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Abstract: Fick’s law expresses the proportionality of solute flux with respect to concentration gradi-
ent. Similar relations are given by Darcy’s law for the fluid flow in porous media, Ohm’s law for the
electric flux and Fourier’s law for heat transfers. When introduced in the corresponding balance
equations, these flux laws yield diffusion equations of parabolic character. Different attempts have
been made to obtain hyperbolic equations so as to point out propagative phenomena. This was done
by adding a time derivative flux term to the flow law. In this paper, we focus on solute transport. Two
possible non-Fickian diffusion cases are addressed. We firstly investigate diffusion in fluids by
a mechanistic approach. Secondly, we study the macroscopic diffusion law in composite materials
with large contrast of diffusion coefficient. We show that the diffusion law obtained yields hyper-
bolicity for drastically short characteristic times or non-propagative waves.

1. INTRODUCTION

Isotropic Fick’s law for diffusion of solute in fluids is given by

cDJ ∇−=
rr

, (1)

where J
r

 is the solute flux, D is the molecular diffusion and c is the solute concentra-
tion. When introduced into the solute balance equation
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equation (1) yields a diffusion equation of parabolic character
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In such parabolic second-order differential equations, information propagates at an
infinite velocity, a property which is common to all diffusion processes, i.e., to Fick’s,
Fourier’s, Ohm’s or Darcy’s processes. To overcome this “non-physical” behaviour,
modifications are introduced into these laws so as to render equation (3) hyperbolic.
First attempts concerned Fourier’s law, see MAXWELL [11], CATTANEO [4], VERNOTTE
[14], [15], CHESTER [5], VOLZ et al. [16], MOYNE and DEGIOVANNI [12] and DUHAMEL
[7] for a more complete bibliography. Ohm’s law is also addressed in a similar way, see,
e.g., CUEVAS et al. [6]. Darcy’s law poses less difficulty since it is a momentum balance
equation whose extension to dynamics is easily demonstrated, LEVY [10], AURIAULT



[1]. That yields to Biot’s law, BIOT [3], which shows added mass phenomenon. For
solute transport, studies are not numerous. SCHEIDEGGER [13] proposed a hyperbolic
diffusion equation, which corresponds to a modified Fick’s law, HASSANIZADEH [8]. Let
us consider the isotropic form of this hyperbolic diffusion law
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where time A > 0 characterizes together with D the solute transport. Relation (4) is
similar to the Cattaneo–Vernotte law for heat flow, CATTANEO [4], VERNOTTE [15].
When introduced into the solute balance equation, such a non-Fickian law yields a
hyperbolic equation which enables us to point out finite velocity propagation phe-
nomena: the time A is responsible for inertial effects
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The form of transport equation (4) is often justified as being a consequence of
material heterogeneity, DUHAMEL [7]. Anyhow, MOYNE and DEGIOVANNI [12] have
pointed out that a transport equation of propagative type could not be recovered in
one-dimensional composite materials. In this paper, we present two attempts to re-
cover such a non-Fickian law (4). In part 2, we investigate transient solute diffusion in
liquids by a mechanistic approach following Einstein’s diffusion theory. We demon-
strate that such a relation (4) is valid, but for very short characteristic transport times.
Finally, in part 3, we discuss the possible non-Fickian character of solute flow
through a composite material with high contrast of diffusion coefficients. For this
purpose, we refer to the paper by AURIAULT [2], where the macroscopic equivalent
heat flow law is obtained by upscaling the physics at the heterogeneity scale.

2. NON-FICKIAN HYPERBOLIC DIFFUSION IN LIQUIDS

The molecular diffusion is related to the mobility b by the Einstein relation

kTbD = , (6)

where k is the Botzmann constant, k ≈ 1.38⋅10–23 J K–1 and T is the absolute tempera-
ture.

2.1. QUASI-STATIC DIFFUSION COEFFICIENT

Consider a solute particle moving at a constant velocity v in a stagnant fluid. The
fluid exercices on the particle a force F which is related to v by



b
vF = . (7)

In the case of spherical particle, b is given by the Stokes formula
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where µ is the viscosity of the fluid and a is the particle radius. Therefore, we obtain
the quasi-static diffusion coefficient in the form

a
kTD
µπ60 = . (9)

2.2. TRANSIENT DIFFUSION

When the particle velocity is not a constant and depends on the time t, relation (7)
takes the form (see LANDAU and LIFCHITZ [9], §24)
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Using (7) to obtain the value of b in the transient case and (6) for D yields the
following non-Fickian law
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Relation (11) represents the correct generalization of quasi-static Fick’s law (1) to
dynamics. It is different from (4) due to the presence of memory effects that are repre-
sented by the last term in the right-hand member. The memory function assumes the
form
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and its characteristic time is given by
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2.3. ESTIMATION OF THE DOMAIN OF VALIDITY 
OF NON-FICKIAN RELATION (11)

Assume that the fluid is water, µ = 10–3 kg m–1 s–1, ρ = 103 kg m–3. For a = 10 Å we
obtain Tm ≈ 3 × 10–13 s. For a = 10–6 m we have Tm ≈ 3 × 10–7 s.

On the other hand, the right-hand member of relation (11) introduces two-
dimensionless numbers P and Q. Noting Tc the characteristic time of the process
yields
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We can then point out three different behaviours:
• Tc >> Tm. Relation (11) reduces to Fick’s law (1).
• Tc = O(Tm). The flow law is given by (11) with its three terms in the right-hand

member. This is a non-Fickian law, but different from (4).
• Tc << Tm. The two last terms in (11) are negligible. This is a non-Fickian law

which yields a hyperbolic behaviour as in (4), but without the first term in the right-
hand member.

However, as can be seen above, Tm is very small. Therefore, the two last behav-
iours are likely not to exist. Remark that it is relation (10) (where dynamics is consid-
ered) that gives the two last behaviours the hyperbolic character.

3. MEMORY EFFECTS IN COMPOSITE MATERIALS

Consider a periodic composite material of the period Ω, made of two constituents
of diffusion coefficients D1 and D2 which occupy the volumes Ω1 and Ω2, respec-
tively. The interface is Γ. Medium 1 is connected, whereas medium 2 is connected or
not (see the figure, where medium 2 is not connected). Both constituents follow
Fick’s law (1) and equation (3). The characteristic size of the heterogeneities or of the
period is l, whereas the characteristic size of the macroscopic sample or of the macro-



scopic solute flux is L and we assume a separation of scales: l << L. When D1 =
O(D2), the macroscopic equivalent behaviour is Fickian (see AURIAULT [2], who in-
vestigated heat flow in composite materials): the macroscopic equivalent description
is given by
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where Deff is the effective diffusion tensor which depends on both constituents 1 and 2
and on the geometry at the fine scale. D2 = O(D1l/L) or D2 = O(D1(l/L)3) are particular
cases of the previous one.

We consider here the case where medium 2 is much less conductive than medium 1
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Schematic view of a period (2D case)

The problem of a macroscopic equivalent behaviour was investigated by
AURIAULT [2] for heat transfer by using the method of multiscale asymptotic expan-
sions. The reader is referred to this paper for details of the upscaling process.

The upscaling process yields the following equivalent macroscopic behaviour, at
the first order of approximation (the model is valid within a relative error O(l/L))
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In relation (14), c represents the concentration in medium 1 and eff
1D  is the effec-

tive diffusion tensor of the composite material, when considering medium 2 as a non-
-diffusive. The macroscopic solute flux is shown to be

cDJ ∇−=
rr eff

1 . (15)

The memory function Keff(t) is obtained as the inverse Fourier transform of ωik / ,
where
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and the complex periodic function k(ω) is the solution of the following boundary
value problem in Ω2
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0=k     on Γ.

Illustrations for k  are given by AURIAULT [2] for layered media and for circular
cylindrical or spherical inclusions. Important properties of the real and imaginary
parts of k  are that both are positive and allow us to verify (AURIAULT [2]) the fol-
lowing inequalities
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Relation (14) can be seen as describing a Fickian process in the presence of
a source term represented by the second term in the right member: the macroscopic
equivalent medium is described by solute concentration in medium 1 and Fick’s law
(15). Medium 2 plays the role of a solute reservoir connected to medium 1. Medium 1
is responsible for the macroscopic diffusion flux. However, the form of the source
term in (14) encourages us to look for an equivalent description in the form of non-
Fickian relation (5). This can be done by considering solute flow at the constant fre-
quency ω. Relation (14) then becomes
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We recover (5), but with a different solute capacity 11 1 <− k  and with
0/2 <−= ωkA . Therefore, differential equation (19) is elliptic, of the nature different

from (5) which is hyperbolic. There is no finite velocity propagation in the composite
material. This result was also obtained by a different approach in MOYNE and
DEGIOVANNI [12] for one-dimensional heat flow. On the contrary to section 2, no



dynamics is present at the heterogeneity scale nor is introduced later. This explains
why we do not recover a propagative process at the macroscopic scale. It is likely that
some dynamics should be introduced somewhere so as to obtain a propagation proc-
ess. Remark that the upscaling method in use is rigorous in the sense that the macro-
scopic description is obtained from the fine scale description, without any prerequisite
as it is usual with other methods.

4. CONCLUSION

Two attempts to justify the non-Fickian Cattaneo–Vernotte law for solute diffu-
sion have been made in a view to enable finite velocity propagation of solute pertur-
bations. By analyzing molecular diffusion through its mechanistic Einstein definition,
it was shown that such a hyperbolic description is valid, but for transient solute flows
with unrealistic very short characteristic times. In composite material with diffusion
coefficients of similar or of very different order of magnitude, we did not recover the
Cattaneo–Vernotte law, but either a parabolic or an elliptic phenomenon.
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