorithms.

Second instance: hash-index scan In this case, the comparison function
is an equality, and the underlying containers are hash tables whose keys are
the attributes composing the index. To each key is associated the cursor whose
collection contains elements whose projection on the index equals the key. In
our development, we use the Coq FMap library to represent hash tables, but we
are rather independent of the representation:
Record containers : Type := mk– containers
{ (∗ the hash table ∗)

hash : FMapWeakList.Raw(Eltp) (cursor C);
(∗ the elements are associated to the corresponding key ∗)
keys : ∀ x es, MapsTo x es hash → ∀ e, List.In e (collection es) → P x (proj e) = true;
noDup : NoDup hash (∗ the hash table has no key duplicate ∗) }.

where MapsTo x es hash means that es is the cursor associated to the key x in the
hash table.

Given a particular index, the indexing function returns the cursor associated
to the index in the hash table. Its properties follow from the properties of hash
tables.
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Third instance: bitmap-index scan In this case, the comparison function
can be any predicate, and the containers are arrays of all the possible elements
of the relation together with bitmaps (bit vectors) associated to each index,
stating whether the nth element of the relation corresponds to the index. In our
development, we use Coq vectors to represent this data structure:
Record containers : Type := mk– containers
{ size : nat; (∗ the number of elements in the relation ∗)

collection : Vector.t elt size; (∗ all the elements of the relation ∗)
bitmap : eltp → Bvector size;(∗ a bitmap associated to every index ∗)
(∗ each bitmap associates to true exactly the elements matching the corresponding index ∗)
coherent : ∀ n x0, nth (bitmap x0) n = P x0 (proj (nth collection n)) }.

Given a particular index, the indexing function returns the sequential cursor
built from the elements for which the bitmap associated to the index returns
true. Its properties follow by induction on the size of the relation.

Application: Index-join algorithm The index-join algorithm is similar in
principle to the nested loop algorithm but faster thanks to an exploitable index
on the inner relation: for each tuple of the outer relation, only matching tuples
of the inner relation are considered (see Fig. 3). Hence, our formal development
is similar as the one for nested loop, but more involved: (i) in the function next,
each time we get a new element from the outer relation, we need to generate the
cursor corresponding to the index from the inner relation (instead of resetting
the whole cursor) (ii) the collection is now a dependent cross-product between the
outer relation and the matching inner tuples; the invariant predicate coherent
has to be changed consequently (iii) the ubound is a dependent product of the
bound of the outer relation with each bound of the matching cursors of the inner
relation (obtained by materialising the outer relation).

Derived operators Our high level of abstraction gives for free the specifica-
tion of common variants of the physical operators. For instance, the Block
Nested Loop algorithm is straightforwardly formalised by replacing, in the
Nested Loop formalisation, the abstract type of elements by a type of “blocks”
of elements (e.g., lists), and the function that combines two tuples by a function
that combines two blocks of tuples.

4.3 Adequacy
All physical operators specified and implemented so far are shown to fulfil the
high-level specification. For instance, if C is a cursor, f a filtering condition
compatible with the equivalence of elements in C, then the corresponding filter
iterator F:= (Filter.build f f– eq C) fulfils the specification of a filter:
Lemma mk– filter– is– a– filter– op :

is– a– filter– op (Cursor.materialize C) (Cursor.materialize F) f (Filter.mk– filter F).
Sometimes, there are some additional side conditions: if C1 and C2 are two

cursors, and NL := (NestedLoop.build [...] C1 C2) is the corresponding nested loop
which combines elements thanks to the combination function build– , not only
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Algorithm 2 Index-Join
for each tuple o ∈ O do

I ← index-lookup ()
for each tuple i ∈ I do

Add the tuple <o,i> to visited
end for

end for

Figure 3: Index-based nested loop

some hypotheses are needed to be able to build NL, but some extra ones are
needed to prove NL is indeed a join operator:
Hypothesis [...]
Hypothesis build– split– eq– 1 :
∀ t1 u1 t2 u2, equivA (build– t1 t2) (build– u1 u2) → [...] → equivA1 t1 u1.

Hypothesis build– split– eq– 2 :
∀ t1 u1 t2 u2, equivA (build– t1 t2) (build– u1 u2) → [...] → equivA2 t2 u2.

Lemma NL– is– a– join– op :
is– a– join– op [...] (Cursor.materialize C1) (Cursor.materialize C2) (Cursor.materialize NL)

[...] (fun c1 c2 ⇒NestedLoop.mk– cursor C1 C2 nil c1 c2).

5 SQL algebra
We now present SQL algebra, our Coq formalisation of an algebra that satisfies
the high-level specification given in Section 3 and that hosts SQL.

5.1 Syntax and semantics
The extended relational algebra, as presented in textbooks, consists of the well-
known operators π (projection), σ (selection) and × (join) completed with the
γ (grouping) together with the set theoretic operators. We focus on the for-
mer four operators. In our formalisation, formula mimics the SQL’s filtering
conditions expressed in the where and having clauses of SQL.
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Inductive query : Type :=
| Q– Table : relname → query
| Q– Set :

set– op → query → query → query
| Q– Join : query → query → query
| Q– Pi : list select → query → query
| Q– Sigma : formula → query → query
| Q– Gamma :

list term → formula → list select →
query → query

with formula : Type :=
| Q– Conj :

and– or → formula → formula →

formula
| Q– Not : formula → formula
| Q– Atom : atom → formula

with atom : Type :=
| Q– True
| Q– Pred : predicate → list term →

atom
| Q– Quant :

quantifier → predicate → list term →
query → atom

| Q– In : list select → query → atom
| Q– Exists : query → atom.

We assume that there is an instance which associates to each relation a mul-
tiset (bagT) of tuples, and that these multisets enjoy some list-like operators
such as empty, map, filter, etc (see the additional material for more details and
precise definitions). In order to support so-called SQL correlated queries, the
notion of environment is necessary.
Fixpoint eval– query env q {struct q} : bagT :=

match q with
| Q– Table r ⇒ instance r
| Q– Set o q1 q2 ⇒ if sort q1 = sort q2

then interp– set– op o (eval– query env q1) (eval– query env q2)
else empty

| Q– Join q1 q2 ⇒ natural– join (eval– query env q1) (eval– query env q2)
| Q– Pi s q ⇒map (fun t ⇒ projection– (env– t env t) s) (eval– query env q)
| Q– Sigma f q ⇒ filter (fun t ⇒ eval– formula (env– t env t) f) (eval– query env q)
| Q– Gamma lf f s q ⇒ let g := Group– By lf in

mk– bag (map (fun l ⇒ projection– (env– g env g l) s)
(filter (fun l ⇒ eval– formula (env– g env g l) f)
(make– groups– env (eval– query env q) g)))

end
with eval– formula env f := [ ... ]
with eval– atom env atm := [ ...]
end.
Let us detail the evaluation of Q– Sigma f q in environment env. It consists of the
tuples t in the evaluation of q in env which satisfy the evaluation of formula f in
env. In order to evaluate f one has to evaluate the expressions it contains. Such
expressions are formed with attributes which are either bound in env or occur
in tuple t’s support. This is why the evaluation of f takes place in environment
env– t env t which corresponds to pushing t over env yielding
Q– Sigma f q ⇒ filter (fun t ⇒ eval– formula (env– t env t) f) (eval– query env q)
Similarly, we use env– t env t for the evaluation of expressions of s in the Q– Pi s q
case. The grouping γ is expressed thanks to Q– Gamma. A group consists of ele-
ments which evaluate to the same values for a list of grouping expressions. Each
group yields a tuple thanks to the list select part in which each (sub-)term either
takes the same value for each tuple in the group, or consists in an aggregate
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expression. This usual definition (see for instance [15]) is not enough to handle
SQL’s having conditions, as having directly operates on the group that carry
more information than the corresponding tuple. This is why Q– Gamma has also
a formula operand. Thus the corresponding expression for query

select avg(a1) as avg a1, sum(b1) as sum b1 from t1
group by a1+b1, 3*b1 having a1 + b1 > 3 + avg(c1);

is Q Gamma [a1 + b1; 3*b1] (Q Atom (Q Pred > [a1 + b1; 3 + avg(c1)]))
[Select As avg(a1) avg a1; Select As sum(b1) sum b1] (Q table t1)

5.2 Adequacy
The following lemmas assess that SQL algebra is a realisation of our high-level
specification. Note that, in the context of SQL algebra the notion of tuple
corresponds to the high-level notion of elements’ type X, finite bag corresponds
to the high-level notion of containerX and elements to contentX.
Lemma Q– Sigma– is– a– filter– op :
∀ env f,

is– a– filter– op [...]
(∗ contentA := fun q ⇒Febag.elements BTupleT (eval– query env q) ∗)
(∗ contentA’ := fun q ⇒Febag.elements BTupleT (eval– query env q) ∗)
(fun t ⇒ eval– formula (env– t env t) f)
(fun q ⇒Q– Sigma f q).

Lemma Q– Join– is– a– join– op : ∀ env s1 s2,
let Q– Join q1 q2 := Q– Join q1 q2 in
is– a– join– op (∗ contentA1 := fun q ⇒ elements (eval– query env q) ∗)

(∗ contentA2 := fun q ⇒ elements (eval– query env q) ∗)
(∗ contentA := fun q ⇒ elements (eval– query env q) ∗) [...] s1 s2 Q– Join.

Lemma Q– Gamma– is– a– grouping– op : ∀ env g f s ,
let eval– s l := projection– (env– g env (Group– By g) l) (Select– List s) in
let eval– f l := eval– formula (env– g env (Group– By g) l) f in
let mk– grp g q := partition– list– expr (elements (eval– query env q))

(map (fun f t ⇒ interp– funterm (env– t env t) f) g) in
let Q– Gamma g f s q := eval– query env (Q– Gamma g f s q) in
is– a– grouping– op [...] mk– grp g eval– f eval– s (Q– Gamma g f s).

6 Formally bridging logical and physical algebra
We now formally bridge physical algebra to SQL algebra. Fig. 4 describes the
general picture. As pointed out in Section 3, any two operators which satisfy
the same high-level specification are interchangeable. This means in particular
that physical algebra’s operators can be used to implement the evaluation of
constructors of SQL algebra’s inductive query. The fundamental nature of the
proof of such facts is the transitivity of equality of number of occurences. How-
ever, there are some additionnal hypotheses in both lemmas φ– ...– op– is– a– ...– op
and SQL– ...– op– is– a– ...– op. Some of them are trivially fulfilled when the elements
are tuples, while others cannot be discarded.
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High-Level Spec
Definition is a ... op p o :=

∀ x t, nb occ t (o p x) = fo,p(t, nb occ t x)

φ-algebra
Lemma φ ... op is a ... op :

Hφ ⇒ ∀ x t, nb occ t (oφ p x) = fo,p(t, nb occ t x)

SQL Algebra
Lemma SQL ... op is a ... op :

HSQL ⇒ ∀ x t, nb occ t (oSQL p x) = fo,p(t, nb occ t x)

Bridge
Lemma φ op_.. implements SQL ... op :

Hφ∧ HSQL ⇒ ∀ x t, nb occ t (oφ p x) = nb occ t (oSQL p x)

Figure 4: Relating φ-algebra and SQL algebra.

For instance, for proving that NestedLoop implements Q– Join, we have to check
that the hypotheses for NL– is– a– filter– op are fulfilled. Doing so, the condition that
the queries to be joined must have disjoint sorts appeared mandatory in order
to prove the hypothesis build– split– eq– 2 which assess that whenever two combined
tuples are equivalent, their projections over the part corresponding to the inner
relation also have to be equivalent.
Lemma NL– implements– Q– Join :

(∗ Provided that the sorts are disjoined... ∗)
∀C1 C2 env q1 q2, (sort q1 ∩ sort q2) = ∅→

(∀ t, 0 < nb– occ t (eval– query env q1) → support t = sort q1) →
(∀ t, 0 < nb– occ t eval– query env q2 → support t = sort q2) →
let NL := NestedLoop.build [...] C1 C2 in
∀ c1 c2, (∗ ... if the two cursors implement the queries... ∗)
(∀ t, nb– occ t (eval– query env q1) = nb– occ t (Cursor.materialize C1 c1)) →
(∀ t, nb– occ t (eval– query env q2) = nb– occ t (Cursor.materialize C2 c2)) →

(∗ ... then the nested loop implements the join ∗)
∀ t, nb– occ t (eval– query env (Q– Join q1 q2)) =

nb– occ t (Cursor.materialize NL (NestedLoop.mk– cursor C1 C2 nil c1 c2)).
This is an a posteriori justification that most systems implement combination of
relations as cross-products whereas according to theory [1], combination should
be the natural join.

7 Related works, lessons, conclusions and per-
spectives

Related work Our work is rooted on the many efforts to use proof assistants
to mechanise commercial languages’ semantics and formally verify their compi-
lation as done with the seminal work on Compcert [20]. The first attempt to
formalise the relational data model using Agda is described in [17, 16] and a first
complete Coq formalisation of it is found in [7]. A SSreflect-based mechanisation
of the Datalog language has been proposed in [8]. The very first Coq formalisa-
tion of RDBMSs’ is detailed in [21] where the authors proposed a verified source
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to source compiler for (a small subset) of SQL. More recently, in [3, 4] a Coq
modelisation of the nested relational algebra is provided to assign a semantics to
data-centric languages among which SQL. Regarding logical optimisation, the
most in depth proposal is addressed in [10] where the authors describe a tool to
decide whether two SQL queries are equivalent. However, none of these works
consider specifying and verifying the low-level aspects of SQL’s compilation and
execution as we did. Our work is, thus, complementary to theirs and one per-
spective could be to join our efforts along the line of formalising data-centric
systems.

Lessons, conclusions and perspectives We used the Coq proof assistant
to specify and verify the low level layer of an RDBMS as well as SQL’s com-
pilation’s physical optimisation: fundamental steps towards mechanising SQL’s
compilation chain.

While formalising all this, we learnt the following lessons: (i) not only finding
the right invariants for physical operators was really involved but proving them
(in particular termination for nested loop) was indeed subtle. This is due to the
inherent difficulty to design on-line versions of even trivial off-line algorithms.
(ii) we are even more convinced by the relevance of designing such a high-level
specification that opens the way for accounting other data-centric languages.
More precisely, we first formalised SQL algebra then the physical one, this im-
plied revising the specification: in particular the introduction of containersX was
made. Then, while bridging both formalisms we slightly modified the specifica-
tion but without questionning our fundamental choices about abstracting over
collections using containersX, only hypotheses were slightly tuned. (iii) The need
for higher-order and polymorphism was mandatory both for the specification
and physical algebra modelisation. This prevented us from using deductive ver-
ification tools such as Why3 [13] for instance: it was quite difficult to write down
the algorithms and their invariants in this setting, even worse the automated
provers were of no use to discharge the proof obligations. We tried tuning the
invariants to help provers, without success. Hence our claim is that it is easier
to directly use a proof assistant, where one has the control over the statements
which have to be proven. (iv) The last point is that we experimented records
versus modules: records are simpler to use than modules in our formalisation
(no need of definitions’ unfolding, no need of intermediate inductive types for
technical reasons), the counterpart being that modules in the standard Coq li-
brary, such as FSets or FMaps were not directy usable. The nice feature which
allows to hide part of their contents through module subtyping was not needed
here.

There are many points still to be addressed. In the very short term we
plan to specify the missing operators of Table 1 and enrich the physical alge-
bra with more fancy algorithms. Along this line two directions remain to be
explored. In our development, the emphasis was put on specification rather
than performance. In [18] an Isabelle formalization of the complexity of on-line
algorithms is proposed and we shall rely on it to formally assess the complexity
of the algorithms presented so far. Even if we carefully separated functions used
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in specification (such as collection, coherent, . . . ) from the concrete algorithms,
these latter are defined in the functional language of Coq using higher-order
data structures. We plan to refine these algorithms into more efficient versions,
in particular that manipulate the memory. We plan to rely on CertiCoq [2] in
order to produce fully certified C code. Last, we are confident that our specifi-
cation is general enough to host various data-centric languages and will provide
a framework for data-centric languages interoperability which is our long term
goal.
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A Running example’s complete SQL definitions
A.1 Database schema and instance
The complete database schema for the introductory example is given Figure 5.
It models a movie database gathering information about persons (people, the
name of the relation) who have a firstname and lastname and are uniquely
identified by a personal identifier pid. In the relational database setting, firstname,
lastname and pid are called attributes and constitute the sort of the relation
schema: people(pid, firstname, lastname). Each relation contains (a finite
number of) tuples which are records labelled by the sort of the relation they
belong to.

create table people
(pid integer,
firstname VARCHAR(30),
lastname VARCHAR(30),
PRIMARY KEY(pid));

create table movie
(mid integer,
title VARCHAR(90) not Null,
year integer not Null,
runtime integer not Null,
rank integer not Null,
PRIMARY KEY(mid));

create table director
(mid integer REFERENCES movie,
pid integer REFERENCES people,
PRIMARY KEY (mid, pid),
FOREIGN KEY (mid)

REFERENCES movie,
FOREIGN KEY (pid)

REFERENCES people);

create table role
(mid integer,
pid integer,
name VARCHAR(70),
PRIMARY KEY(mid, pid, name),
FOREIGN KEY (mid)

REFERENCES movie,
FOREIGN KEY (pid)

REFERENCES people);

Figure 5: A movie database
Declaration PRIMARY KEY(pid) states that no two persons can have the same

pid and different first and last names. Movies (movies) have a title, a year
of release, a duration (runtime) and a ranking. As for relation people, movies
are uniquely identified thanks to a movie id (mid). Relation director gathers
information about movies’ directors and the movies they directed. Declaration
FOREIGN KEY (mid) REFERENCES movie indicates that any mid must also be
present in movie. Last, relation role carries information about who played
(identified by his/her pid) which role (represented by name) in a given movie
(identified by its mid).

While those declarations describe relationships between entities at a logical
level, they do have an impact at a system level. The create table declaration
induces the creation of a file intended to store the elements of its argument.
More importantly, the primary key definition induces the creation of a tree-
structured index 5 whose search key is pid (resp., mid, (mid, pid), (pid, mid,
name)). Such an auxiliary data structure could be exploited in order to speed
up access to data stored in the corresponding indexed files.

5In this particular case it is a B-tree, a very popular data structure used in most, if not
all, RDBMS’s.
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A.2 Example’s query and its Postgresql QEP explained
Our SQL query extracts the directors who have played in a movie they directed
after 1950. Relational algebra expression corresponding to our query is:

select lastname from people p, director d, role r, movie m
where d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and

m.mid = d.mid and m.year > 1950;

Figure 6: A typical SQL query

σm.mid=d.mid∧year>1950∧p.pid=d.pid∧r.mid=d.mid∧r.pid=d.pid(people×director×role×movie)

where σ and × represent the multiset version of the well-known selection and
cross product (or join) of the relational algebra as found in textbooks. The
compiler exploits well-known laws such as associativity, and commutativity of
operators and logical connectives, pushing selection and many others to produce:

σm.mid=d.mid(σp.pid=d.pid(σr.mid=d.mid∧r.pid=d.pid(role×director)×people)×σyear>1950(movie))

As previously stated, once the logical query plan is obtained a physical query
evaluation plan is produced. To do so, the optimiser relies on statistics (his-
tograms, distribution laws) about data, such statistics being collected along the
time. Then roughly, each plan is assigned a cost thanks to very sophisticated
methods (simulated annealing, dynamic programming, hill climbing) and the
cheapest plan is chosen. Any decent system, such as Postgresql through the
explain command, or OracleTM through the explain plan command, allows
us to see which is the physical query plan chosen for a given query.

explain select lastname from people p, director d, role r, movie m
where d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and
m.mid = d.mid and m.year > 1950;

QUERY PLAN
-----------------------------------------------------------------------------------------
Nested Loop (cost=32.00..448.85 rows=2 width=7)

-> Nested Loop (cost=32.00..432.28 rows=2 width=15)
-> Hash Join (cost=32.00..415.72 rows=2 width=16)

Hash Cond: ((r.mid = d.mid) AND (r.pid = d.pid))
-> Seq Scan on role r (cost=0.00..238.35 rows=14535 width=8)
-> Hash (cost=15.80..15.80 rows=1080 width=8)

-> Seq Scan on director d (cost=0.00..15.80 rows=1080 width=8)
-> Index Scan using people_pkey on people p (cost=0.00..8.27 rows=1 width=11)

Index Cond: (pid = d.pid)
-> Index Scan using movie_pkey on movie m (cost=0.00..8.27 rows=1 width=4)

Index Cond: (mid = d.mid)
Filter: (year > 1950)

(12 rows)

Figure 7: Example of a (Postgresql) physical query plan
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Figure 7 shows the Postgresql plan proposed for our query. This plan reflects
the evaluation strategy chosen by the compiler and depends on the data actually
stored. It not only indicates the operations performed but also the order in
which they will be evaluated, the algorithm chosen for each operation and the
way stored data is obtained and passed from one operation to another and last
the estimated costs of execution. Traditional practice is to measure the costs
in units of disk page fetches. It’s important to understand that the cost of an
upper-level node includes the cost of all its child nodes. It is also important
to realise that the cost only reflects things that the planner cares about. In
particular, the cost does not consider the time spent transmitting result rows
to the client, which could be an important factor in the real elapsed time; but
the planner ignores it because it cannot change it by altering the plan.

The rows value is a little tricky because it is not the number of rows processed
or scanned by the plan node, but rather the number emitted by the node. This
is often less than the number scanned, as a result of filtering by any where
clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or
deleted by the query.

Our QEP on Figure 7 deserves more explanations. Even if each system has
its own notation, query physical plans are built from pre-defined access methods
to relations and pre-defined (physical) operators each of which implements one
step of the plan. All the process starts with secondary storage access and the
compiler is in charge of choosing how data stored in relations role, director,
movie and people are to be accessed.

A.2.1 The first join

First, consider the left-most leaf of the physical plan of Figure 7 represented on
Figure 8a. Relations director and role will be accessed through a sequential
scan of the respective file (Seq Scan on director and Seq Scan on role).
Seq Scan is one, among many others, access methods and consists in reading
each record present in the file that stores the relation it has as parameter.
While scanning relation director the system generates a hash table (Hash) on
attributes (d.mid, d.pid) so as to evaluate the cross product using a hash-join
algorithm (Hash Join Hash Cond: ((r.mid = d.mid) AND (r.pid = d.pid))
which corresponds to relational expression:

σr.mid=d.mid∧r.pid=d.pid(director×role)

Hash Join is one of the physical operators usually provided by RDBMS’s to
implement a join and falls in the general class of index-based operators. Not
only the optimiser chooses the access methods and algorithm to implement the
join but it also relies on the fact that operator × is associative and commutative
thus allowing for the evaluation of director × role first.
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(c) Final physical query plan

Figure 8: Query plan explained
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A.2.2 The second join

Then, tuples resulting of the evaluation of the Hash Join are planned to be
passed on the fly to the upper operator, which is dependent on the evaluation of
the first join. In particular each d.pid will serve as a constant and the index on
relation people whose search key is pid will be exploited to access people ele-
ments by means of an index scan (Index Scan using people pkey on people
p) with the (index) search condition Index Cond: (pid = d.pid). Indeed,
the compiler does exploit the knowledge that an index, named people pkey, on
relation people whose search key is pid is available. The cross product between
both collections is achieved using the nested loop physical operator join algo-
rithm (Nested Loop on the postgresql plan) combined with the Index Scan on
people. The combination of both physical operators implements an index based
join (IndexJoin) (see Figure 8b) which corresponds to relational expression:

σp.pid=d.pid(σr.mid = d.mid
∧

r.pid = d.pid

(director×role)×people)

A.2.3 The third join

Last movie’s elements are to be accessed exploiting the index (Index Scan using
movie pkey on movie m Index Cond: (mid = d.mid)) and at the same time ele-
ments that do not satisfy the filtering condition Filter: (year > 1950) will be
discarded. The combination of the corresponding elements is performed again
through a nested loop algorithm (Nested Loop) yielding physical and logical
plans of Figure 8c. We would like to stress that, the computation, again, de-
pends on the previously computed value d.mid. A last subtle point worth to be
mentionned is that rather than implementing:

σm.mid=d.mid(σp.pid=d.pid(σr.mid=d.mid∧r.pid=d.pid(role×director)×people)×σyear>1950(movie))

the plan implements rather

σm.mid=d.mid∧year>1950(σp.pid=d.pid(σr.mid=d.mid∧r.pid=d.pid(role×director)×people)×movie)

B Adequacy and bridge lemmas for Filter op-
erators

Let us now explain how we use our high level specification in order to show
that the algebraic operator Q– Sigma is implemented by some physical operators,
namely the simple Filter and IndexScan when the selection condition can be ex-
pressed thank to an equality between index keys, keys being usually a list of
values taken by some attributes of the tuples.

First, assuming that we have a cursor c which contains elements of type A, we
can filter its content w.r.t theta by using Filter, provided that theta is compatible
w.r.t. the equivalence defined by the decidable comparison function in OA.
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Section Filter– is– a– filter– op.
Hypothesis A : Type.
Hypothesis OA : Oeset.Rcd A.
Hypothesis C : Cursor.Rcd OA.
Hypothesis theta : A → bool.
Hypothesis theta– eq : ∀ x1 x2, Oeset.compare OA x1 x2 = Eq → theta x1 = theta x2.

Lemma mk– filter– is– a– filter– op :
let F := (Filter.build – theta– eq C) in
is– a– filter– op
(∗ a record containing a deciable comparison function over the elements to be selected ∗)

OA
(∗ how to retrieve the elements to be selected from the input container ∗)

(Cursor.materialize C)
(∗ how to retrieve the selected elements from the output container ∗)

(Cursor.materialize F)
(∗ selection condition ∗)

theta
(∗ the actual filter, which produced the output container from the input container ∗)

(Filter.mk– filter F).
End Filter– is– a– filter– op.

Section IndexScan– is– a– filter– op.
Variable o1 o2 : Type.
Variable O1 : Oeset.Rcd o1.
Variable O2 : Oeset.Rcd o2.
Variable IS : Index.Rcd O1 O2.

Lemma IS– is– a– filter– op :
∀ (x1 : o1),
is– a– filter– op
(∗ a record containing a deciable comparison function over the elements to be selected ∗)

O1
(∗ how to retrieve the elements to be selected from the input container ∗)

(Index.c1 IS)
(∗ how to retrieve the selected elements from the output container ∗)

(Cursor.materialize (Index.C1 IS))
(∗ selection condition: having the same key as [o1] ∗)

(fun x ⇒ Index.P IS (Index.proj IS x1) (Index.proj IS x))
(∗ the actual filter, which produced the output container from the input container ∗)

(fun c ⇒ Index.i IS c (Index.proj IS x1)).
End IndexScan– is– a– filter– op.

Assuming that all needed ingredients (tuples with a decidable comparison,
functions, predicates, aggregates with their respectives interpretations, etc.)
are present to define the evaluation of an algebraic query, Q– Sigma is also
is– a– filter– op:
Lemma Q– Sigma– is– a– filter– op :
∀ env f,

is– a– filter– op
(∗ a record containing a deciable comparison function over the elements to be selected ∗)
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(OTuple T)
(∗ how to retrieve the elements to be selected from the input container ∗)

(fun q ⇒Febag.elements BTupleT (eval– query env q))
(∗ how to retrieve the selected elements from the output container ∗)

(fun q ⇒Febag.elements BTupleT (eval– query env q))
(∗ selection condition: satisfying the formula [f] ∗)

(fun t ⇒ eval– formula (env– t env t) f)
(∗ the actual filter, which produced the output container from the input container ∗)

(fun q ⇒Q– Sigma f q).
It is now easy to bridge the above lemmas to show that fun q ⇒Q– Sigma f q

can always be implemented by a simple Filter built over a cursor which imple-
ments the algebraic query q and using as a filtering condition the evaluation of
the formula f.
Notation ”b ’=R=’ l” :=

(∀ t, Febag.nb– occ BTupleT t b = Oeset.nb– occ (OTuple T) t l) (at level 70, no associativity).
Lemma mk– filter– implements– Q– Sigma :
∀C env f q,

let F := Filter.build – (eval– f– eq env f) C in
∀ c,

eval– query env q =R= Cursor.materialize C c →
eval– query env (Q– Sigma f q) =R= Cursor.materialize F (Filter.mk– filter F c).

When the formula f has the special form of a conjunction of equalities for
the values taken by some attributes, as in our example , it is also possible to
use an IndexScan:
Lemma IS– implements– Q– Sigma :
∀ (∗ the keys of the index are lists of values ∗)

(IS : Index.Rcd (OTuple T) (oeset– of– oset (mk– olists (OVal T)))),
(∗ the condition used to build the index is actually the equality of these lists of values ∗)
(∀ lv1 lv2, Index.P IS lv1 lv2 = Oset.eq– bool (mk– olists (OVal T)) lv1 lv2) →
∀ la lval env f q ,
(∗ the selection formula of the algebraic query corresponds to the equality between a key [lval]

and the dot extraction over a given list of attributes [la] ∗)
(∀ t, eval– formula (env– t env t) f =

Oset.eq– bool (mk– olists (OVal T)) (map (dot T t) la) lval) →
(∗ the projection used to build the index is actually the dot extraction over [la] ∗)
(∀ t, Index.proj IS t = map (dot T t) la) →
∀ c,

eval– query env q =R= Index.c1 IS c →
eval– query env (Q– Sigma f q) =R= Cursor.materialize – (Index.i IS c lval).

The same kind of arguments hold for the other operators and are detailed in
the accompanying development at http://datacert.lri.fr/sqlcert/itp18.
tar.gz.

C Proof of concept: the example QEP
We have all the ingredients to design a language for query execution plans, that
is interpreted using our cursors and indices from Section 4. We focus in this
appendix on its subset applied to the example of Fig. 1.
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C.1 A QEP language
The language is a syntactic tree where nodes are labeled with the physical
operators, divided in two categories: simple cursors, and index-based iterators.
Restricted to operators that are needed for the example of Fig. 16, the definition
of the language contains the two inductive types:
(∗ o is the type of values ∗)

Inductive index : Type :=
| SimpleHashIndexScan : list attribute → list o → index
| FilterHashIndexScan :
∀ (theta : o → bool), list attribute → list o → index.

Inductive cursor : Type :=
| SeqScan : list o → cursor
| IndexJoin : list attribute → cursor → index → cursor.
Indices can be mapped either directly to a sequential scan (as for the Index
Scan on people), or to a filter over a sequential scan (as for the Index Scan
on movie). In each case, the list of attributes represents the index. Cursors can
be sequential scans or the combination of an outer cursor with an inner index.

This language is interpreted in two steps. First, all the physical operators are
mapped to their index and cursor counterparts presented in Section 4. Second,
this mapping is used to type (in Coq) the evaluation function that returns the
concrete index or cursor.
Definition type– index (i:index) : Index.Rcd – – :=

match i with
| SimpleHashIndexScan la –⇒HashIndexScan.simple– build (proj la) (proj– eq – )
| FilterHashIndexScan theta la –⇒

HashIndexScan.filter– build – (theta– eq theta) (proj la) (proj– eq – )
end.

Fixpoint type– cursor (c : cursor) : Cursor.Rcd – :=
match c with
| SeqScan l ⇒SeqScan.build –

| IndexJoin la c i ⇒
IndexJoin.build
(proj la) (proj– eq la) (type– cursor c) (type– index i) build build– eq– 1 build– eq– 2

end.

Definition eval– index (i:index) : Index.containers (type– index i) :=
match i return Index.containers (type– index i) with
| SimpleHashIndexScan la l ⇒

HashIndexScan.mk– simple– hash– index– scan l – (proj la) (proj– eq – )
| FilterHashIndexScan theta la l ⇒

HashIndexScan.mk– filter– hash– index– scan – (theta– eq theta) l – (proj la) (proj– eq – )
end.

Fixpoint eval– cursor (c:cursor) : Cursor.cursor (type– cursor c) :=

6A Hash operator applied to a sequential scan can be modeled as a Hash Index Scan where
indices are map to sequential scans.
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match c return Cursor.cursor (type– cursor c) with
| SeqScan l ⇒SeqScan.mk– seqcursor l
| IndexJoin la c i ⇒

IndexJoin.mk– index– join– cursor
(type– cursor c) (type– index i) (eval– cursor c) (eval– index i)

end.

C.2 The example QEP
The query execution plan represented in Fig. 1 can now be syntactically ex-
pressed in this language. We define the base relations to contain a few movies
and people, as a list of tuples, and the plans is:
Definition qep :=

IndexJoin (d– mid :: nil)
(IndexJoin (d– pid :: nil) ... ...)
(FilterHashIndexScan theta– movie (m– mid :: nil) movies).

The evaluation of this plan uses the on-line algorithms presented in Section 47.

Definition qep– run :=
Eval compute in (map show– tuple (materialize – (eval– cursor qep))).

7The result of the evaluation can be checked by compiling the auxiliary materials.
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