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Summary

A fi nite element-based derivation of the transmission loss (TL) of anisotropic layered infinite plates is presented in this paper. T he 

wave-finite element method (WFE) i s u sed to represent the plate with a fi nite element model of a s ingle unit cell. The incident 

acoustic field is a k nown plane wave, a nd the reflected and transmitted pressures are supposed to be plane waves w ith unknown 

amplitudes and phases. The periodicity conditions on the unit cell allow t o fi nd a s imple matrix equation linking the amplitudes of 

the transmitted and reflected fields as a f unction of the incident one. This approach is validated for several cases against classical 

analytical models for thin plates and sandwich constructions, where the results agree perfectly for a r easonable mesh size. The 

method is then used to study the effect of stacking order in a l aminated composite plate. The main interest of the method is the use of 

finite elements, which enables a r elative easy modelling since most packages readily include different formulations, compared to 

analytical models, where different formulations have to be implemented for every kind of material.

1. Introduction

Sound transmission modelling is a very important topic
in the industry, yet it is often still difficult to calculate
for complex geometries or materials. Several methods
have been proposed for the computation of transmission
loss through infinite plate-like structures. Analytic mod-
els based on the constitutive equations for infinite thin
plates [1], sandwich constructions [2, 3, 4], and even dou-
ble plates with periodical stiffeners [5] have been proposed
in the past. The Transfer Matrix Method (TMM) [6, 7] is
a general framework used to compute acoustic transmis-
sion features of infinite plane isotropic layerings compris-
ing elastic solids, poroelastic materials and air gaps. It re-
lies on an analytical formulation of the problem in each
layer, thus making it necessary to derive new equations for
every kind of material that can be encountered (isotropic
or anisotropic, elastic or poroelastic).

Finite Element (FE) modelling has the practical advan-
tage over analytical models that most constitutive laws and
couplings between materials are already implemented in
commercial codes. However meshing a large and simple
structure such as a plate can lead to high computational
times. The Wave-Finite Element (WFE) method is a re-

sponse to this issue in the case of large periodic structures.
It couples finite elements and the periodic structure the-
ory (also called Bloch’s theory), that has been successfully
used in the past for the analysis of free wave propagation
in mono- and bi-dimensional waveguides [8]. The WFE
was also used to compute vibroacoustic indicators such as
group velocities and modal densities for use in Statistical
Energy Analysis (SEA) [9, 10]. Extensions of this method
towards the calculation of forced responses of waveguides
have also been proposed [11], without considering fluid-
structure coupling. An application of 1D WFE formulation
was used by Serra et al. [12] for finite multilayers compris-
ing poroelastic materials, but the transfer approach neces-
sitated meshing the whole surface of the plate. An assess-
ment of wave methods can be found in [13], comparing 3
methods, namely TMM, the WFE+SEA procedure of [9]
and a Rayleigh-Ritz procedure.

Since the periodic structure theory deals primarily with
infinite structures, the WFE can be used to compute the
transmission loss of infinite plane structures excited by a
superposition of plane waves directly, without having to
resort to SEA. The derivation of this application is pro-
posed in this paper, making use of the WFE framework
for a plate with homogeneous properties in its plane. This
enables to model an arbitrary layering with the finite ele-
ment model of a single unit cell, which is just 1 element
wide in each of the plane’s dimensions, as in [14] and [15].
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This paper is structured as follows: the WFE model un-
der forced plane wave is presented in Section 2, with the
derivation of the formulation of the TL and absorption co-
efficient. The method is validated on several cases in Sec-
tion 3: an isotropic thin plate, an orthotropic plate, a sand-
wich construction with a soft viscoelastic core and a stiff
sandwich plate with honeycomb core. A discussion on the
element size closes this section. Finally, Section 4 presents
an application case in which the proposed method is used
to study the effect of the order of the layers in a composite
plate.

2. Forced response to an incident plane

wave

We consider a multilayered plate with one surface lying in
the plane z = 0. Each layer is considered homogeneous,
while this is of course not the case for the assembly. As
a homogeneous structure is periodic for any period, the
unit cell is a parallelepiped. It is modelled with standard
(8 nodes) brick elements. The FE discretisation has only
a single element in each of the x and y directions, and as
many as needed in the z direction.

2.1. Equilibrium formulation

Let D denote the dynamic stiffness matrix of the unit cell.
This matrix is computed from the finite element stiffness
and mass matrices K,M with the relationship

D = K − ω2M. (1)

Viscoelastic damping can be taken into account through a
complex part of the stiffness matrix K.

The equilibrium equation of the unit cell then writes

Du = f + e, (2)

where f represents the forces due to the interaction with the
neighbouring cells, and e the forces imposed on the plate
by the acoustic pressure fields on each side. As can be seen
in Figure 1, the displacement vector u can be partitioned
as

u =





u1

u2

u3

u4




. (3)

We now search for solutions as plane waves with the same
wave characteristics as the projection of the incident wave
on the plate, hence

u2 = λxu1,

u3 = λyu1,

u4 = λxλyu1,

Figure 1. FE model of a unit cell and notation for the applied
forces.

where λx = exp(ikxdx) and λy = exp(ikydy). The reduced
variable u1 can be used with the transformation

u =





I

λxI

λyI

λxλyI




u1 = Tu1, (4)

where I is the identity matrix.
The imposed pressure is condensed to forces exerted on

the nodes, and can be partitioned in the same way,

e = Te1. (5)

The internal forces exerted on each vertical segment are
derived from the stress field applied to the normal to the
two faces related to that segment. The linearity of the stress
tensor with respect to displacement field u and the previ-
ous periodicity relations lead to

f1 + λ−1
x f2 + λ−1

y f3 + λ−1
x λ−1

y f4 = 0, (6)

or T̃f = 0, where T̃ = I, λ−1
x I, λ

−1
y I, λ

−1
x λ−1

y I . Equation
(2) can then be premultiplied by T̃ and rewritten as

T̃DTu1 = T̃Te1 = 4e1. (7)

Let’s denote A =
1
4 T̃DT. We finally obtain the reduced

equation,

Au1 = e1, (8)

linking the forces and the displacements on one single seg-
ment instead of the initial four.

2.2. Acoustic coupling

We are concerned with an oblique incident plane wave im-
pinging the plate on one side, with a known amplitude pI .
The interaction between this incident wave and the plate
create a reflected wave on the same side, and a transmit-
ted wave on the other one, whose respective amplitudes
pR and pT we want to calculate. The sound field on the
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incident side is then the superposition of the incident and
reflected waves,

PI = p(x, y, z)|z>0

= pI exp (−ikz,Iz) + pR exp (+ikz,Iz) , (9)

where the common factor exp(i(ωt− kxx− kyy) has been
omitted for legibility. The wavenumber components sat-
isfy the relationship k2

x + k2
y + (kz,I )2 = k2

= (ω/cI )2

and cI is the speed of sound in the fluid on the incident
side. In the same way, the sound field on the transmission
side contains only the transmitted wave propagating in the
same direction as the incident wave,

PT = p(x, y, z)|z<0 = pT exp (−ikz,T z)) , (10)

with the relationship k2
x + k2

y + (kz,T )2 = (ω/cT )2, where
cT is the speed of sound in the fluid on the transmission
side. Potential phase difference between the pressure fields
are accounted for through the fact that the amplitudes pR
and pT may be complex. The wavenumbers kx and ky are
conserved across the plate, so only the kz component may
vary with the nature of the fluid. We will consider in the
following that the fluid is the same on both sides, thus ρI =
rhoT = ρ0 and cI = cT = c0.

In this case, the incidence angle θ is the angle between
the wave vector and the normal of the plate, while the
azimuthal angle φ gives its orientation in the plane. We
therefore have kx = k sin θ cosφ, ky = k sin θ sinφ and
kz = k cos θ.

The load imposed on the plate can be written from these
two pressure fields lumped on the nodes of the finite ele-
ment model. As the pressure force is exerted along the nor-
mal to the structure, the only non-zero terms in the vector
e1 of forces imposed on segment 1 will be those relative to
the DOFs in z-direction on the incident side, eI , and on the
transmission side eT . For an elastic material, these quanti-
ties are scalar. Let uO and eO denote the displacement and
force vectors on all other degrees of freedom in the seg-
ment. The force exerted on the nodes of segment 1 is then,
as shown in Figure 1

e1 =





eI
eO
eT



 =





S(pI + pR)
0

SpT



 , (11)

where S is the free surface of the element, which is iden-
tical on both sides. All other vectors and matrices can
be written following the same decomposition, allowing to
rewrite (8) as





aII AIO aIT
AOI AOO AOT

aTI ATO aTT









uI
uO
uT



 =





S(pI + pR)
0

SpT



 . (12)

The second line of (12) leads to

uO = −A−1
OO (AOIuI + AOTuT ) , (13)

which allows to condense this equation into

bII bIT
bTI bTT

uI
uT

=
S(pI + pR)

SpT
. (14)

The fluid-structure interaction is characterized by the con-
tinuity of normal particle velocity at the interface. This
writes for the incident side,

ρ0ω
2uI =

∂PI

∂z
= −ikz (pI − pR) , (15)

and for the transmission side:

ρ0ω
2uT =

∂PT

∂z
= −ikzpT . (16)

Introducing acoustic admittance Y0 = cos(θ)/(iωρ0c0),
we obtain

uI = Y0 (pI − pR) ,

uT = Y0pT .

These expressions for uI and uT can be re-injected into
(14), leading to two scalar equations linking the unknowns
pR and pT and the incident pressure pI ,




bII +
S

Y0
−bIT

bTI −bTT −
S

Y0





pR
pT

= pI
bII −

S

Y0
bTI

. (17)

Solving this equation gives the acoustic transparency τ =

|pT/pI |
2 and the absorption coefficient α = 1 − |pR/pI |2.

The transmission loss for a plane wave is then finally

TL = −10 log10 τ. (18)

This leads also to the diffuse field transmission loss by in-
tegrating over all possible incidences between minimum
and maximum bounds θ ∈ [θmin, θmax] and directions
φ ∈ [0, 2π]. It is recommended to avoid the full range
[0, π2 ] for θ because numerical errors occur close to graz-
ing incidences θ = π/2. However, θmin = 0 causes no
issue. The diffuse field transparency is then

τd =

2π

0

θmax

0
τ(ωθ, φ) sin θ cos θdθdφ

2π

0

θmax

0
sin θ cos θdθdφ

, (19)

and the diffuse field transmission loss

TLd(ω) = −10 log10 τd(ω). (20)

3. Validation results

In order to assess the validity of the method, a comparison
with various analytical models is performed in this sec-
tion. A discussion on the size of the elements to be used is
proposed in Section 3.5.
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Figure 2. Transmission loss of an infinite steel plate for an
oblique plane wave with θ = π/4 o: analytic model (plate),
+:TMM, —: current method, dx = 0.1 mm.

3.1. Isotropic plate

The first case is an isotropic aluminium plate, under two
different excitations: a 45o plane wave and a diffuse field.
The material parameters are the Young modulus E =

70 GPa, the Poisson ratio ν = 0.33, the density ρ =

2700 kg.m−3. The loss factor is η = 0.5%, which leads
to a complex Young’s modulus Ẽ = E(1 + iη). The unit
cell consists of 10 elements through the thickness, with an
overall thickness of 2 mm and lengths dx = dy = 0.1 mm.

Two kinds of analytical models are used for compar-
ison. The first one is based on the Kirchhoff-Love plate
assumption, while the other is the Transfer Matrix Method
(TMM) described in [7]. All three model agree very well
with each other, with a difference of less than 1 dB over
most of the frequency range, except in a tiny region around
the coincidence frequency, which is slightly underesti-
mated in the thin plate model. Because the TMM and the
current model agree in this region, this difference must be
due to the fact that the Kirchhoff-Love assumptions ne-
glect shear, while the other two use a 3D elasticity theory.

The diffuse field integration has been performed over
the range [0, 0.999π/2] to avoid numerical issues with
grazing incidence. The range was discretised with 1000
points. The three models are found in this case to agree up
to 1 dB over the whole frequency range, the small differ-
ence at coincidence disappearing because of the averaging
over 1000 incidence angles.

3.2. Orthotropic plate

The diffuse field transmission loss of an orthotropic plate
is compared against an analytical model [16]. The mate-
rial parameters are given in Table I, where E stands for
Young’s modulus, ν for Poisson’s ratios and G for shear
modulus. The TL results are presented in Figure 4 for fre-
quencies ranging between 100 Hz and 20 kHz. The mesh
of the unit cell has 10 elements in the z direction and
lengths dx = dy = 0.1 mm. Here again, the analytical and
current models agree well with each other, with an error

1000 2000 4000 10000 20000
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20

25
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35

40

Frequency (Hz)

T
L

(d
B

)

Current method

Analytic model

Figure 3. Diffuse field TL of an infinite steel plate +: analytical
model (thin plate), —: current method, dx = 0.1 mm.

Table I. Parameters of the orthotropic plate.

Ex Ey = Ez νxy = νxz νyz Gxy = Gxz

(GPa) (GPa) (–) (–) (GPa)

224 6.9 0.25 0.3 56.58

Gyz ρ η h

(GPa) (kg.m−3) (–) (mm)

1.38 1578 0.5% 50

100 400 1000 4000 10000
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Figure 4. Diffuse field TL of an orthotropic plate + analytic, -
current method. The difference is less than 1 dB on the whole
range (100 Hz, 20 kHz).

smaller than 1 dB over the whole range. There are two crit-
ical frequencies due to the very different Young’s moduli
in the x and y directions. An expression for these frequen-
cies can classically be derived from the analytical model,
and is given by the formula

fcrit,x =
c20

2π

12(1 − νxyνyx)ρ

Exh2
, (21)

where νyx = (Ey/Ex)νxy . The other critical frequency
fcrit,y is obtained by replacing Ex by Ey in (21). In this
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case, the frequencies obtained by these formulas agree
well with the dips observed in the TL curve.

3.3. Stiff sandwich plate

The 6th order constitutive equation for the bending of a
sandwich beam was given by Mead and Markus [17] and
later extended to a plate by Narayanan and Shanbhag [3].
The main assumptions are that the predominant deforma-
tion of the core is due to shear, while that of the skins is due
to pure bending. This implies that the Young modulus of
the core is high compared to the out-of-plane shear mod-
ulus. The model has five main parameters, namely skin
bending stiffness Dt, overall bending stiffness B, damping
η, surface mass m and shear parameter g. The constitutive
equation reads

Dt(1 + iη)∇6w − g(Dt + B)(1 + iη)∇4w

+m
∂2w

∂t2
−
mB

N

∂2

∂t2
∇2w = (∇2 − g)(pL − pR), (22)

where w = v/iω is the normal displacement of the plate.
In the considered frame where a forced wave is imposed
on the plate with a wavenumber k =

ω
c

sin θ, the spatial
derivative operator ∇ can be replaced by −ik. This leads
to the following expression of the impedance:

Z(ω, θ)=
Dtk

6
+ g(Dt+B)k4 − mω2 k2

+ g(1−ν2
s )

iω(k2 + g)
.

(23)

For sandwiches made of isotropic materials and identical
skins, the skin bending stiffness is Dt = Esh

3
s/[6(1 − ν2

s )]
the overall bending stiffness is B = Esh

2
chs(1+ hs/hc)2/2

and the shear parameter is g = 2Gc/(Eshshc), where Gc =

Gc,xz = Gc,yz is the core transverse shear modulus, Es and
νs = νs,xy are the in-plane Young’s modulus and Poisson
ratio of the skins, and hs (resp. hc) is the thickness of one
skin (resp. the core). In-plane core shear modulus and all
Young’s moduli of the core are neglected in the analytical
model.

The two models are compared between 1 kHz and
20 kHz on a sandwich plate with isotropic skins and or-
thotropic core impinged by a 45o plane wave. The param-
eters of the sandwich construction are given in Table II,
and the TL results shown in Figure 6. With a mesh using
3 elements for each skin and 45 for the core, and again
dx = dy = 0.1 mm, the two models differ also by less
than 1 dB in the whole range. Since the analytical model
takes shear into account, the agreement is also excellent at
coincidence.

3.4. Sandwich plate with soft core

The same calculation was made with a thick sandwich
plate made of a rather soft isotropic core and thick skins.
The material properties are described in Table III. The
transmission loss curve is shown on Figure 6. Again this
correlates well with the analytical TMM, with a maximum
error of 1 dB over the considered range. Three dips in TL

Table II. Parameters of the stiff sandwich plate.

Ex (GPa) Ez (GPa) ρ (kg.m−3) ν

Skin 70 70 2700 0.33
Core 0.08 8 8 0.1

Gxy (MPa) Gxz (MPa) Gyz (MPa) h (mm)

Skin 26310 26310 26310 2
Core 0.04 4 4 30

Table III. Parameters of the soft sandwich plate.

E (MPa) ν ρ (kg.m−3) h (mm)

Skin 8300 0.15 629.9 6.35
Core 8.3 0 16 38.1
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Figure 5. TL of a sandwich plate impinged by a 45o plane wave.
+: Analytical model, — current method.
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Figure 6. Transmission loss for the sandwich plate impinged by
a 45o plane wave o TMM (analytic) — current method.

can be observed between 1 kHz and 6 kHz, correspond-
ing to coincidence frequencies. The first two drops around
1730 Hz and 5470 Hz are due to coincidences with a wave
having a symmetric motion of the skin and compression
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Figure 7. Dispersion curves of the out-of-plane waves of the soft
sandwich structure and trace wavenumber of the incident acous-
tic plane wave at 45o.

in the core, while the third one around 5620 Hz is due to
coincidence with the bending wave. The dispersion curves
for these two waves are presented in Figure 7.

The displacement field can be calculated back from
(13). They are displayed at several frequencies on Fig-
ure 8. The first one is related to the symmetric motion
of the skins (Figure 8a), while the second is related to a
global bending motion of the sandwich, or antisymmetric
motion of the skins (Figure 8b). In both cases, it can be ob-
served that a shearing motion of the skins is involved, due
to their rather high thickness. In the antisymmetric case,
the cross-section remain straight and vertical, indicating
that only shear is at stake, with practically no bending mo-
tion.

The field represented on Figure 8c is at a frequency be-
tween the two coincidences, showing a decoupling of the
two skins. On the latter example, it may be noted that the
amplitude of the z-displacement is higher on the transmis-
sion side than on the incident side, yet the amplitude of the
transmitted wave is of course smaller than that of the inci-
dent wave. This is due to the fact that the pressure field on
the incident side is result of interference between incident
and reflected waves, while the transmitted field consists of
a single plane wave.

3.5. Discussion on element size

In the validation cases presented in this section, the mesh
parameters are chosen so as to ensure convergence with
the TMM model, which is based on 3D isotropic elastic
theory and therefore exact in this case. A coarser mesh
leads to errors in the coincidence frequency region. Of all
the waves considered in acoustic transmission, the acous-
tic wave in the fluid has the shortest wavelength, at the
highest frequency (20 kHz) considered in all these cases.
Since it is imposed on the structure at grazing incidence,
it is relevant to compare the mesh size to it. The element
sizes in x and y directions must therefore satisfy about 100
elements per wavelength, which is much stricter than the
usual 10 elements per wavelength used for finite elements.

(a)

(b)

(c)

Figure 8. Displacement fields at several frequencies. The color
indicates the absolute value of the z-displacement, in meters, for
an incident amplitude of 1Pa. The incident wave comes from the
top. (a) Symmetric coincidence at 5472 Hz. (b) Antisymmetric
coincidence at 5623 Hz. (c) Displacement field at 5548 Hz.

Since there is only one element in the in-plane directions,
this has no impact on the number of degrees of freedom in
the mesh. However, the results are also found to be quite
sensitive to the aspect ratio of the elements, which means
that the element size in the z-direction must be about the
same as that in the plane. For thick layers, a small dx may
thus lead to a high number of elements through the thick-
ness. On the other hand, it also sets a maximum size for dx
and dy, since there must be at least one element per layer.
Above 10 kHz, this latter limit is usually less restrictive
than the “100 element per wavelength” criterion for plates
with thickness in the order of 1cm or less.

4. Influence of stacking on the transmission

loss

The current approach can be used to study the influence of
the stacking sequence of a multilayer plate on the TL. We
consider a 1.6 mm thick composite plate made of 24 layers
of the same transverse isotropic material described in Ta-
ble IV in order to study the effect of the stacking sequence
on the TL. Three different stacking sequences have been
studied, which are described in Table V. All of these have
the same proportion of layers with fibres oriented towards
each direction, at -45, 0, 45 or 90 degrees of the global
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Table IV. Material parameters of a single layer. For a transverse
isotropic material, we have Ey = Ez, νxz = νxy and Gxz = Gxy .

Ex Ez νxy νyz Gxy

(GPa) (GPa) (–) (–) (GPa)

175.0 6.90 0.2542 0.4689 4.18

Gyz ρ η h

(GPa) (kg.m−3) (%) (µm)

2.35 1520 0.1 67

Table V. The three stacking configurations.

Initial [453;−453; 03; 903]s
Sorted [−456; 06; 456; 906]
Random [0; 90;−45; 90; 45; 03;−45; 90;−45;45;90;

−45; 0;90;−45; 452; 90;−45; 45; 0; 45]

coordinate system, orientation 0 being aligned with the x
axis. The layers are supposed to be perfectly bonded to
each other, so the FE model ensures continuity of displace-
ments at the interfaces. The three configuration are a clas-
sical symmetric quasi-isotropic stacking (“initial” config-
uration in Table V), a random permutation of it (“random”
case), and a grouping of the same orientation in ascending
order (“sorted” case).

The TL was computed for these three sequences with
the method described above, using 2 elements per layer
and a mesh size of 0.1 mm in the x and y directions. The
results are presented in Figure 9.

Concerning the low frequency behaviour, it can be seen
that the stacking sequence has practically no influence for
frequencies below 2 kHz, and little up to 4 kHz. This is
due to the fact that below this frequency, the plate behaves
according to the mass law, and the actual stiffness has no
effect on TL.

In high frequencies (above 8 kHz), the random and
initial stacking sequences have the same asymptotic be-
haviour. This is due to the dominant effect of damping
on the high-frequency TL, above the highest critical fre-
quency. These effects have been studied in [18]. The sorted
case exhibits the same asymptotic behaviour, which is only
visible for much higher frequencies, above 20 kHz and
thus not represented on Figure 9

Between these, all configurations present a coincidence
region, characterized by a lower TL. Because of the pres-
ence of different layer orientations, the coincidence zone
of all plates is strictly contained between the two extreme
critical frequencies of a plate where all layers are iden-
tically oriented. These bounds are given by (21), which
yields for this material fcrit,x = 3770 Hz and fcrit,y =

19 kHz. The random and initial configurations exhibit only
one dip, indicating that they behave closely to an isotropic
plate in this respect. This is due to a good repartition of the
layer orientations throughout the thickness. On the other
hand, the sorted stacking exhibits a wide coincidence re-
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Figure 9. Diffuse field transmission loss for 3 different stacking
sequences.
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Figure 10. Wavenumbers as a function of direction angle φ at
7 kHz for the 3 stacking sequences.

gion with two critical frequencies, a behaviour that is sim-
ilar to that of an orthotropic plate.

The coincidence phenomenon is illustrated in Figure 10,
which shows the free propagating wavenumbers as a func-
tion of direction φ at a frequency of 7 kHz, which is in the
coincidence region for all 3 cases. These results were ob-
tained with a WFE calculation using the same mesh. The
acoustic trace wavenumber ka = 2πf/c0 is represented
for a grazing incidence, and does not depend on φ. The
random stacking k-space has a shape close to a circle, and
lies mostly below ka. The initial stacking has a more dis-
torted k-space, partly above and partly below the acous-
tic wavenumber, but the deviation to the circle remains
small, hence the narrow coincidence region. Finally, the
sorted case has a very stretched k-space, close to an el-
lipse with major axis oriented around −π/6 radians, which
also crosses the ka circle. This behaviour is related to the

7



strongly inhomogeneous nature of this stacking case: for
a wave with direction φ = 0, the stiffest layer (oriented
along the fibers) is on the outer part of the plate, while a
wave with φ = π/4 “sees” the stiffest layer close to the
central plane.

5. Conclusion

A new method for computing the transmission loss of
infinite plates made of arbitrarily layered materials has
been presented in this paper. The originality of the ap-
proach is that it couples the periodic structure theory to
finite elements as in the WFE method, while taking into
account the coupling with an acoustic fluid analytically.
The method is validated against classical analytic Transfer
Matrix Method computation for isotropic, orthotropic and
sandwich constructions. The main interest of the method
is that it natively takes into account complex behaviour of
the structure, such as symmetric motion of the skins with
respect to the neutral plane. Besides, the use of finite ele-
ments makes it easy to retrieve the displacement field in-
side the structure. The computation time is much higher
than that of analytical methods, but remains low, typically
up to about 10ms per frequency for a plane wave. A possi-
ble use of this method is the validation of analytical model
for multilayers.

An application case is proposed to study the effect of
the stacking sequence of a layered composite plate on the
diffuse field TL. It is shown that the stacking sequence has
an effect on the width of the coincidence range, and little
influence outside it, the low frequencies being governed by
mass law and the higher by damping effects. The most ex-
treme case of a sorted stacking shows a wide coincidence
zone limited by two critical frequencies, while the random
permutation exhibits a dip in a narrower zone around the
lowest critical frequency (7 kHz in this case). In applicat
ions where noise control is important at frequencies cor-
responding to the coincidence range, stacking sequence
should therefore be considered for acoustic criteria too.
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