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ON NON-FICKIAN HYPERBOLIC DIFFUSION

Fick's law expresses the proportionality of solute flux with respect to concentration gradient. Similar relations are given by Darcy's law for the fluid flow in porous media, Ohm's law for the electric flux and Fourier's law for heat transfers. When introduced in the corresponding balance equations, these flux laws yield diffusion equations of parabolic character. Different attempts have been made to obtain hyperbolic equations so as to point out propagative phenomena. This was done by adding a time derivative flux term to the flow law. In this paper, we focus on solute transport. Two possible non-Fickian diffusion cases are addressed. We firstly investigate diffusion in fluids by a mechanistic approach. Secondly, we study the macroscopic diffusion law in composite materials with large contrast of diffusion coefficient. We show that the diffusion law obtained yields hyperbolicity for drastically short characteristic times or non-propagative waves.

INTRODUCTION Isotropic Fick's law for diffusion of solute in fluids is given by

c D J ∇ - = r r , ( 1 ) 
where J r is the solute flux, D is the molecular diffusion and c is the solute concentration. When introduced into the solute balance equation 

In such parabolic second-order differential equations, information propagates at an infinite velocity, a property which is common to all diffusion processes, i.e., to Fick's, Fourier's, Ohm's or Darcy's processes. To overcome this "non-physical" behaviour, modifications are introduced into these laws so as to render equation (3) hyperbolic. First attempts concerned Fourier's law, see MAXWELL [START_REF] Maxwell | On the dynamical theory of gases[END_REF], CATTANEO [START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF], VERNOTTE [START_REF] Vernotte | Les paradoxes de la théorie continue de l'équation de la chaleur[END_REF], [START_REF] Vernotte | La véritable equation de la chaleur[END_REF], CHESTER [START_REF] Chester | Second sound in solids[END_REF], VOLZ et al. [START_REF] Volz | Analyse de la conduction de la chaleur aux temps ultracourts dans un solide par la thermodynamique irréversible étendue et la dynamique moléculaire[END_REF], MOYNE and DEGIOVANNI [START_REF] Moyne | Représentation non locale d'un milieu hétérogène en diffusion pure[END_REF] and DUHAMEL [START_REF] Duhamel | A new finite integral transform pair for hyperbolic conduction problems in heterogeneous media[END_REF] for a more complete bibliography. Ohm's law is also addressed in a similar way, see, e.g., CUEVAS et al. [START_REF] Cuevas | Consequenses of a generalized Ohm's law for magnetic transport in conducting media[END_REF]. Darcy's law poses less difficulty since it is a momentum balance equation whose extension to dynamics is easily demonstrated, LEVY [START_REF] Levy | Propagation of waves in a fluid saturated porous elastic solid[END_REF], AURIAULT [START_REF] Royer | Dynamic behaviour of a porous medium saturated by a Newtonian fluid[END_REF]. That yields to Biot's law, BIOT [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range[END_REF], which shows added mass phenomenon. For solute transport, studies are not numerous. SCHEIDEGGER [START_REF] Scheidegger | The Physics of Flow Through Porous Media[END_REF] proposed a hyperbolic diffusion equation, which corresponds to a modified Fick's law, HASSANIZADEH [START_REF] Hassanizadeh | On the transient non-Fickian dispersion theory[END_REF]. Let us consider the isotropic form of this hyperbolic diffusion law

c D t J A J ∇ - = + r r r ∂ ∂ , ( 4 
)
where time A > 0 characterizes together with D the solute transport. Relation ( 4) is similar to the Cattaneo-Vernotte law for heat flow, CATTANEO [START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF], VERNOTTE [START_REF] Vernotte | La véritable equation de la chaleur[END_REF]. When introduced into the solute balance equation, such a non-Fickian law yields a hyperbolic equation which enables us to point out finite velocity propagation phenomena: the time A is responsible for inertial effects .

t c A t c c D ∂ ∂ ∂ ∂ + = ∇ ∇ r r . ( 5 
)
The form of transport equation ( 4) is often justified as being a consequence of material heterogeneity, DUHAMEL [START_REF] Duhamel | A new finite integral transform pair for hyperbolic conduction problems in heterogeneous media[END_REF]. Anyhow, MOYNE and DEGIOVANNI [START_REF] Moyne | Représentation non locale d'un milieu hétérogène en diffusion pure[END_REF] have pointed out that a transport equation of propagative type could not be recovered in one-dimensional composite materials. In this paper, we present two attempts to recover such a non-Fickian law (4). In part 2, we investigate transient solute diffusion in liquids by a mechanistic approach following Einstein's diffusion theory. We demonstrate that such a relation (4) is valid, but for very short characteristic transport times. Finally, in part 3, we discuss the possible non-Fickian character of solute flow through a composite material with high contrast of diffusion coefficients. For this purpose, we refer to the paper by AURIAULT [START_REF]Effective macroscopic description for heat conduction in periodic composites[END_REF], where the macroscopic equivalent heat flow law is obtained by upscaling the physics at the heterogeneity scale.

NON-FICKIAN HYPERBOLIC DIFFUSION IN LIQUIDS

The molecular diffusion is related to the mobility b by the Einstein relation

kTb D = , ( 6 
)
where k is the Botzmann constant, k ≈ 1.38⋅10 -23 J K -1 and T is the absolute temperature. ( 7 )

In the case of spherical particle, b is given by the Stokes formula

a b µ π 6 1 = , ( 8 
)
where µ is the viscosity of the fluid and a is the particle radius. Therefore, we obtain the quasi-static diffusion coefficient in the form

a kT D µ π 6 0 = . ( 9 
)
2.2. TRANSIENT DIFFUSION When the particle velocity is not a constant and depends on the time t, relation (7) takes the form (see LANDAU and LIFCHITZ [START_REF] Landau | Fluid Mechanics[END_REF], §24)

        - + + = ∫ ∞ - τ τ τ ρ µ ρ µ ρ t d d d π 3 3 d d 3 1 π 2 2 3 t v a v a t v a F . (10) 
Using [START_REF] Duhamel | A new finite integral transform pair for hyperbolic conduction problems in heterogeneous media[END_REF] to obtain the value of b in the transient case and (6) for D yields the following non-Fickian law

        + + = ∇ - ∫ ∞ - τ τ τ ρ µ ρ µ µ ρ - t d d d π 3 3 d d 3 1 3 2 2 0 t J a J a t J a c D r r r r . ( 11 
)
Relation [START_REF] Maxwell | On the dynamical theory of gases[END_REF] represents the correct generalization of quasi-static Fick's law (1) to dynamics. It is different from (4) due to the presence of memory effects that are represented by the last term in the right-hand member. The memory function assumes the form

t a t M µ ρ π ) ( 2 = , (12) 
and its characteristic time is given by

µ ρ π 2 a T m = . ( 13 
)
2.3. ESTIMATION OF THE DOMAIN OF VALIDITY OF NON-FICKIAN RELATION [START_REF] Maxwell | On the dynamical theory of gases[END_REF] Assume that the fluid is water, µ = 10 -3 kg m -1 s -1 , ρ = 10 3 kg m -3 . For a = 10 Å we obtain T m ≈ 3 × 10 -13 s. For a = 10 -6 m we have T m ≈ 3 × 10 -7 s.

On the other hand, the right-hand member of relation [START_REF] Maxwell | On the dynamical theory of gases[END_REF] introduces twodimensionless numbers P and Q. Noting T c the characteristic time of the process yields We can then point out three different behaviours:

• T c >> T m . Relation [START_REF] Maxwell | On the dynamical theory of gases[END_REF] reduces to Fick's law (1).

• T c = O(T m ). The flow law is given by [START_REF] Maxwell | On the dynamical theory of gases[END_REF] with its three terms in the right-hand member. This is a non-Fickian law, but different from (4).

• T c << T m . The two last terms in [START_REF] Maxwell | On the dynamical theory of gases[END_REF] are negligible. This is a non-Fickian law which yields a hyperbolic behaviour as in ( 4), but without the first term in the righthand member. However, as can be seen above, T m is very small. Therefore, the two last behaviours are likely not to exist. Remark that it is relation [START_REF] Levy | Propagation of waves in a fluid saturated porous elastic solid[END_REF] (where dynamics is considered) that gives the two last behaviours the hyperbolic character.

MEMORY EFFECTS IN COMPOSITE MATERIALS

Consider a periodic composite material of the period Ω, made of two constituents of diffusion coefficients D 1 and D 2 which occupy the volumes Ω 1 and Ω 2 , respectively. The interface is Γ. Medium 1 is connected, whereas medium 2 is connected or not (see the figure, where medium 2 is not connected). Both constituents follow Fick's law (1) and equation [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range[END_REF]. The characteristic size of the heterogeneities or of the period is l, whereas the characteristic size of the macroscopic sample or of the macro-scopic solute flux is L and we assume a separation of scales: l << L. When D 1 = O(D 2 ), the macroscopic equivalent behaviour is Fickian (see AURIAULT [START_REF]Effective macroscopic description for heat conduction in periodic composites[END_REF], who investigated heat flow in composite materials): the macroscopic equivalent description is given by

t c c D ∂ ∂ = ∇ ∇ r r eff .
,

where D eff is the effective diffusion tensor which depends on both constituents 1 and 2 and on the geometry at the fine scale.

D 2 = O(D 1 l/L) or D 2 = O(D 1 (l/L) 3
) are particular cases of the previous one.

We consider here the case where medium 2 is much less conductive than medium 1

1 2 1 2 <<       = L l O D D .
Schematic view of a period (2D case)

The problem of a macroscopic equivalent behaviour was investigated by AURIAULT [START_REF]Effective macroscopic description for heat conduction in periodic composites[END_REF] for heat transfer by using the method of multiscale asymptotic expansions. The reader is referred to this paper for details of the upscaling process.

The upscaling process yields the following equivalent macroscopic behaviour, at the first order of approximation (the model is valid within a relative error O(l/L))

τ τ ∂ τ ∂ τ ∂ ∂ d ) ( ) ( . 2 2 eff eff 1 c t K t c c D t - - = ∇ ∇ ∫ ∞ - r r . (14) 
In relation [START_REF] Vernotte | Les paradoxes de la théorie continue de l'équation de la chaleur[END_REF], c represents the concentration in medium 1 and eff 1 D is the effective diffusion tensor of the composite material, when considering medium 2 as a non--diffusive. The macroscopic solute flux is shown to be

c D J ∇ - = r r eff 1 . ( 15 
)
The memory function K eff (t) is obtained as the inverse Fourier transform of

ω i k / , where ∫ Ω Ω = 2 d ) ( 1 ) ( V k k ω ω (16)
and the complex periodic function k(ω) is the solution of the following boundary value problem in

Ω 2 ) 1 ( . 2 - = ∇ ∇ k i k D ω r r , ( 1 7 
)

0 = k on Γ.
Illustrations for k are given by AURIAULT [START_REF]Effective macroscopic description for heat conduction in periodic composites[END_REF] for layered media and for circular cylindrical or spherical inclusions. Important properties of the real and imaginary parts of k are that both are positive and allow us to verify (AURIAULT [START_REF]Effective macroscopic description for heat conduction in periodic composites[END_REF]) the following inequalities

2 1 k i k k + = , n k ≤ < 1 0 , n k ≤ < 2 0 , ( 1 8 ) 
| | | | 2 Ω Ω = n , 0 lim 2 0 > → ω ω k .
Relation [START_REF] Vernotte | Les paradoxes de la théorie continue de l'équation de la chaleur[END_REF] can be seen as describing a Fickian process in the presence of a source term represented by the second term in the right member: the macroscopic equivalent medium is described by solute concentration in medium 1 and Fick's law [START_REF] Vernotte | La véritable equation de la chaleur[END_REF]. Medium 2 plays the role of a solute reservoir connected to medium 1. Medium 1 is responsible for the macroscopic diffusion flux. However, the form of the source term in [START_REF] Vernotte | Les paradoxes de la théorie continue de l'équation de la chaleur[END_REF] encourages us to look for an equivalent description in the form of non-Fickian relation [START_REF] Chester | Second sound in solids[END_REF]. This can be done by considering solute flow at the constant frequency ω. Relation (14) then becomes

τ τ ∂ ∂ ω ∂ ∂ d ) 1 ( . 2 2 2 1 eff 1 c k t c k c D - - = ∇ ∇ r r . ( 19 
)
We recover ( 5), but with a different solute capacity

1 1 1 < -k and with 0 / 2 < - = ω k A
. Therefore, differential equation ( 19) is elliptic, of the nature different from (5) which is hyperbolic. There is no finite velocity propagation in the composite material. This result was also obtained by a different approach in MOYNE and DEGIOVANNI [START_REF] Moyne | Représentation non locale d'un milieu hétérogène en diffusion pure[END_REF] for one-dimensional heat flow. On the contrary to section 2, no dynamics is present at the heterogeneity scale nor is introduced later. This explains why we do not recover a propagative process at the macroscopic scale. It is likely that some dynamics should be introduced somewhere so as to obtain a propagation process. Remark that the upscaling method in use is rigorous in the sense that the macroscopic description is obtained from the fine scale description, without any prerequisite as it is usual with other methods.

CONCLUSION

Two attempts to justify the non-Fickian Cattaneo-Vernotte law for solute diffusion have been made in a view to enable finite velocity propagation of solute perturbations. By analyzing molecular diffusion through its mechanistic Einstein definition, it was shown that such a hyperbolic description is valid, but for transient solute flows with unrealistic very short characteristic times. In composite material with diffusion coefficients of similar or of very different order of magnitude, we did not recover the Cattaneo-Vernotte law, but either a parabolic or an elliptic phenomenon.
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 1 QUASI-STATIC DIFFUSION COEFFICIENT Consider a solute particle moving at a constant velocity v in a stagnant fluid. The fluid exercices on the particle a force F which is related to v by b v F = .