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. Our second main contribution is to provide a simpler equivalent formulation for this Hamilton-Jacobi equation using directional derivatives and exposed points, which we think is interesting for its own sake as the associated comparison principle has a very simple proof which avoids all the technical machinery of viscosity solutions.

Introduction

The present work contributes to the literature on zero-sum differential games with incomplete information, and is more precisely related to the model of differential games with asymmetric information developed in Cardaliaguet [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF] which already led to various extensions and generalizations (see e.g. Cardaliaguet [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF], Cardaliaguet and Rainer [START_REF] Cardaliaguet | Stochastic Differential Games with Asymmetric Information[END_REF][7] [START_REF] Cardaliaguet | Games with incomplete information in continuous time and for continuous types[END_REF], Grün [START_REF] Grün | On Dynkin games with incomplete information[END_REF] [START_REF] Grün | A BSDE approach to stochastic differential games with incomplete information[END_REF], Oliu-Barton [START_REF] Oliu-Barton | Differential Games with Asymmetric and Correlated Information[END_REF], Buckdahn, Quinquampoix, Rainer and Xu [START_REF] Buckdahn | Differential games with asymmetric information and without Isaacs' condition[END_REF], Jimenez, Quincampoix and Xu [START_REF] Jimenez | Differential games with incomplete information on a continuum of initial positions and without Isaacs condition[END_REF], Wu [START_REF] Wu | Existence of value for differential games with incomplete information and signals on initial states and payoffs[END_REF], Jimenez and Quincampoix [START_REF] Jimenez | Hamilton Jacobi Isaacs equations for differential games with asymmetric information on probabilistic initial condition[END_REF]).

Most of the literature on zero-sum dynamic games with asymmetric information, including the above mentioned works, deals with models where the payoff-relevant parameters of the game that are partially unknown (say information parameters) do not evolve over time. Some recent works focus on models of dynamic games with asymmetric information and evolving information parameters. Discrete-time models were analyzed in Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side Math of Oper[END_REF], Neyman [START_REF] Neyman | Existence of optimal strategies in Markov games with incomplete information[END_REF], Gensbittel and Renault [START_REF] Gensbittel | The value of Markov Chain Games with incomplete information on both sides[END_REF]; some continuous-time models were analyzed using an approximating sequence of discrete-time games in Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], 1 Gensbittel [START_REF] Gensbittel | Continuous-time limit of dynamic games with incomplete information and a more informed player[END_REF] and Gensbittel and Rainer [START_REF] Gensbittel | A two player zero-sum game where only one player observes a Brownian motion[END_REF], and a model of continuous-time stopping game was analyzed in Gensbittel and Grün [START_REF] Gensbittel | Zero-sum stopping games with asymmetric information[END_REF].

In this paper we consider a two player zero-sum stochastic differential game with asymmetric information. The payoff depends on some continuous time controlled Markov chain (X t ) t≥0 with finite state space K, having a commonly known initial law p and infinitesimal generator R(u t , v t ) t≥0 where u t and v t are respectively the controls of player 1 and player 2. We assume that X is only observed by player 1 while the controls are publicly observed, so that the control u t depends on the trajectory of X up to time t while the control v t does not. The payoff of player 1 is given by

E[ ∞ 0 re -rt g(X t , u t , v t )dt],
where r is the discount factor and g is a bounded payoff function. This model is therefore a continuous-time version of the model of discrete-time stochastic games with discounted payoffs where the state variable is only observed by player 1 and actions are publicly observed. In particular, there is incomplete information about a stochastic process evolving over time. We prove that this game has a value W (p) when players are allowed to use suitable mixed non-anticipative strategies and provide a variational characterization for W .

This model is was already studied by Cardaliaguet, Rainer, Rosenberg and Vieille in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF]. However, the analysis in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF] was only done through an approximating sequence of discretetime games in which the players play more and more frequently. Let us emphasize that no formal definition of the continuous-time game was given in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF].

In this work, we define the continuous-time game formally and prove the existence of the value W (p) in the continuous-time model directly. We prove that W is the unique solution of the same Hamilton-Jacobi equation with convexity constraints that was introduced in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF] to characterize the limit of the values of the discrete-time games along the approximating sequence.

Our second main contribution is to obtain an equivalent simpler formulation for this Hamilton-Jacobi equation which is reminiscent of the variational representation for the value of repeated games with asymmetric information given by Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with incomplete information[END_REF] and actually inspired by the notion of dual solution initially proposed by Cardaliaguet in [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF] (see also Gensbittel and Grün [START_REF] Gensbittel | Zero-sum stopping games with asymmetric information[END_REF] for a similar formulation in the context of stopping games). One of the main advantage of such a formulation is that the associated comparison principle has a very simple proof which avoids all the complex machinery of viscosity solutions.

The paper is structured as follows. In section 2 we give a formal description of the model and state the main results. In section 3, we analyze the Hamilton-Jacobi equation with convexity constraints introduced in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF] and provide an equivalent simpler formulation together with a simple proof of the associated comparison principle. In section 4, we prove that the game has a value which is the unique solution of the Hamilton-Jacobi equation analyzed in section 3.

Let us define S = {([0, 1] n , B([0, 1] n ), Leb ⊗n ), n ≥ 1}, where Leb denotes the Lebesgue measure. S is the family of probability spaces available to the players and is stable by products.

Definition 2.2. A pure strategy for player 2 is a measurable map β : U → V such that there exists a grid

T = {t i , i ≥ 0} such that ∀t ≥ 0, β(u) t = i≥0 1 (t i ,t i+1 ] (t)β i (u| [0,t i ] ),
where for all i ≥ 0,

β i : U t i → V is measurable. The set of pure strategies of player 2 is denoted T . A mixed strategy for player 2 is a pair ((M β , A β , λ β ), β) where (M β , A β , λ β ) is a probability space in S and β : M β ×U → V is a measurable map such that there exists a grid T = {t i , i ≥ 0} such that ∀t ≥ 0, β(ξ β , u) t = i≥0 1 (t i ,t i+1 ] (t)β i (ξ β , u| [0,t i ] ),
where for all i ≥ 0,

β i : M β × U t i → V is measurable. The set of mixed strategies of player 2 is denoted T . Note that for all ξ β ∈ M β , β(ξ β , .
) is a pure strategy with grid T that will be denoted β(ξ β ).

A pure strategy for player 1 is a measurable map α : Ω × V → U such that there exists a grid

T = {t i , i ≥ 0} with ∀t ≥ 0, α(ω, v) t = i≥0 1 (t i ,t i+1 ] (t)α i (ω| [0,t i ] , v| [0,t i ] ),
where for all i ≥ 0, α i : Ω t i × V t i → U is measurable. The set of pure strategies of player 1 is denoted Σ.

A mixed strategy for player 1 is a pair ((M α , A α , λ α ), α) where (M α , A α , λ α ) is a probability space in S and α : M α × Ω × V → U is a measurable map such that there exists a grid

T = {t i , i ≥ 0} such that ∀t ≥ 0, α(ξ α , ω, v) t = i≥0 1 (t i ,t i+1 ] (t)α i (ξ α , ω| [0,t i ] , v| [0,t i ] ),
where for all i ≥ 0,

α i : M α × Ω t i × V t i → U is measurable. The set of mixed strategies of player 1 is denoted Σ. Note that for all ξ α ∈ M α , α(ξ α , .
) is a pure strategy with grid T that will be denoted α(ξ α ).

We will simply write α (resp. β) instead of ((M α , A α , λ α ), α) (resp. ((M β , A β , λ β ), β)) whenever there is no risk of confusion.

We will identify pure strategies as particular mixed strategies in which the probability space is reduced to as single point.

Remark 2.3. According to the above definition, the value at time 0 of all the controls induced by a strategy is fixed to be zero. However, the measurable maps appearing in the definition of the strategies do not depend on this value since the atoms of the Borel σ-algebra of U t and V t for t ≥ 0 are equivalence classes of functions with respect to equality Lebesgue almost everywhere. Note also that with our definition of U 0 and V 0 , the value of a control induced by strategy on the first interval (t 0 , t 1 ] of the grid does not depend on the control of his opponent. Moreover, the reader may check that the probabilities on Ω we consider later do not depend on the value at zero of the controls, and this will be implicitly used when proving dynamic programming inequalities since we will consider continuation controls for which formally the value at time zero is not zero.

The next lemma contains an obvious but useful remark.

Lemma 2.4. Let ((M α , A α , λ α ), α) ∈ Σ with grid T = {t i , i ≥ 0}, and T = { ti , i ≥ 0} a grid finer than T . There exists a mixed strategy ((M α , A α , λ α ), ᾱ) with grid T such that:

∀ξ α ∈ M α , ∀ω ∈ Ω, ∀v ∈ V, α(ξ α , ω, v) = ᾱ(ξ α , ω, v).
The same is true for mixed strategies of Player 2.

Proof. Let ᾱ = q≥0 1 ( tq, tq+1 ]
ᾱq , where for all q ≥ 0 we define

∀(ω, v) ∈ Ω tq × V tq , ᾱq (ω, v) = α n (ω| [0,tn] , v| [0,tn] ).
where n is the unique integer such that ( tq , tq+1 ] ⊂ (t n , t n+1 ]. The verification that the maps α and α ′ coincide is straightforward. The proof for strategies of player 2 is similar.

The main advantage of the non-anticipative strategies with grids (or with delay) is that we may define the game using strategies against strategies rather than using strategies against controls. This is due to the following standard result. Lemma 2.5. For all pairs of pure strategies (α, β) ∈ Σ × T and for all ω ∈ Ω, there exists a unique pair

(u α,β , v α,β )(ω) ∈ U × V such that ∀ω ∈ Ω, v α,β (ω) = β(u α,β (ω)), u α,β (ω) = α(ω, v α,β (ω)).
(2.1)

The process (ω, t) ∈ Ω×[0, ∞) → (u α,β , v α,β )(ω) t is F X -adapted, left-continuous and piecewise constant on the grid T = {t i , i ≥ 0} obtained by taking the union the two grids associated to α and β, and therefore F X -predictable.

For all pairs of mixed strategies (α, β) ∈ Σ × T , we use the notation

(u α,β , v α,β )(ξ α , ξ β , ω) = (u α(ξα),β(ξ β ) , v α(ξα),β(ξ β ) )(ω).
If T = {t i , i ≥ 0} denotes a common grid to α and β, then for all i ≥ 0, the maps

(ξ α , ξ β , ω [0,t i ] ) → (u i , v i ) are measurable where (u i , v i ) denotes the value of (u α,β , v α,β ) on the interval (t i , t i+1 ].
Proof. When (α, β) are pure strategies, we may assume thanks to Lemma 2.4 that they have the same grid T = {t i , i ≥} obtained by taking the union the two grids associated to α and β. Define (u α,β , v α,β ) = i≥0 1 (t i ,t i+1 ] (u i , v i ) where the maps u i : Ω t i → U and v i : Ω t i → V are defined by induction on i ≥ 0 through the formulas

u i (ω| [0,t i ] ) = α i ω [0,t i ] , i-1 m=0 1 (tm,t m+1 ] v m (ω| [0,tm] ) , v i (ω| [0,t i ] ) = β i i-1 m=0 1 (tm,t m+1 ] u m (ω| [0,tm] ) .
That (u α,β , v α,β ) is the unique solution of (2.1) follows by noticing that (2.1) is equivalent to the above system of equations defining the maps (u i , v i ). The other properties follow directly from the definition.

When (α, β) are mixed strategies, we have (u α,β , v α,β ) = i≥0 1 (t i ,t i+1 ] (u i , v i ) where the maps

u i : M α × M β × Ω t i → U and v i : M α × M β × Ω t i →
V are defined by induction on i ≥ 0 through the formulas

u i (ξ α , ξ β , ω| [0,t i ] ) = α i ξ α , ω [0,t i ] , i-1 m=0 1 (tm,t m+1 ] v m (ξ α , ξ β , ω [0,tm] ) , v i (ξ α , ξ β , ω| [0,t i ] ) = β i ξ β , i-1 m=0 1 (tm,t m+1 ] u m (ξ α , ξ β , ω [0,tm] ) .
The required measurability property follows therefore by composition.

Construction of controlled Markov chains

The next lemma shows how to construct a controlled Markov chain associated to any pair of controls of the players, and lists the important properties that will be used in section 4 to prove dynamic programming inequalities.

Lemma 2.6.

1. For all p ∈ ∆(K) and all F X -predictable controls (u, v) with values in U × V that are left-continuous and piecewise-constant over a grid T , there exists a probability P u,v p on the space Ω such that the canonical process X is a controlled jump process with initial law p and F X -intensity R(u, v). Moreover, P u,v p has the following properties:

a) P u,v p = k∈K p k P u,v δ K , b)
The process e -t 0 ⊤ R(us,vs)ds δ Xt is a (P u,v p , F X ) martingale where for a matrix M , ⊤ M denotes its transpose, c) For all ε ≥ 0, define ( Xs ) s≥0 = (X ε+s ) s≥0 and for all ω ε ∈ Ω ε , let the F Xpredictable processes (ū(ω ε )), v(ω ε )) be defined by

∀ω ∈ Ω, ∀t ≥ 0, (ū(ω ε ), v(ω ε ))(ω, t) = (u, v)(ω ε ⊕ ε-ω, t).
where

ω ε ⊕ ε-ω(t) = 1 [0,ε) (t)ω ε (t) + 1 [ε,∞) (t)ω(t -ε). Then, the conditional law of X given F X ε under P u,v p is P ū(X| [0,ε] ),v(X| [0,ε] ) δ Xε .
Given any pair of strategies (α, β) ∈ Σ × T , we use the notation P α,β p = P u α,β ,v α,β p .

2. For all (α, β) ∈ Σ × T the map

(ξ α , ξ β ) → P α(ξα),β(ξ β ) p
, is a transition probability from (M α × M β , A α ⊗ A β ) to (Ω, F) and we define the probability

P α,β p on M α × M β × Ω by ∀A ∈ A α ⊗ A β ⊗ F, P α,β p (A) = Mα M β E α(ξα),β(ξ β ) p [1 A ]dλ α (ξ α )dλ β (ξ β ).
Remark 2.7. Note that we may also define the law P u,v p by concatenation since we consider only piecewise-constant controls. We prefer the construction given in the proof below as it can be easily generalized to a larger class of controls that are not piecewise-constant and is actually simpler to manipulate.

Proof. We starts with the proof of 1). Consider the intensity matrix R 0 = (R 0 i,j ) i,j∈K defined by R 0 i,j = 1 whenever i = j and R 0 i,i = -(|K| -1) for all i ∈ K. It is well-known that there exists a probability P p on (Ω, F) under which the canonical process (X t ) t≥0 is a Markov chain with initial law p and transition matrix R 0 . Moreover, the Markov property implies that

P p = k∈K p k P δ k .
For all (i, j) ∈ K 2 such that i = j, define the process N i,j by

∀t ≥ 0, N i,j t = 0<s≤t 1 X t-=i 1 Xt=j ,
which counts the number of jumps of X from i to j. This process is a counting process with (P p , F X )-intensity (1 Xt=i ) t≥0 (see e.g. chapter I in Bremaud [START_REF] Bremaud | Point Processes and Queues: Martingale Dynamics[END_REF]). Note that for all t ≥ 0, (i,j)∈K 2 : i =j N i,j t < ∞ for all ω since we work on the space of càdlàg trajectories taking values in a finite set.

Thanks to the assumptions on (u, v), the process R(u, v) = (R(u, v) i,j ) (i,j)∈K 2 is F Xpredictable and bounded. Define the density process L u,v (X) by

∀t ≥ 0, L u,v t = (i,j)∈K 2 : i =j L u,v,i,j t , where L u,v,i,j t = exp t 0 1 Xs=i (1 -R(u s , v s ) i,j )ds s∈(0,t] : ∆N i,j s >0 R(u s , v s ) i,j .
According to theorems T2,T4 chapter VI.2 in [START_REF] Bremaud | Point Processes and Queues: Martingale Dynamics[END_REF], the process L u,v is a (P p , F X ) martingale. We may therefore apply theorem 4.1 p.141 in Parthasarathy [START_REF] Parthasarathy | Probability measures on metric spaces[END_REF], which implies that there exists a unique probability P u,v p on (Ω, F) satisfying

∀t ≥ 0, dP u,v p dP p | F X t = L u,v t .
Applying theorem T3 chapter VI.2 in [START_REF] Bremaud | Point Processes and Queues: Martingale Dynamics[END_REF], we deduce that the probability P u,v p is such that P u,v p is the law of a controlled jump process with initial law p and F X -intensity R(u, v). Property a) follows therefore directly from the definition of P u,v p together with the corresponding property for P p .

Let us prove point b). Consider the matrix valued F X -predictable process t → e -t 0 ⊤ R(us,vs)ds and let (y k,ℓ (t)) (k,ℓ)∈K 2 denote its coordinates. For all (k, ℓ) ∈ K 2 , we have

∀t ≥ 0, y k,ℓ (t) = 1 k=ℓ - t 0 i∈K y k,i (s) ⊤ R(u s , v s ) i,ℓ ds. Using that R(u s , v s ) is a transition matrix, we have ⊤ R(u s , v s ) ℓ,ℓ = -i∈K : i =ℓ ⊤ R(u s , v s ) i,ℓ and therefore ∀t ≥ 0, y k,ℓ (t) = 1 k=ℓ - t 0 i∈K : i =ℓ ⊤ R(u s , v s ) i,ℓ (y k,i (s) -y k,ℓ (s))ds
From this equality, we deduce that

∀t ≥ 0, y k,Xt (t) = 1 k=X 0 + t 0 (i,ℓ)∈K 2 : i =ℓ (y k,i (s) -y k,ℓ (s))(dN i,ℓ s -⊤ R(u s , v s )1 Xs=ℓ ds).
Applying theorem T6 chapter I.3 in [START_REF] Bremaud | Point Processes and Queues: Martingale Dynamics[END_REF], we deduce that the process

M t = e -t 0 ⊤ R(us,vs)ds δ Xt = (y k,Xt ) k∈K is a (P u,v p , F X ) martingale. Let us prove point c).
Recall that under the probability P p , the conditional law of X given F X ε is P δ Xε thanks to the Markov property. From the definition of L u,v , we have with obvious notations

L u,v ε+s (X) = L u,v ε (X)L ū(X| [0,ε] ),v(X| [0,ε] ) s ( X).
Using the formula for conditional expectations and densities, we have for all T ≥ 0 and all

A ∈ F X T E u,v p [1 A ( X)|F X ε ] = E p [1 A ( X)L ū(X| [0,ε] ),v(X| [0,ε] ) T ( X)|F X ε ] = Ω 1 A × L ū(X| [0,ε] ),v(X| [0,ε] ) T dP δ Xε = P ū(X| [0,ε] ),v(X| [0,ε] ) δ Xε (A).
This equality can be extended to all A ∈ F by a monotone class argument and this proves the result. Let us prove 2). Consider a pair of mixed strategies (α, β). Thanks to Lemma 2.4, we may we assume that they have a the same grid

T = {t i , i ≥ 0}. Let (u n , v n )(ξ α , ξ β , ω) denote the value of (u α,β , v α,β ) on the interval (t n , t n+1 ]. We have for all A ∈ F X t with t ∈ (t n , t n+1 ] P α(ξα),β(ξ β ) p [A] = E p [L α,β t n+1 1 A (X)],
where the variables L α,β tn (ξ α , ξ β , ω) are defined by induction by L α,β 0 = 1 and

L α,β t n+1 = L α,β tn exp   i∈K t n+1 tn   |K| -1 - j =i R(u n , v n ) i,j   1 Xs=1 ds   × tn<s≤t n+1 : X s-=Xs R(u n , v n ) X s-,Xs .
The above expression, together with lemma 2.5 and Fubini theorem implies that

(ξ α , ξ β ) → P α(ξα),β(ξ β ) p [A],
is Borel measurable. By a monotone class argument, this property extends to all A ∈ F and therefore the above map is a well-defined transition probability from M α × M β to (Ω, F).

We can therefore define the probability

P α,β p on M α × M β × Ω by ∀A ∈ A α ⊗ A β ⊗ F, P α,β p (A) = Mα M β P α(ξα),β(ξ β ) p [A]dλ α (ξ)dλ β (ζ).

Payoffs

Definition 2.8. For all p ∈ ∆(K) and all (α, β) ∈ Σ × T , we define

J(p, α, β) = E α,β p [ ∞ 0 re -rt g(X t , u α,β t , v α,β t )dt] = Mα M β E α(ξα),β(ξ β ) p [ ∞ 0 re -rt g(X t , u α,β t , v α,β t )dt]dλ α (ξ α )dλ β (ξ β ).
We define the lower and upper value functions of the game by:

∀p ∈ ∆(K), W -(p) = sup α∈ Σ inf β∈ T J(p, α, β) ∀p ∈ ∆(K), W + (p) = inf β∈ T sup α∈ Σ J(p, α, β)
We always have W -≤ W + and the game is said to have a value W if

W = W -= W + .

Isaacs condition

We assume that the value H(p, z) of the "infinitesimal game" with symmetric information and prior p exists, i.e. for all (p, z)

∈ ∆(K) × R K : H(p, z) = sup u∈U inf v∈V ⊤ R(u, v)p, z + rg(p, u, v) (2.2) = inf v∈V sup u∈U ⊤ R(u, v)p, z + rg(p, u, v), where g(p, u, v) = k∈K p k g(k, u, v).
The following lemma collects standard properties of W -, W + and H.

Lemma 2.9. We have for all p ∈ ∆(K):

W -(p) = sup α∈ Σ inf β∈T J(p, α, β) W + (p) = inf β∈ T sup α∈Σ J(p, α, β).
W + and W -are concave and |K|-Lipschitz functions.

There exists a constant C such that all z, z ′ ∈ R K , and p, p ′ ∈ ∆(K)

|H(p, z) -H(p ′ , z ′ )| ≤ C(|z -z ′ | + |z||p -p ′ |).
Proof. The first two equalities follow from standard arguments.

For all (α, β) ∈ Σ × T and p, p ′ ∈ ∆(K), we have

|J(p, α, β) -J(p ′ , α, β)| ≤ k∈K |p k -p ′ k ||J(δ k , α, β)| ≤ |K||p -p ′ |,
where we used that P u,v p = k∈K p k P u,v δ k and g ∞ ≤ 1. The fact that W -and W + are |K| Lipschitz follows then from standard arguments.

Let us prove that W + is concave. For all p ∈ ∆(K), we have

W + (p) = inf β∈ T sup α∈Σ J(p, α, β) = inf β∈ T sup α∈Σ k∈K p k J(δ k , α, β) ≤ inf β∈ T k∈K p k sup α∈Σ J(δ k , α, β).
We claim that the last inequality is actually an equality. Indeed, let ε > 0 and β ∈ T . For all k ∈ K, let α k ∈ Σ such that

J(δ k , α k , β) ≥ sup α∈Σ J(δ k , α, β) -ε Define a strategy ᾱ ∈ Σ by ∀ω ∈ Ω, ∀v ∈ V, ᾱ(ω, v) = k∈K 1 ω(0)=k α k (ω, v).
Note that ᾱ is a well-defined strategy since ω(0) is a measurable map of ω| [0,t] for all t. With this definition, we have for all

k ∈ K J(δ k , ᾱ, β) = E ᾱ,β δ k [ ∞ 0 re -rt g(X t , u ᾱ,β t , v ᾱ,β t )dt] = E α k ,β δ k [ ∞ 0 re -rt g(X t , u α k ,β t , v α k ,β t )dt] = J(δ k , α k , β), since the processes (u ᾱ,β t , v ᾱ,β t )(ξ β ) and (u α k ,β t , v α k ,β t )(ξ β ) are equal P δ k almost surely for all ξ β ∈ M β . It follows that J(p, ᾱ, β) = k∈K p k J(δ k , ᾱ, β) = k∈K J(δ k , α k , β) ≥ k∈K p k sup α∈Σ J(δ k , α, β) -ε,
and the claim follows by sending ε to zero. To conclude, note that

W + (p) = inf β∈ T k∈K p k sup α∈Σ J(δ k , α, β),
and thus W + is concave as an infimum of affine maps.

Let us prove that W -is concave. The proof relies on the classical splitting method. Let p 1 , p 2 ∈ ∆(K) and s ∈ [0, 1], and define p = sp 1 + (1s)p 2 . Let ε > 0 and for i = 1, 2, let

α i ∈ Σ such that inf β∈T J(p i , α i , β) ≥ W -(p i ) -ε.
We define now mixed strategies ᾱ and (ᾱ k ) k∈K having the same probability space (M ᾱ, A ᾱ, λ ᾱ) defined by

M ᾱ = [0, 1] × M α 1 × M α 2 , A ᾱ = B([0, 1]) ⊗ A α 1 ⊗ A α 2 , λ ᾱ = Leb ⊗ λ α 2 ⊗ λ α 2 ,
where Leb denotes the Lebesgue measure on [0, 1]. A typical element of M α will be denoted (ζ, ξ α 1 , ξ α 2 ). For all k ∈ K, the strategy ᾱk is defined by

ᾱk (ζ, ξ α 1 , ξ α 2 , ω) = 1 ζ≤m k α 1 (ξ α 1 , ω) + 1 ζ>m k α 2 (ξ α 2 , ω),
and ᾱ is defined by

ᾱ(ζ, ξ α 1 , ξ α 2 , ω) = k∈K 1 ω(0)=k ᾱk (ζ, ξ α 1 , ξ α 2 , ω),
where the numbers (m k ) k∈K are defined by

m k = sp 1 k p k 1 p k >0 .
As above, with this definition, we have for all β ∈ T and all k ∈ K,

J(δ k , ᾱ, β) = J(δ k , ᾱk , β).
It follows that (integrating with respect to ζ)

J(p, ᾱ, β) = k∈K p k J(δ k , ᾱk , β) = k∈K p k (m k J(δ k , α 1 , β) + (1 -m k )J(δ k , α 2 , β)) = sJ(p 1 , α 1 , β) + (1 -s)J(p 2 , α 2 , β).
We obtain

W -(p) ≥ inf β∈T J(p, ᾱ, β) = inf β∈T sJ(p 1 , α 1 , β) + (1 -s)J(p 2 , α 2 , β) ≥ s inf β∈T J(p 1 , α 1 , β) + (1 -s) inf β∈T J(p 2 , α 2 , β) ≥ sW -(p 1 ) + (1 -s)W -(p 2 ) -ε,
and the proof follows by sending ε to zero.

The last statement follows from the fact that for all (u, v) ∈ U × V , all z, z ′ ∈ R K , and all p, p ′ ∈ ∆(K)

z, ⊤ R(u, v)p -z ′ , ⊤ R(u, v)p ′ ≤ z, ⊤ R(u, v)p -z, ⊤ R(u, v)p ′ + z, ⊤ R(u, v)p ′ -z ′ , ⊤ R(u, v)p ′ ≤ |z| R ∞ |p -p ′ | + |K| R ∞ |z -z ′ |.

Main results

For all p ∈ ∆(K), let

T S ∆(K) (p) = {y ∈ R K | ∃ε > 0, p + εy ∈ ∆(K), p -εy ∈ ∆(K)}
denote the tangent space to ∆(K) at p. Given any K × K symmetric matrix A, define

λ max (p, A) = sup Ay, y |y| 2 , y ∈ T S ∆(K) (p) \ {0} ,
which is the maximal eigenvalue of the restriction of A to T S ∆(K) (p) with the convention

λ max (p, A) = -∞ if T S ∆(K) (p) = {0}.
We consider the following Hamilton Jacobi equation, introduced in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], with unknown

f : ∆(K) → R ∀p ∈ ∆(K), min{rf (p) -H(p, ∇f (p)) ; -λ max (p, D 2 f (p))} = 0, (2.3) 
where ∇ denotes the gradient and D 2 the Hessian matrix. Let us give a precise definition of a viscosity solution of (2.3).

Definition 2.10. This result has to be compared with the main result in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], in which the authors proved that the limit value obtained through an approximating sequence of discrete-time games is the unique viscosity of the above equation. We therefore provide an equivalent result for the continuous-time model.

1. A function f : ∆(K) → R is called a supersolution of (2.3) if it
Our second contribution is to obtain a new variational characterization of the value, which is roughly speaking a pointwise version of the above Hamitlon-Jacobi equation based on directional derivatives. One of the main interest of this new formulation is that the comparison principle is very simple to prove and avoids all the technical machinery of the viscosity solution that was used in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF] to obtain the same result (inf/sup convolutions, doubling of variables, Jensen's Lemma, etc..).

Let f : ∆(K) → R be a concave Lipschitz function, p ∈ ∆(K) and z ∈ T ∆(K) (p), where T ∆(K) (p) denotes the tangent cone of ∆(K) at p. Then the directional derivative of f at p in the direction z defined by

Df (p; z) = lim ε↓0 1 ε (f (p + εz) -f (p))
exists and is finite. Let Exp(f ) denotes the set of exposed points of f , i.e. the set of p ∈ ∆(K) such that there exists x ∈ R K such that argmin (2.5)

p ′ ∈∆(K) x, p ′ -f (p ′ ) = {p}.

Generalizations and open questions

As in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], the present results can be extended to a zero-sum differential game where each player controls and observes privately his own continuous-time Markov chain.

In Gensbittel [START_REF] Gensbittel | Continuous-time limit of dynamic games with incomplete information and a more informed player[END_REF] and in Gensbittel and Rainer [START_REF] Gensbittel | A two player zero-sum game where only one player observes a Brownian motion[END_REF], different models were analyzed through an approximating sequence of discrete-time game. The main difficulty to adapt the present method to these models lies in the difficulty to extend the duality techniques applied to first-order equations to second-order equations. Therefore, the direct analysis of these models in continuous-time remains a challenging problem.

On the new formulation of the Hamitlon-Jacobi equation

At first, the next lemma explains why the set ∆(U ) appears in the inequalities (2.4) and (2.5). Lemma 3.1. Let f : R K → R be a concave Lipschitz function. Then, for all p ∈ ∆(K), we have

min x∈∂ + f (p) H(p, x) = inf v∈V sup µ∈∆(U ) Df p; U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u). Proof. The map (x, µ) ∈ ∂ + f (p) × ∆(U ) → x, U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u),
is bilinear and continuous with respect to x, ∂ + f (p) is a compact convex set and ∆(U ) is a convex set. Therefore, an extension of Sion's minmax theorem (see e.g. [START_REF] Sorin | A First Course on Zero-Sum Repeated Games[END_REF]) implies that min

x∈∂ + f (p) H(p, x) = inf v∈V min x∈∂ + f (p) sup u∈U x, ⊤ R(u, v)p + rg(p, u, v) = inf v∈V min x∈∂ + f (p) sup µ∈∆(U ) x, U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u) = inf v∈V sup µ∈∆(U ) min x∈∂ + f (p) x, U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u) = inf v∈V sup µ∈∆(U ) Df p; U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u),
where we also used that for all (p, z) ∈ R K × R K , we have

Df (p; z) = min x∈∂ + f (p)
x, z .

We prove below that any Lipshitz viscosity solution of (2.3) is concave and satisfies (2.4) and (2.5), and reciprocally that any Lipschitz concave function satisfying (2.4) and (2.5) is a viscosity solution of (2.3).

Then, in Proposition 3.4, we will prove that there exists a unique concave Lipschitz function satisfying (2.4) and (2.5). This provides therefore another proof that (2.3) admits a unique Lipschitz viscosity solution which is shorter and simpler than the proof of the comparison principle given in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF].

Equivalence of the two variational characterizations

We divide the proof of the equivalence in two propositions. Proposition 3.2.

1. If f : ∆(K) → R is a Lipschitz viscosity supersolution of (2.3), then f is concave and satisfies (2.4).

2. If f : ∆(K) → R is a concave Lipschitz function which satisfies (2.4), then f is a viscosity supersolution of (2.3).

Proof. Let us prove 1). In order to work on a convex set with non-empty interior, we denote by f denote the restriction of f to the affine space A spanned by ∆(K). The fact that f is concave on the relative interior of ∆(K) follows from Lemma 1 in [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF] and the property extends to ∆(K) by continuity. f is therefore concave and Lipschitz on ∆(K) ⊂ A and its superdifferential is given by

∂ + f (p) = {x ∈ E | ∀p ′ ∈ ∆(K), f (p) + x, p ′ -p ≥ f (p ′ )},
where E = A -A is the tangent space to A and it is easily seen that

∂ + f (p) = ∂ + f (p) + R • γ where γ = (1, 1, ..., 1) is a vector orthogonal to A so that R K = A ⊕ R • γ.
Moreover, for all p ∈ ∆(K) and and all z ∈ T ∆(K) (p), we have (see e.g. the appendix of [START_REF] Gensbittel | Zero-sum stopping games with asymmetric information[END_REF] for the second equality)

Df (p; z) = D f (p; z) = min x∈∂ + f (p)
x, z .

f is differentiable at Lebesgue almost every p in the relative interior of ∆(K) and its gradient ∇ f (p) ∈ E is bounded by the Lipschitz constant of f . For any such p, it is well-known that the viscosity supersolution property implies that

r f (p) ≥ H(p, ∇ f (p)).
For any p ∈ ∆(K), there exists a sequence p n in the relative interior of ∆(K) with limit p such that f is differentiable at p n for all n. The sequence ∇ f (p n ) being bounded, up to extract a subsequence, we may assume that ∇ f (p n ) → y ∈ ∂ + f (p). We obtain

r f (p) = lim n r f (p n ) ≥ lim n H(p n , ∇ f (p n )) = H(p, y).
Since y ∈ ∂ + f (p), for all z ∈ T ∆(K) (p), we have

y, z ≥ D f (p; z).
We deduce that

r f (p) ≥ H(p, y) = inf v∈V sup µ∈∆(U ) y, U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u) ≥ inf v∈V sup µ∈∆(U ) D f p; U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u),
which concludes the proof.

Let us prove 2). Assume that φ is a smooth test function such that φ ≤ f on ∆(K) with equality at p. For any z ∈ T ∆(K) (p), we have therefore 1. If f : ∆(K) → R is a concave Lipschitz viscosity subsolution of (2.3), then f is satisfies (2.5).

2. If f : ∆(K) → R is a concave Lipschitz function which satisfies (2.5), then f is a viscosity subsolution of (2.3).

Proof. Let us prove 1). We first assume that p ∈ ∆(K) is such that there exists some smooth strongly concave (on a neighborhood of ∆(K)) map φ such that φ ≥ f on ∆(K) and φ(p) = f (p). Since φ is strongly concave, there exists ε > 0 such that D 2 φ(p) ≤ -εI and thus λ max (p, D 2 φ(p)) < 0. The viscosity subsolution property implies therefore that

rφ(p) ≤ H(p, ∇φ(p)).

Define for all p ′ ∈ ∆(K), ψ(p ′ ) = φ(p ′ )φ(p) -∇φ(p), p ′p and note that ψ is strongly concave and that ψ(p) = 0. We have

∀p ′ ∈ ∆(K), f (p ′ ) ≤ f (p) + ∇φ(p), p ′ -p + ψ(p ′ ).
Let f : R K → R denote the Moreau-Yosida regularization of f defined by

∀y ∈ R K , f (y) = sup p ′ ∈∆(K) f (p ′ ) -M |y -p ′ |,
for some constant M larger than the Lipschitz constant of f . It is well-known that f is concave and M -Lipschitz on R K and coincides with f on ∆(K) so that

∀p ′ ∈ ∆(K), ∀z ∈ T ∆(K) (p ′ ), Df (p; z) = D f (p; z) = min x∈∂ + f (p ′ )
x, z ,

where the set

∂ + f (p ′ ) is a compact convex subset of ∂ + f (p ′ ) . Let x ∈ ∂ + f (p) so that ∀p ′ ∈ ∆(K), f (p ′ ) ≤ f (p) + x, p ′ -p .
For all λ ∈ (0, 1], we have x, p ′f (p ′ ) = {p}.

∀p ′ ∈ ∆(K), f (p ′ ) ≤ f (p) + λ∇φ(p) + (1 -λ)x, p ′ -p + λψ(p ′ ),
Define f as above with M ≥ |x| + 1. Let y ∈ ∂ + f (p) and note that for all λ ∈ (0, 1], we have argmin

p ′ ∈∆(K) y λ , p ′ -f (p ′ ) = {p}.
with y λ = λx + (1λ)y. For all n ≥ 1, let

p n ∈ argmin p ′ ∈∆(K) y λ , p ′ -f (p ′ ) - 1 n ℓ(p ′ ),
where ℓ(p ′ ) = 1 + |p ′ | 2 . Note that the map p ′ → y λ , p ′ -1 n ℓ(p ′ ) is strongly concave. By construction y λ -1 n ∇ℓ(p n ) ∈ ∂ + f (p n ) and p n → p. Moreover, with our choice of M , we have

y λ -1 n ∇ℓ(p n ) ∈ ∂ + f (p n ) for n ≥ 1 λ .
Indeed, for such n we have

|y λ -1 n ∇ℓ(p n )| ≤ λ|x| + (1 -λ)M + 1 n ≤ M -λ + 1 n ≤ M
and for all z ∈ R K , there exists p z ∈ ∆(K) such that

f (z) = f (p z ) -M |p z -z| ≤ f (p n ) + y λ -1 n ∇ℓ(p n ), p z -p n -M |p z -z| = f (p n ) + y λ -1 n ∇ℓ(p n ), p z -p n -M |p z -z| ≤ f (p n ) + y λ -1 n ∇ℓ(p n ), z -p n which proves that y λ -1 n ∇ℓ(p n ) ∈ ∂ + f (p n ). Using now (3.2), we have for all n ≥ 1 λ rf (p n ) ≤ min z∈∂ + f (pn) H(p n , z) ≤ H(p n , y λ -1 n ∇ℓ(p n )),
and therefore taking the limit as n → ∞, we obtain rf (p) ≤ H(p, y λ ). By sending λ to zero, we obtain rf (p) ≤ H(p, y) and the conclusion follows by taking the infimum over all y ∈ ∂ + f (p) and then applying Lemma Recall that T S ∆(K) (p) denotes the tangent space of ∆(K) at p. Let x ∈ R K be a vector in the relative interior of the normal cone to ∆(K) at p so that

∀p ′ ∈ ∆(K) \ (p + T S ∆(K) (p)), x, p ′ -p < 0. ∀p ′ ∈ (p + T S ∆(K) (p)) ∩ ∆(K), x, p ′ -p = 0.
We deduce that ∇φ(p)x ∈ ∂ + f (p). On the other hand, since λ max (p, D 2 φ(p)) < 0, the map φ is strongly concave on a neighborhood O of p in the affine space p + T S ∆(K) (p) so that

∀p ′ ∈ O ∩ ∆(K), p ′ = p =⇒ f (p ′ ) ≤ φ(p ′ ) < f (p) + ∇φ(p), p ′ -p .
Since f is concave, we deduce that

∀p ′ ∈ (p + T S ∆(K) (p)) ∩ ∆(K), p ′ = p =⇒ f (p ′ ) < f (p) + ∇φ(p), p ′ -p .
Combining the above inequalities, we obtain argmin

p ′ ∈∆(K) ∇φ(p) -x, p ′ -p -f (p ′ ) = {p},
which implies p ∈ Exp(f ). We deduce that rf (p) ≤ min

x∈∂ + f (p)
H(p, x) ≤ H(p, Dφ(p)).

Comparison principle

Let us now prove a comparison principle for the new formulation of the equation. The proof is quite simple and inspired by the proof of Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with incomplete information[END_REF].

Proposition 3.4. Let W 1 and W 2 be concave Lipschitz functions from ∆(K) to R such that W 1 satisfies (2.4) and W 2 satisfies (2.5). Then W 1 ≥ W 2 .
Proof. Assume by contradiction that M = max p∈∆(K) W 2 (p) -W 1 (p) > 0. For all ε > 0, define the perturbed problem

M ε := max p∈∆(K) W 2 (p) -(W 1 (p) -εℓ(p)),
where ℓ(p) = 1 + |p| 2 . Note that ℓ is a smooth Lipschitz function on R K and is strongly concave. We have

M ≤ M ε ≤ M + εC with C = sup p∈∆(K) |ℓ(p)|. Let p ε ∈ argmax p∈∆(K) W 2 (p) -(W 1 (p) -εℓ(p)).
We claim that p ε is an exposed point of W 2 . Note that by definition of M ε , we have:

∀p ∈ ∆(K), W 1 (p) -εℓ(p) + M ε ≥ W 2 (p). Let y ε ∈ ∂ + W 1 (p ε ), then ∀p ∈ ∆(K), W 1 (p ε ) + y ε , p -p ε ≥ W 1 (p).
We deduce that

∀p ∈ ∆(K), φ ε (p) := W 1 (p ε ) + y ε , p -p ε -εℓ(p) + M ε ≥ W 2 (p). (3.3) Note that φ ε (p ε ) = W 2 (p ε )
and that φ ε is a smooth strongly concave function. Therefore, p ε is an exposed point of W 2 . Applying (2.4) and (2.5) at p ε , we obtain

rW 1 (p ε ) ≥ inf v∈V sup µ∈∆(U ) DW 1 p ε ; U ⊤ R(u, v)dµ(u)p ε + U rg(p ε , u, v)dµ(u), rW 2 (p ε ) ≤ inf v∈V sup µ∈∆(U ) DW 2 p ε ; U ⊤ R(u, v)dµ(u)p ε + U rg(p ε , u, v)dµ(u).
We deduce that

rM ε -rεℓ(p ε ) = r(W 2 (p ε ) -W 1 (p ε )) ≤ inf v∈V sup µ∈∆(U ) DW 2 p ε ; U ⊤ R(u, v)dµ(u)p ε + U rg(p ε , u, v)dµ(u) -inf v∈V sup µ∈∆(U ) DW 1 p ε ; U ⊤ R(u, v)dµ(u)p ε + U rg(p ε , u, v)dµ(u). Let v ε ∈ V such that sup µ∈∆(U ) DW 1 p ε ; U ⊤ R(u, v ε )dµ(u)p ε + U rg(p ε , u, v ε )dµ(u) ≤ inf v∈V sup µ∈∆(U ) DW 1 p ε ; U ⊤ R(u, v)dµ(u)p ε + U rg(p ε , u, v)dµ(u) + ε. Choose then µ ε ∈ ∆(U ) such that DW 2 p ε ; U ⊤ R(u, v ε )dµ ε (u)p ε + U rg(p ε , u, v ε )dµ ε (u) ≥ sup µ∈∆(U ) DW 2 p ε ; U ⊤ R(u, v ε )dµ(u)p ε + U rg(p ε , u, v ε )dµ(u) -ε.
We obtain

rM ε -rεℓ(p ε ) ≤ DW 2 p ε ; U ⊤ R(u, v ε )dµ ε (u)p ε + U rg(p ε , u, v ε )dµ ε (u) -DW 1 p ε ; U ⊤ R(u, v ε )dµ ε (u)p ε - U rg(p ε , u, v ε )dµ ε (u) + 2ε = DW 2 p ε ; U ⊤ R(u, v ε )dµ ε (u)p ε -DW 1 p ε ; U ⊤ R(u, v ε )dµ ε (u)p ε + 2ε. Define z ε = U ⊤ R(u, v ε )dµ ε (u)p ε ∈ T ∆(K) (p ε ) and note that |z ε | ≤ C ′ for some constant C ′ since R is bounded. Choose ε sufficiently small so that rM ε -rεℓ(p ε ) -2ε -εC ′ > 0. The map W 2 (p ε + tz ε ) -(W 1 (p ε + tz ε ) -εℓ(p ε + tz ε )) admits a right-derivative at t = 0 equal to DW 2 (p ε ; z ε ) -DW 1 (p ε ; z ε ) + ε ∇ℓ(p ε ), z ε ≥ DW 2 (p ε ; z ε ) -DW 1 (p ε ; z ε ) -εC ′ ≥ rM ε -rεℓ(p ε ) -2ε -εC ′ > 0.
This inequality contradicts the definition of p ε which concludes the proof.

Existence of the value

This section is devoted to the proof of Theorems 2.11 and 2.12. The proof is divided in two parts: At first we prove that W -is a viscosity supersolution of (2.3), which implies that W - satisfies (2.4) thanks to Proposition 3.2. Then, as in Cardaliaguet [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF], we prove that W + satisfies (2.5) through the analysis of its concave conjugate, which may be interpreted as the value of a dual game as introduced by De Meyer [START_REF] Meyer | Repeated Games, Duality and the Central Limit Theorem[END_REF]. Using Proposition 3.3, this implies that W + is a viscosity subsolution of (2.3). Thanks to Proposition 3.4, we conclude that that W -= W + and that W is the unique Lipschitz viscosity solution of (2.3) and the unique concave Lipschitz function satisfying (2.4) and (2.5).

Proof of the supersolution property

In this subsection, we prove W -satisfies a super dynamic programming inequality in Proposition 4.1 and we deduce that W -is a viscosity supersolution of (2.3) in Proposition 4.2. Let Σ * ⊂ Σ be the set of pure strategies which do not depend on the trajectory (X t ) t≥0 .

Proposition 4.1. For all ε > 0

W -(p) ≥ sup α∈Σ * inf β∈T E α,β p [ ε 0 re -rs g(X s , u α,β s , v α,β s )ds + e -rε W -(π α,β ε )], (4.1) 
where

π α,β ε = e ε 0 ⊤ R(u α,β s ,v α,β s )ds p. Proof. Let δ > 0 and α 0 ∈ Σ * such that inf β∈T E α 0 ,β p [ ε 0 re -rs g(X s , u α 0 ,β s , v α 0 ,β s )ds + e -rε W -(π α 0 ,β ε )] ≥ sup α∈Σ * inf β∈T E α,β p [ ε 0 re -rs g(X s , u α,β s , v α,β s )ds + e -rε W -(π α,β ε )] -δ
Let (A m ) m=1,...,N be a measurable partition of ∆(K) of mesh smaller than δ and for all m = 1, ..., N , let p m ∈ A m . For all m = 1, ..., N , let

α m ∈ Σ such that inf β∈T J(p m , α m , β) ≥ W -(p m ) -δ. Define ᾱ ∈ Σ with probability space (M ᾱ, A ᾱ, λ ᾱ) = ( N m=1 M αm , N m=1 A αm , N m=1 λ αm ) by the formula: ∀(ξ ᾱ, ω, v, t) ∈ M ᾱ × Ω × V × [0, ∞), ᾱ(ξ ᾱ, ω, v) t = 1 [0,ε] (t)α 0 (v) t + 1 (ε,∞) (t) N m=1 1 Am (Π α 0 ε (v))α m (ξ αm , ω| [ε,∞) , v| [ε,∞) ) t-ε .
where

Π α 0 ε (v) = e ε 0 ⊤ R(α 0 (v)s,vs)ds p.
ᾱ is therefore a well-defined strategy in Σ. Let β ∈ T . Note that by construction, we have:

π ᾱ,β ε = Π α 0 ε (v α 0 ,β ). Define h ε = u ᾱ,β | [0,ε] = u α 0 ,β | [0,ε]
, and note that h ε and π ᾱ,β ε do not depend on (ω, ξ ᾱ).

Let T ′ denote the grid of β. Thanks to Lemma 2.4, we may assume that ε = t ′ n for some integer n. For all u ∈ U ε , define the continuation strategy β ε (u) ∈ T by

∀u ′ ∈ U , β ε (u)(u ′ ) t = p≥n 1 (t ′ p ,t ′ p+1 ] (t + ε)β((u ⊕ ε u ′ )) t+ε , where ∀(u, u ′ ) ∈ U ε × U , (u ⊕ ε u ′ ) t = 1 [0,ε] (t)u t + 1 (ε,+∞) (t)u ′ t-ε .
Note first that by construction, we have the identity

(u ᾱ,β ε+s , v ᾱ,β ε+s )(ξ ᾱ, ω) = N m=1 1 π ᾱ,β ε ∈Am (u αm,β ε (hε) s , v αm,β ε (hε) s )(ξ αm , ω| [ε,∞) ). (4.2) 
Applying Lemma 2.6, a version of the conditional law of (X ε+s ) s≥0 given (ξ ᾱ, X| [0,ε] ) is

N m=1 1 π ᾱ,β ε ∈Am P αm(ξα m ),β ε (hε) δ Xε .
Using this fact together with (4.2), we have for all β ∈ T

J(p, ᾱ, β) = E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε ∞ 0 re -rs g(X ε+s , u ᾱ,β ε+s , v ᾱ,β ε+s )ds] = E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε E ᾱ,β p [ ∞ 0 re -rs g(X ε+s , u ᾱ,β ε+s , v ᾱ,β ε+s )ds|ξ ᾱ, X| [0,ε] ]] = E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε m 1 π ᾱ,β ε ∈Am E α m (ξ α m ),β ε (hε) δ Xε [ ∞ 0 re -rs g( Xs , u α m ,β ε (hε) s ( X), v α m ,β ε (hε) s ( X))ds]],
where the canonical process was denoted X in the last expectation to avoid confusions. Recall that that the process (e -t 0 ⊤ R(u ᾱ,β s ,v ᾱ,β s )ds δ Xt ) t≥0 is a (P ᾱ(ξᾱ),β p , F X ) martingale (see Lemma 2.6), which implies:

E ᾱ(ξᾱ),β p [e -ε 0 ⊤ R(u ᾱ,β s ,v ᾱ,β s )ds δ Xε ] = p =⇒ E ᾱ(ξᾱ),β p [δ Xε ] = π ᾱ,β ε . (4.3) 
We deduce that

J(p, ᾱ, β) = E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε m 1 π ᾱ,β ε ∈Am E α m (ξ α m ),β ε (hε) π ᾱ,β ε [ ∞ 0 re -rs g( Xs , u α m ,β ε (hε) s ( X), v α m ,β ε (hε) s ( X))ds]] = E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε m 1 π ᾱ,β ε ∈Am J(π ᾱ,β ε , α m , β ε (h ε ))] ≥ E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε m 1 π ᾱ,β ε ∈Am J(p m , α m , β ε (h ε ))] -|K|δ ≥ E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε m 1 π ᾱ,β ε ∈Am W -(p m )] -|K|δ -δ ≥ E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε W -(π ᾱ,β ε )] -2 |K|δ -δ
We conclude that Therefore there exist u 0 and δ > 0 such that for all v ∈ V rφ(p) ≤ ∇φ(p), ⊤ R(u 0 , v)p + rg(p, u 0 , v)δ Let α 0 ∈ Σ * be the strategy which plays the constant control u 0 so that for all β ∈ T , (u α 0 ,β , v α 0 ,β ) = (u 0 , β(u 0 )). Applying (4.1), we have 

W + (p) ≥ inf β∈T J(p, ᾱ, β) ≥ inf β∈T E ᾱ,β p [ ε 0 re -rs g(X s , u ᾱ,β s , v ᾱ,β s )ds + e -rε W -(π ᾱ,β ε )] -2 |K|δ -δ ≥ sup α∈Σ * inf β∈T E α,β p [ ε 0 re -rs g(X s , u α,β s , v α,β s )ds + e -rh W -(π α,β ε )] -2 |K|δ -2δ,
W -(p) ≥ inf β∈T E α 0 ,β p [ ε 0 re -rs g(X s , u 0 , β(u 0 ) s )ds + e -rε W -(π α 0 ,β ε )], ( 4 
) -φ(p) = ε 0 ∇φ(π α 0 ,β s ), ⊤ R(u 0 , β(u 0 ) s )π α 0 ,β s ds ≥ ε 0 ∇φ(p), ⊤ R(u 0 , β(u 0 ) s )p ds -Cε 2 .
Lemma 2.6 implies that

E α 0 ,β p [e -s 0 ⊤ R(u 0 ,β(u 0 )s)ds δ Xs ] = p =⇒ E α 0 ,β p [δ Xs ] = π α 0 ,β s .
Using that g is bounded and Lipschitz with respect to p, there exists a constant C ′ such that

E α 0 ,β p [ ε 0 re -rs g(X s , u 0 , β(u 0 ) s )ds] = ε 0 re -rs g(π α 0 ,β s , u 0 , β(u 0 ) s )ds ≥ re -rε ε 0 g(p, u 0 , β(u 0 ) s )ds -C ′ ε 2
We deduce that

(1 -e -rε )φ(p) ≥ inf β∈T e -rε ( ε 0 ∇φ(p), ⊤ R(u 0 , β(u 0 ) s )p ds + rg(p, u 0 , β(u 0 ) s )) -(C + C ′ )ε 2 ≥ e -rε ε(rφ(p) + δ) -(C + C ′ )ε 2 .
Dividing by ε and sending ε to zero, we obtain a contradiction and this concludes the proof.

Proof of the subsolution property

This section is devoted to the proof that W + satisfies (2.5). To this end, we consider the concave conjugate defined by

∀x ∈ R K , W +, * (x) = inf p∈∆(K)
x, p -W + (p).

In Proposition 4.5, we will prove that W +, * satisfies a dynamic programming inequality and in Proposition 4.6, we will prove that this implies that W +, * is a viscosity supersolution of the following dual equation for x ∈ R K :

rf (x) + H(∇f (x), x) -r ∇f (x), x ≥ 0. (4.6)
Note that for the above equation to be well-defined, the definition of H has to be extended to R K × R K , for example by letting

∀(p, x) ∈ R K × R K , H(p, x) = inf v∈V sup u∈U ⊤ R(u, v)p, z + rg(p, u, v),
where g(p, u, v) = k∈K p k g(k, u, v). Note that using the same arguments as in Lemma 2.9, H is locally Lipschitz with respect to both variables.

Let us recall the precise definition of a viscosity supersolution of (4.6).

Definition 4.3. A function f : R K → R is called a supersolution of (4.6) if it is lower semi-continuous and satisfies: for any smooth test function ϕ : R K → R and x ∈ R K such that ϕf has a global maximum at x, we have rϕ(x) + H(∇ϕ(x), x)r ∇ϕ(x), x ≥ 0.

In Proposition 4.7, we will deduce that W + satisfies (2.5) from the fact that W +, * is a viscosity supersolution of (4.6).

We start with an alternative representation for W +, * . Lemma 4.4.

W +, * (x) = sup β∈ T inf α∈Σ inf p∈∆(K)
x, p -J(p, α, β)

Proof. We consider the map

Θ : (p, β) ∈ ∆(K) × T → inf α∈Σ x, p -J(p, α, β).
In order to apply Fan's minmax theorem, we first verify that Θ is affine with respect to p (and thus continuous) on the compact convex set ∆(K) and that Θ is concave-like with respect to β on the set T . For the first part, recall that for all β ∈ T

Θ(p, β) = x, p -sup α∈Σ J(p, α, β) = x, p -sup α∈Σ k∈K p k J(δ k , α, β) = x, p - k∈K p k sup α∈Σ J(δ k , α, β),
where the second equality was proved in Lemma 2.9. Let β 1 , β 2 ∈ T and λ ∈ [0, 1]. Define a strategy β ∈ T having for probability space (M β , A β , λ β ) defined by

M β = [0, 1] × M β 1 × M β 2 , A β = B([0, 1]) ⊗ A β 1 ⊗ A β 2 , λ β = Leb ⊗ λ β 2 ⊗ λ β 2 ,
where Leb denotes the Lebesgue measure on [0, 1]. A typical element of M β will be denoted (ζ, ξ β 1 , ξ β 2 ). The strategy β is defined by

β(ζ, ξ β 1 , ξ β 2 ) = 1 ζ≤λ β 1 (ξ β 1 ) + 1 ζ>λ β 1 (ξ β 1 ).
With this definition, integrating with respect to ζ, we have for all α ∈ Σ,

J(p, α, β) = λJ(p, α, β 1 ) + (1 -λ)J(p, α, β 2 ). It follows that Θ(p, β) = inf α∈Σ {λ( x, p -J(p, α, β 1 )) + (1 -λ)( x, p -J(p, α, β 2 ))} ≥ inf α∈Σ λ( x, p -J(p, α, β 1 )) + inf α∈Σ (1 -λ)( x, p -J(p, α, β 2 )) = λΘ(p, β 1 ) + (1 -λ)Θ(p, β 2 ),
which concludes the proof of the concave-like property.

Fan's minmax theorem (see [START_REF] Fan | Minimax theorems[END_REF]) implies

W +, * (x) = inf p∈∆(K) x, p -W + (p) = inf p∈∆(K) sup β∈ T inf α∈Σ x, p -J(p, α, β) = sup β∈ T inf α∈Σ inf p∈∆(K)
x, p -J(p, α r , β r ) Proposition 4.5.

W +, * (x) ≥ sup β∈T inf u∈U e -rε W +, * (Z β ε (u))
where

Z β ε (u) := e rε Y β ε (u) - ε 0 re -rt G β t,ε (u)dt , Y β ε (u) = e -ε 0 R(us,β(u)s)ds x and for all t ∈ [0, ε] G β t,ε (u) = e -ε t R(us,β(u)s)ds ḡ(u t , β(u) t ) with for all (a, b) ∈ U × V , ḡ(a, b) = (g(k, a, b)) k∈K ∈ R K . Proof. Let δ > 0 and β 0 ∈ T such that inf u∈U e -rε W +, * (Z β 0 ε (u)) ≥ sup β∈T inf u∈U e -rε W +, * (Z β ε (u)) -δ (4.7)
Note that since R and g are bounded, there exists a compact set C ε such that

∀u ∈ U , Z β 0 ε (u) ∈ C ε .
Let (A m ) m=1,...,N be a measurable partition of C ε with mesh smaller than δ and for all m = 1, ..., N , let z m ∈ A m . For all m = 1, ..., N , let

β m ∈ T such that inf α∈Σ inf p∈∆(K) z m , p -J(p, α, β m ) ≥ W + (z m ) -δ.
We now construct a strategy β with probability space

(M β , A β , λ β ) = ( N m=1 M βm , N m=1 A βm , N m=1 λ βm )
defined by the formula:

∀(ξ β, u, t) ∈ M β × U × [0, ∞), β(ξ β , u) t = 1 [0,ε] (t)β 0 (u) t + 1 (ε,∞) (t) N m=1 1 Am (Z β 0 ε (u))β m (ξ βm , u| [ε,∞) ) t-ε .
β is therefore a well-defined strategy in T . Let us fix a strategy α ∈ Σ. Note that by construction, we have (u

α,β 0 , v α,β 0 )| [0,ε] = (u α, β , v α, β )| [0,ε] and therefore ∀t ∈ [0, ε], G β 0 t,ε (u α,β 0 ) = e -ε t R(u α, β s ,v α, β s )ds ḡ(u α, β t , v α, β t ), Y β 0 ε (u α,β 0 ) = e -ε 0 R(u α, β s ,v α, β s )ds x,
and that all these variables depend only on u α,β 0 through u α,β 0 | [0,ε] and thus are measurable functions of ω| [0,ε] . Recall (Lemma 2.6) that the process

M α, β t = e -t 0 ⊤ R(u α, β s ,v α, β s )ds δ Xt , is a (P α, β(ξ β ) p , F X ) martingale, which implies x, p = E α, β(ξ β ) p [ x, e -ε 0 ⊤ R(u α, β s ,v α, β s )ds δ Xε ] = E α, β(ξ β ) p [ Y β 0 ε (u α,β 0 ), δ Xε ]. (4.8) 
Similarly, we have

E α, β(ξ β ) p [ ε 0 re -rt g(X t , u α, β t , v α, β t )dt] = E α, β(ξ β ) p [ ε 0 re -rt δ Xt , ḡ(u α, β t , v α, β t ) dt] = E α, β(ξ β ) p [ ε 0 re -rt E α, β(ξ β ) p [e -ε t ⊤ R(u α, β s ,v α, β s )ds δ Xε |F X t ] , ḡ(u α, β t , v α, β t ) dt] = E α, β(ξ β ) p [ ε 0 re -rt e -ε t ⊤ R(u α, β s ,v α, β s )ds δ Xε , ḡ(u α, β t , v α, β t ) dt] = E α, β(ξ β ) p [ ε 0 re -rt δ Xε , G β 0 t,ε (u α,β 0 ) dt] = E α, β(ξ β ) p [ δ Xε , ε 0 re -rt G β 0 t,ε (u α,β 0 ) dt]. (4.9) Define h ε = (ω, v α, β )| [0,ε] = (ω, v α,β 0 )| [0,ε]
, and note that h ε is a measurable function of ω| [0,ε] . Let T ′ denote the grid of α. We may assume that ε = t ′ n for some integer n. For all (ω, v) ∈ U ε × Ω ε , define the continuation strategy α ε (ω, v) ∈ Σ by

∀v ′ ∈ V, ∀ω ′ ∈ Ω α ε (ω, v)(ω ′ , v ′ ) t = p≥n 1 (t ′ p ,t ′ p+1 ] (t + ε)α(ω ⊕ ε-ω ′ , v ⊕ ε v ′ ) t+ε , where ∀(v, v ′ ) ∈ U ε × U , (v ⊕ ε v ′ ) t = 1 [0,ε] (t)v t + 1 (ε,+∞) (t)v ′ t-ε , and ∀(ω, ω ′ ) ∈ Ω ε × Ω, (ω ⊕ ε-ω ′ ) t = 1 [0,ε) (t)ω(t) + 1 [ε,+∞) (t)ω ′ (t -ε).
Note first that by construction, we have the identity 1 Am (Z β 0 ε (u α,β 0 ))J(δ Xε , α ε (h ε ), β m )],

(u α,
where we used the notation X for the canonical process on Ω in the fourth line to avoid potential confusions. Using now (4.7),(4.8) and (4.9), we have (with the shorter notation Proposition 4.6. The map W +, * is a viscosity supersolution of (4.6).

Z β 0 ε = Z β 0 ε (u α,
Proof. Assume that the property does not hold. Then there exists a smooth test function φ and x ∈ R K such that φ ≤ W +, * on R K with equality at x and rφ(x) + H(∇φ(x), x)r ∇φ(x), x < 0.

This implies that there exists v 0 ∈ V and δ > 0 such that for all u ∈ U rφ(x) + R(u, v 0 )x + rḡ(u, v 0 ), ∇φ(x)r ∇φ(x), x ≤ -δ.

Thanks to Proposition 4.5, for all ε > 0, we have We obtain (1e -rε )φ(x) ≥ ε(rφ(x) + δ) -Cε 2

Dividing the above inequality by ε and sending ε to zero leads to a contradiction, which concludes the proof.

Proposition 4.7. W + satisfies (2.5).

Theorem 2 . 12 .

 212 W is the unique concave Lipschitz function such that ∀p ∈ ∆(K), rW (p)-inf , v)dµ(u)p + U rg(p, u, v)dµ(u) ≥ 0 (2.4) ∀p ∈ Exp(W ), rW (p) -inf v∈V sup µ∈∆(U ) DW p; U ⊤ R(u, v)dµ(u)p + U rg(p, u, v)dµ(u) ≤ 0.

  ∇φ(p), z = Dφ(p; z) ≤ Df (p; ), ⊤ R(u, v)p + rg(p, u, v) = H(p, ∇φ(p)), which concludes the proof. Proposition 3.3.

  3.1 and (3.1).Let us prove 2). Let φ be a smooth test function such that φ ≥ f with equality at p ∈ ∆(K) and λ max (p, D 2 φ(p)) < 0. Recall the definition of f in the proof of 1). By choosing M ≥ C = sup y∈B |∇φ(y)| where B is a bounded neighborhood of ∆(K), we have φ ≥ f in B and therefore ∇φ(p) ∈ ∂ + f (p). Indeed, if there exists y ∈ B such that φ(y) < f (y), then there exists p y ∈ ∆(K) such that f (y) = f (p y ) -M |yp y | > φ(y) ≥ φ(p y ) -C|yp y |, which implies f (p y ) > φ(p y ) and thus contradicts the assumption.

  and the result follows by sending δ to zero. Proposition 4.2. W -is a viscosity supersolution of (2.3). Proof. Assume that the property does not hold. Then there exist p ∈ ∆(K) and φ a smooth test function such that φ ≤ W -on ∆(K), φ(p) = W -(p) and rφ(p) < H(p, ∇φ(p)) = sup u∈U inf v∈V ∇φ(p), ⊤ R(u, v)p + rg(p, u, v).

= e s 0 ⊤

 0 .4) which implies φ(p) ≥ inf β∈T E α 0 ,β p [ ε 0 re -rs g(X s , u 0 , β(u 0 ) s )ds + e -rε φ(π α 0 ,βε ε g(X s , u 0 , β(u 0 ) s )ds + e -rε (φ(π α 0 ,β ε )φ(p))].Let π α 0 ,β s R(u 0 ,β(u 0 )s)ds p for all s ∈ [0, ε]. Since φ is smooth and R is bounded, there exists a constant C such that for all β ∈ T φ(π α 0 ,β ε

β111

  ε+s , v α, β ε+s )(ξ β , ω) = N m=1 Am (Z β 0 ε (u α,β 0 ))(u α ε (hε),β m s , v α ε (hε),β m s )(ξ β m , ω| [ε,∞) ). (4.10)According to Lemma 2.6, the map(ξ β , ω| [0,ε] ) → Φ(ξ β , ω| [0,ε] ) = N m=1 Am (Z β 0 ε (u α,β 0 ))P α ε (hε),βm(ξ βm ) δ Xε, is a version of the conditional distribution of (X ε+s ) s≥0 given (ξ β , X| [0,ε] ). Using these results, we haveJ(p, α, β) = E α, g(X t , u α, β t , v α, β t )dt + e -rε E α, g(X t+ε , u α, β t+ε , v α, β t+ε )dt|ξ β , X| [0,ε] Am (Z β 0 ε (u α,β 0 ))E α ε (hε),βm δ Xε [ ∞ 0 re -rt g( Xt , u α ε (hε),βm t ( X), v α ε (hε),βm t ( X))dt]] = E α, β p [ ε 0 re -rt g(X t , u α, β t , v α, β t )dt + e -rε N m=1

1111e

  β 0 )) W +, * (x) ≥ inf α∈Σ inf p∈∆(K) e -rε E α, β p [ Z β 0 ε , δ Xε -N m=1 Am (Z β 0 ε )J(δ Xε , α ε (h ε ), β m )] Am (Z β 0 ε ){ Z β 0 ε , δ Xε -J(δ Xε , α ε (h ε ), β m )}] Am (Z β 0 ε ){ z m , δ Xε -J(δ Xε , α ε (h ε ), β m )}]δ Am (Z β 0 ε ){W +, * (z m ) -δ}]δ -rε E α,β p [W +, * (Z β ε (u α,β ))] -√ Kδ -3δBy sending δ to zero, we deduce thatW +, * (x) ≥ sup β∈T inf α∈Σ inf p∈∆(K) e -rε E α,β p [W +, * (Z β ε (u α,β ))]Note finally that the quantity inside the expectation E α,β p [W +, * (Z β ε (u α,β ))] depends on X only through the process u α,β , and thereforeE α,β p [W +, * (Z β ε (u α,β ))] ≥ inf u∈U W +, * (Z β ε (u)).We deduce that W +, * (x) ≥ sup β∈T inf u∈U e -rε W +, * (Z β ε (u)), which concludes the proof.

  φ(x) = W +, * (x) ≥ sup β∈T inf u∈U e -rε W +, * (Z β ε (u)) ≥ sup β∈T inf u∈U e -rε φ(Z β ε (u)).Considering the pure strategy β 0 which plays the constant control v 0 , we have for all ε > 0φ(x) ≥ inf u∈U e -rε φ Z β 0 ε (u) .Define the absolutely continuous map (which depends on v 0 , u and ε)t ∈ [0, ε] → Zt = e rt e -t 0 R(us,v 0 )ds x -t 0 re -rs e -ε s R(ur ,v 0 )dr ḡ(u s , v 0 )ds so that Z β 0 ε (u) = Zε and therefore we obtain by applying the chain rule formula:φ(Z β 0 ε (u))φ(x) = ε 0 ∇φ( Zt (u)) , r Zt + e rt -R(u t , v 0 )e -t 0 R(us,v 0 )ds xre -rt e -ε t R(us,v 0 )ds ḡ(u t , v 0 ) dtSince R, ḡ are bounded and φ is smooth, there exists a constant C such thatφ(Z ε (u)) ≥ φ(x) + ε 0 ∇φ(x) , (rx -R(u t , v 0 )xrḡ(u t , v 0 )) dt -Cε 2 .

  Theorem 2.11. Under Isaacs assumption, the value W exists and is the unique Lipschitz viscosity solution on ∆(K) of (2.3).

is lower semi-continuous and satisfies: for any smooth test function ϕ : ∆(K) → R and p ∈ ∆(K) such that ϕf has a global maximum at p, we have

min rϕ(p) -H(p, ∇ϕ(p)); -λ max (p, D 2 ϕ(p)) ≥ 0. 2. A function f : ∆(K) → R is called a subsolution of (2.

3) if it is upper semi-continuous and satisfies: for any smooth test function ϕ : ∆(K) → R and p ∈ ∆(K) such that ϕf has a global minimum at p, we have min rϕ(p) -H(p, ∇ϕ(p)); -λ max (p, D 2 ϕ(p)) ≤ 0.

A function f : ∆(K) → R is called a solution of (2.3) if it is both a supersolution and a subsolution.

  with equality at p ′ = p. Using the right-hand side of the above inequality which is strongly concave as a test function and applying the viscosity subsolution property, we deduce that

	rf (p) ≤ H(p, λ∇φ(p) + (1 -λ)x),	
	and letting λ go to zero, we obtain rf (p) ≤ H(p, x). We conclude that	
	x∈∂ + f (p) rf (p) ≤ min	H(p, x).	(3.2)
	Note that the above inequality holds for any value of M larger thant the Lipschitz constant
	of f .		
	Let us now consider an arbitrary point p ∈ Exp(f ). Let x ∈ ∂ + f (p) such that	
	argmin		
	p ′ ∈∆(K)		

Proof. First recall that W +, * is concave and Lipschitz since the domain of W + is bounded. Let p ∈ Exp(W + ) and x ∈ ∂ + W + (p) such that argmin

Let Ŵ + : R K → R denote the Moreau-Yosida regularization of W + defined by

for some constant M larger than the Lipschitz constant of W + . It is well-known that Ŵ + is concave and M -Lipschitz on R K and coincides with W + on ∆(K) so that

where

Let y ∈ ∂ + Ŵ + (p) and note that for all λ ∈ (0, 1], we have argmin

with

we deduce that W +, * is differentiable at y λ and that ∇W +, * (y λ ) = p. Proposition 4.6 implies that for all λ ∈ (0, 1] rW + (p) = r( p, yλ -W +, * (y λ )) ≤ H(p, y λ ).

By sending λ to zero, we obtain rW + (p) ≤ H(p, y), and the proof by taking the minimum over all y ∈ ∂ + Ŵ + (p) and applying Lemma 3.1 and (4.11).