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Abstract

The search of spanning trees with interesting disjunction properties
has led to the introduction of edge-disjoint spanning trees, independent
spanning trees and more recently completely independent spanning trees.
We group together these notions by defining (i, j)-disjoint spanning trees,
where i (j, respectively) is the number of vertices (edges, respectively)
that are shared by more than one tree. We illustrate how (i, j)-disjoint
spanning trees provide some nuances between the existence of disjoint
connected dominating sets and completely independent spanning trees.
We prove that determining if there exist two (i, j)-disjoint spanning trees
in a graph G is NP-complete, for every two positive integers i and j.
Moreover we prove that for square of graphs, k-connected interval graphs,
complete graphs and several grids, there exist (i, j)-disjoint spanning trees
for interesting values of i and j.

1 Introduction

The graphs considered are assumed to be connected, since spanning trees are
only interesting for connected graphs. Let k ≥ 2 be an integer and T1, . . . , Tk

be spanning trees in a graph G. The spanning trees T1, . . . , Tk are edge-disjoint
if ∪1≤ℓ<ℓ′≤kE(Tℓ) ∩ E(Tℓ′) = ∅. A vertex is said to be an inner vertex in a
tree T if it has degree at least 2 in T and a leaf if it has degree 1. We denote
by I(T ) the set of inner vertices of tree T . The spanning trees T1, . . . , Tk are
internally vertex-disjoint if I(T1), . . . , I(Tk) are pairwise disjoint. Finally, the
spanning trees T1, . . . , Tk are completely independent spanning trees if they are
both pairwise edge-disjoint and internally vertex-disjoint.
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In this paper, we introduce (i, j)-disjoint spanning trees:

Definition 1.1. Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees in a
graph G. We let I(T1, . . . , Tk) = {u ∈ V (G)|∃ℓ, ℓ′ u ∈ I(Tℓ) ∩ I(Tℓ′), 1 ≤ ℓ <
ℓ′ ≤ k} be the set of vertices which are inner vertices in at least two spanning
trees among T1, . . . , Tk, and we let E(T1, . . . , Tk) = {e ∈ E(G)|∃ℓ, ℓ′, 1 ≤ ℓ <
ℓ′ ≤ k, e ∈ E(Tℓ)∩E(Tℓ′)} be the set of edges which belong to at least two span-
ning trees among T1, . . . , Tk. The spanning trees T1, . . . , Tk are (i, j)-disjoint
for two positive integers i and j, if the two following conditions are satisfied:

i) |I(T1, . . . , Tk)| ≤ i;

ii) |E(T1, . . . , Tk)| ≤ j.

By ∗ we denote a large enough integer, i.e. an integer larger than max(|E(G)|, |V (G)|),
for a graph G. Remark that (0, 0)-disjoint spanning trees are completely inde-
pendent spanning trees and that (∗, 0)-disjoint spanning trees are edge-disjoint
spanning trees. Notice also that there are infinitely many (i, j)-disjoint trees
in G, for i ≥ γc(G) and j ≥ |V (G)| − 1, γc(G) being the minimum size of a
connected dominating set in G (one can repeat infinitely the same tree with
γc(G) inner vertices).

1.1 Related work

Completely independent spanning trees were introduced by Hasunuma [11] and
then have been studied on different classes of graphs, such as underlying graphs
of line graphs [11], maximal planar graphs [13], Cartesian product of two cycles
[14], complete graphs, complete bipartite and tripartite graphs [24], variant
of hypercubes [5, 26] and chodal rings [25]. Moreover, determining if there
exist two completely independent spanning trees in a graph G is a NP-hard
problem [13]. Recently, sufficient conditions inspired by the sufficient conditions
for hamiltonicity have been determined in order to guarantee the existence of
two completely independent spanning trees: Dirac’s condition [1] and Ore’s
condition [6]. Moreover, Dirac’s condition has been generalized to more than
two trees [4, 15, 17] and has been independently improved [15, 17] for two trees.
Also, a recent paper has studied the problem on the class of k-trees, for which
the authors have proven that there exist at least ⌈k/2⌉ completely independent
spanning trees [22].

For a given tree T and a given pair of vertices (u, v) of T , let PT (u, v) be
the set of vertices in the unique path between u and v in T . Remark that
T1, . . . , Tk are internally vertex-disjoint in a graph G if and only if for any pair
of vertices (u, v) of V (G), ∪1≤ℓ<ℓ′≤kPTℓ

(u, v)∩PTℓ′
(u, v) = {u, v}. Other works

on disjoint spanning trees include independent spanning trees, i.e. focus on
finding spanning trees T1, . . . , Tk rooted at the same vertex r. In independent
spanning trees, for any vertex v the paths between r and v in T1, . . . , Tk are
pairwise internally vertex-disjoint, i.e. for each integers i and j, 1 ≤ i < j ≤
k, PTi

(r, v) ∩ PTj
(r, v) = {r, v}. In contrast with the notion of completely
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independent spanning trees, in independent spanning trees only the paths to r
are considered. Thus, T1, . . . , Tk may share common vertices or edges, which
is not admissible with completely independent spanning trees. Independent
spanning trees have been studied for several classes of graphs which include
product graphs [23], de Bruijn and Kautz digraphs [8, 12], and chordal rings
[19]. Related works also include edge-disjoint spanning trees, i.e. spanning trees
which are pairwise edge-disjoint only. Edge-disjoint spanning trees have been
studied on many classes of graphs, including hypercubes [2], Cartesian product
of cycles [3] and Cartesian product of two graphs [18].

Some subsets of vertices D1, . . . , Dk of a graph G are k disjoint connected
dominating sets if D1, . . . , Dk are pairwise disjoint and each subset is a con-
nected dominating set in G. There are some works about disjoint connected
dominating sets that can be transcribed in terms of internally vertex-disjoint
spanning trees (the disjoint connected dominating sets can be used to provide
the inner vertices of internally vertex-disjoint spanning trees). The maximum
number of disjoint connected dominating sets in a graph G is the connected do-
matic number. This parameter is denoted by dc(G) and has been introduced by
Hedetniemi and Laskar [16] in 1984. An interesting result about connected do-
matic number concerns planar graphs, for which Hartnell and Rall have proven
that, except K4 (which has connected domatic number 4), their connected do-
matic number is bounded by 3 [10]. The problem of constructing a connected
dominating set is often motivated by wireless ad-hoc networks [9, 28] for which
connected dominating sets are used to create a virtual backbone in the network.

1.2 Motivation and basic facts about disjoint dominating

sets

Remark that (0, ∗)-disjoint spanning trees are internally vertex-disjoint, and
consequently, are related to connected dominating sets. Hence, we call (0, ∗)-
disjoint spanning trees, trees induced by disjoint connected dominating sets and
we give the properties about (0, ∗)-disjoint spanning trees using, when possible,
the concept of disjoint connected dominating sets. Figure 1 illustrates how
disjoint connected dominating sets are used to construct (0, ∗)-disjoint spanning
trees. As we observe in the next proposition, trees induced by disjoint connected
dominating sets satisfy interesting properties. First, an edge can only belong
to at most two trees (Proposition 1.2.i)). Second, the paths between two non-
adjacent vertices in trees induced by disjoint connected dominating sets are
edge-disjoint (Proposition 1.2.ii)). Moreover, the fact that the paths between
two adjacent vertices share a common edge implies that these vertices are inner
vertices in different trees (Proposition 1.2.iii)). These properties illustrate the
utility of disjoint connected dominating sets to broadcast a message following
multiples routes in a network. For a spanning tree, an inner edge is an edge
between two inner vertices and a leaf edge is an edge which is not an inner edge.

Proposition 1.2. Let i and j be two integers, 1 ≤ i < j ≤ k. Let G be a
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Figure 1: Three disjoint connected dominating sets in C3�P4 (on the left) and
the spanning trees induced by these dominating sets (on the right) (circles: D1

or I(T1); triangles: D2 or I(T2); squares: D3 or I(T3); plain lines: edges of T1;
dashed lines: edges of T2; dotted lines: edges of T3).

graph of order at least 3, let T1, . . . , Tk be spanning trees induced by k disjoint
connected dominating sets and let u, v ∈ V (G).

i) every edge belongs to at most two trees among T1, . . . , Tk;

ii) if u and v are not adjacent, then PTi
(u, v) ∩ PTj

(u, v) = ∅;

iii) if PTi
(u, v) ∩ PTj

(u, v) 6= ∅ then {u, v} 6⊆ I(Ti) and {u, v} 6⊆ I(Tj).

Proof. We prove that each of the three properties holds.
i) Suppose that uv is an inner edge in a spanning tree. Since the vertices u and
v are leaves in any other tree, uv cannot belong to more than one spanning tree.
Suppose uv is a leaf edge in at least two trees. The edge uv can belong to at
most two trees, the trees for which u and v are inner vertices.
ii) Since the paths between u and v in the different trees have length at least 2
and contain no common inner vertices, they share no common edges.
iii) By Property ii), u and v are adjacent. Moreover, if u, v ∈ I(Ti), then
PTi

(u, v) only contains inner edges of Ti, and, as for Property i), each inner
edge can not belong to another tree. Since PTi

(u, v) only contains inner edges
of Ti, PTi

(u, v) ∩ PTj
(u, v) = ∅. The same goes if u, v ∈ I(Tj).

Note that there is a relation between the minimum size of a connected dom-
inating set in a graph G, denoted by γc(G) and dc(G) (the maximum number
of disjoint connected dominating sets) since dc(G) ≤ ⌊|V (G)|/γc(G)⌋. We also
have to mention that Fan, Hong and Liu [6] have studied the line graph of cubic
graphs of order at least 10 and have proven that there are no two completely
independent spanning trees in these cubic graphs. It could be possible, however,
that it is not the case for two disjoint dominating sets.

If a graph satisfies dc(G) = k and does not contain k completely inde-
pendent spanning trees, then there exist an integer j such that G contains k
(0, j)-disjoint spanning trees. Hence, the notion of (0, j)-disjoint spanning trees
provides some nuances between the existence of disjoint connected dominating
sets and completely independent spanning trees.

We say that k connected dominating sets D1, . . ., Dk are ℓ-rooted connected
dominating sets if the set A = ∪1≤i<j≤kDi ∩ Dj satisfies |A| ≤ ℓ. Remark
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that we can construct k (ℓ, ∗)-disjoint spanning trees in a graph that contains k
ℓ-rooted connected dominating sets D1, . . ., Dk by considering that I(Ti) = Di,
for every integer i, 1 ≤ i ≤ k. Note also that trees T1, . . . , Tk induced by 1-
rooted connected sets, i.e. (1, ∗)-disjoint spanning trees, are also independent
spanning trees rooted at a vertex r ∈ I(T1, . . . , Tk). However, if T1, . . . , Tk are
independent spanning trees rooted at r in G, then T1, . . . , Tk are not always
(1, ∗)-disjoint spanning trees in G. This difference is illustrated by the fact that
if for two vertices u, v ∈ V (G) and two spanning trees Ti and Tj, i 6= j , we have
PTi

(u, r)∩PTj
(u, r) = {u, r} and PTi

(v, r) ∩PTj
(v, r) = {v, r}, then it does not

imply that PTi
(u, v) ∩ PTj

(u, v) = {u, v, r}.

1.3 Notation and Organization

We denote by δ(G) the minimum degree of G, i.e., δ(G) = min{N(u)| u ∈
V (G)}. We denote by dG(u, v) the usual distance between two vertices u and
v in a graph G. The graph G − e is the graph obtained from G by removing
an edge e from E(G) and G −A, for A ⊆ V (G), is the graph obtained from G
by removing the vertices from A and their incident edges. For A ⊆ V (G), we
denote by G[A], the graph G−(V (G)\A). We say that a graph G is k-connected
if |V (G)| ≥ k + 1 and if for any set of vertices A ⊆ V (G), with |A| ≤ k − 1,
G−A is connected. By Kn, Pn and Cn, we denote the complete graph, path and
cycle, respectively, of order n. Let n1 and n2 be positive integers. By G(n1, n2)
we denote the square grid with n1 rows and n2 columns. The graph G(n1, n2)
can be also defined as the Cartesian product of two paths Pn1

and Pn2
. The

cylinder, denoted by C(n1, n2), is the Cartesian product of one cycle Cn1
and

one path Pn2
.

This article is organized as follows. Section 2 presents alternative character-
izations of (i, j)-disjoint spanning trees. Section 3 is about the computational
complexity of the following decision problem: is it true that a graph G con-
tains two (i, j)-disjoint spanning trees (with input the graph G). Section 4
deals with k-connectivity and the conditions of Dirac and Ore for (i, j)-disjoint
spanning trees. Section 5 is about the required number of edges and distribu-
tion of inner vertices in (i, j)-disjoint spanning trees. Section 6 presents some
(i, j)-disjoint spanning trees in square of graphs, k-connected interval graphs,
complete graphs, and square grids and cylinders.

2 Characterizations in terms of partitions and

dominating sets

We begin this section by proving the following proposition.

Proposition 2.1. Let G be a connected graph of order at least 3 and let
T1, . . . , Tk be (i, j)-disjoint spanning trees in G. For every integer ℓ, 1 ≤ ℓ ≤ k,
every vertex u ∈ V (G) satisfies the two following properties:

i) if u /∈ I(Tℓ), then u has a neighbor in I(Tℓ);
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Figure 2: An 1-CIST partition (on the left) and an 1-rooted partition (on the
right) of two graphs (circles: V1; triangles: V2; square: A).

ii) if G has diameter at least 3, then u has a neighbor in I(Tℓ).

Proof. Suppose there exist an integer ℓ, 1 ≤ ℓ ≤ k, and a vertex u which has no
neighbor in I(Tℓ).
i) If u /∈ I(Tℓ), then G = Tℓ = P2 which contradicts the hypothesis that G has
order at least 3.
ii) Since property i) holds, we suppose that u ∈ I(Tℓ). Remark that since G has
diameter at least 3, a spanning tree of G has also diameter at least 3. Moreover,
if u is only adjacent to leaf vertices then it implies that Tℓ is a star which
contradicts the fact that Tℓ has diameter at least 3.

Let V1 and V2 be two subsets of vertices of a graph G. By B(V1, V2) we denote
the bipartite graph with vertex set V1∪V2 and edge set {uv ∈ E(G)| u ∈ V1, v ∈
V2}. In the two following subsections we give alternative characterizations of
(0, ℓ)-disjoint spanning trees and ℓ-rooted connected dominating sets. These
characterizations are expressed in terms of partition in sets of vertices fulfilling
some properties.

2.1 (0, ℓ)-disjoint spanning trees

In this subsection, we introduce a definition which is inspired by the definition
of CIST-partition introduced by Araki [1].

Definition 2.2. An ℓ-CIST-partition of a graph G into k sets is a partition of
V (G) into k sets of vertices V1, . . . , Vk such that:

i) G[Vi] is connected, for each integer i, 1 ≤ i ≤ k;

ii) B(Vi, Vj) contains no isolated vertex, for every two integers i, j, 1 ≤ i <
j ≤ k;

iii)
∑

1≤i<j≤k ci,j ≤ ℓ, where ci,j is the number of connected component which
are trees in B(Vi, Vj), 1 ≤ i < j ≤ k.

Figure 2 illustrates an 1-CIST partition on a specific graph. In a similar way
than Araki [1], we prove that the notions of ℓ-CIST partition and (0, ℓ)-disjoint
spanning trees are equivalent.

Theorem 1. Let G be a graph. There exist k (0, ℓ)-disjoint spanning trees
T1, . . . , Tk in G if and only if G has an ℓ-CIST-partition into k sets.
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Proof. Suppose G has an ℓ-CIST-partition into k sets V1,. . . ,Vk. We are going to
construct (0, ℓ)-disjoint spanning trees T1, . . . , Tk. We begin by setting I(Ti) =
Vi for each integer i, 1 ≤ i ≤ k. For each integer i, 1 ≤ i ≤ k, we suppose that
E(Ti) is empty and we progressively add edges to Ti in order to obtain spanning
trees of G at the end of the proof. Since G[Vi] is connected for each integer i,
1 ≤ i ≤ k, it is possible to add edges to Ti in order to have a spanning tree with
inner vertices from Vi, for each integer i.

Let i and j be two integers, 1 ≤ i < j ≤ k, and let Di,j be a connected com-
ponent of B(Vi, Vj). We add edges in order to build a spanning tree restricted to
Vi∪V (Di,j) and another spanning tree restricted to Vj ∪V (Di,j) by considering
two cases. Let u be a vertex of Di,j ∩ Vi. First, if Di,j is a tree, then we add an
edge e of Di,j incident with u to both Ti and Tj . Thus, the edge e will be com-
mon to Ti and Tj . Let Dd

i,j(u) = {v ∈ V (Di,j)| dDi,j
(u, v) = d}. We add to Ti

the edges of the set {vv′ ∈ E(Di,j)| v ∈ Dd
i,j(u), v′ ∈ Dd+1

i,j (u), d is even} and

to Tj the edges of the set {vv′ ∈ E(Di,j)| v ∈ Dd
i,j(u), v′ ∈ Dd+1

i,j (u), d is odd}.
Second, if Di,j is not a tree, then we suppose that u is in a cycle of Di,j . Let e be
an edge of this cycle incident with u and let Ti,j be a spanning tree of Di,j − e.
We define Bd

i,j(u) as follows: {v ∈ V (Di,j)| dTi,j
(u, v) = d}. We add to Ti the

edges of the set {vv′ ∈ E(Ti,j)| v ∈ Bd
i,j(u), v′ ∈ Bd+1

i,j (u), d is even} and to Tj

the edges of the set {vv′ ∈ E(Ti,j)| v ∈ Bd
i,j(u), v′ ∈ Bd+1

i,j (u), d is odd} ∪ {e}.
We repeat this process for every connected component of B(Vi, Vj) and ev-
ery two integers i and j, 1 ≤ i < j ≤ k. Since there is only one common
edge between Ti and Tj for each connected component that is a tree and since∑

1≤i<j≤k ci,j ≤ ℓ, the set E(T1, . . . , Tk) contains at most ℓ edges. Therefore,
we obtain, by Property ii), k (0, ℓ)-disjoint spanning trees.

Let us prove the converse of the previous implication. Suppose there exist
k (0, ℓ)-disjoint spanning trees T1, . . . , Tk in G. The set I(Ti), 1 ≤ i ≤ k,
induces a connected subgraph in G. We begin by setting Vi = I(Ti), for each
integer i, 1 ≤ i ≤ k. If some vertices are inner vertices in no trees, we can
add them to any set among V1, . . . , Vk. Thus, Property i) follows. Let i and j
be two integers, 1 ≤ i < j ≤ k. Suppose there exists one isolated vertex u in
B(Vi, Vj). Without loss of generality, suppose u ∈ Vi. By Proposition 2.1.i), we
obtain a contradiction since u /∈ I(Tj) and u has no neighbor in I(Tj). Thus,
Property ii) follows. Now suppose

∑
1≤i<j≤k ci,j > ℓ. Let Di,j be a connected

component which is a tree in B(Vi, Vj) for some integers i and j and suppose
that Di,j contains no edge from E(T1, . . . , Tk). Since Di,j has |V (Di,j)| − 1
edges, it is impossible that every vertex of V (Di,j) ∩ Vi is adjacent to a vertex
of V (Di,j) ∩ Vj in Tj and that every vertex of V (Di,j) ∩ Vj is adjacent to a
vertex of V (Di,j) ∩ Vi in Ti, since it would require |V (Di,j)| edges. Thus, for
every two integers i and j and every connected component Di,j of B(Vi, Vj), if
Di,j is a tree then V (Di,j) ∩ E(T1, . . . , Tk) 6= ∅ and we obtain a contradiction
since

∑
1≤i<j≤k ci,j > ℓ implies |E(T1, . . . , Tk)| > ℓ. Consequently, Property iii)

follows.
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2.2 (ℓ, ∗)-disjoint spanning trees

For a graph G and a subset of vertices A ⊆ V (G), let N(A) = {u ∈ V (G) \
A| uv ∈ E(G), v ∈ A}. In a similar way than Zelinka [29], we prove that
the notion of ℓ-rooted connected dominating sets is equivalent to a notion of
partition.

Definition 2.3. An ℓ-rooted partition of G into k + 1 sets is a partition of
V (G) into k + 1 sets of vertices V1, . . . , Vk, A such that:

i) |A| ≤ ℓ;

ii) G[Vi ∪ A] is connected, for each integer i, 1 ≤ i ≤ k;

iii) B(Vi, Vj)−N(A) contains no isolated vertex, for every two integers i and
j, 1 ≤ i < j ≤ k.

Figure 2 illustrates an 1-rooted partition on a specific graph.

Theorem 2. Let G be a graph. There exist k ℓ-rooted connected dominating
sets D1, . . . , Dk in G if and only if G has an ℓ-rooted partition into k + 1 sets.

Proof. Suppose G has an ℓ-rooted partition into k + 1 sets V1, . . . , Vk, A. We
begin by setting Di = Vi ∪ A for each integer i, 1 ≤ i ≤ k. Since V1, . . . , Vk, A
is a partition, we have | ∪1≤i<j≤k Di ∩Dj | ≤ ℓ. Moreover, by Property ii), the
subgraphs induced by the sets D1,. . . , Dk are all connected. It remains to prove
that Di is a dominating set, for each integer i, 1 ≤ i ≤ k. Since the vertices of
N(A) are already dominated by a vertex of A ⊆ Di, for each integer i, Property
iii) implies that every vertex of V (G) \ (Vi ∪ N(A)) has a neighbor in Vi, for
each integer i.

Suppose there exist k ℓ-rooted connected dominating sets D1, . . . , Dk in G.
We begin by setting A = ∪1≤i<j≤kDi ∩ Dj . Afterward, we set Vi = Di \ A,
for each integer i, 1 ≤ i ≤ k. By definition, Property i) and Property ii) are
satisfied by V1, . . . , Vk, A. It remains to prove Property iii). By contradiction,
suppose that a vertex u ∈ Vi has no neighbor in Vj∪A, for some integers i and j.
This fact implies that Dj is not a dominating set and Property iii) follows.

In the following definition we introduce the construction of a graph denoted
by G(k,A).

Definition 2.4. Let G be a graph, k be an integer and A = {u1, . . . , uℓ} ⊆ V (G)
be a subset of vertices. We denote by G(k,A) the graph obtained by replacing
one by one each vertex ui, for 1 ≤ i ≤ ℓ, by a complete graph of order k, and
by adding edges between each vertex of this clique and every vertex of N(ui).

We finish by proving that determining if a graph G contains k ℓ-rooted
connected dominating sets is equivalent to determine if the graph G(k,A) has
ℓ disjoint connected dominating sets, for some subset of vertices A ⊆ V (G). In
contrast with the two previous propositions, this alternative characterization is
expressed in terms of disjoint dominating sets.
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Proposition 2.5. There exist k ℓ-rooted connected dominating sets D1, . . . , Dk

in a graph G if and only if there exist a subset of vertices A ⊆ V (G) such that
|A| ≤ ℓ and dc(G(k,A)) ≥ k.

Proof. Let G be a graph. Suppose there exist k ℓ-rooted connected dominating
sets D1, . . . , Dk in G. We begin by setting A = ∪1≤i<j≤kDi∩Dj . Let Ki

k denote
the clique from G(k,A) which replaces the vertex ui in G(k,A), for 1 ≤ i ≤ ℓ.
We can construct k disjoint connected dominating sets D′

1, . . . , D
′
k in G(k,A)

as follows: for each integer j, 1 ≤ j ≤ k, D′
j contains the vertices from Dj \ A

and one different vertex by clique Ki
k, for each integer i, 1 ≤ i ≤ ℓ.

Suppose there exist a subset of vertices A ⊆ V (G) such that |A| ≤ ℓ and
dc(G(k,A)) ≥ k. Let D′

1, . . . , D
′
k be disjoint connected dominating sets in

G(k,A). We can construct k ℓ-rooted connected dominating sets D1, . . . , Dk

in G as follows: for each integer j, 1 ≤ j ≤ k, Dj contains the vertices from
D′

j \ (K
1
k ∪ . . . ∪Kℓ

k) ∪ {u1, . . . , uℓ}.

3 An NP-complete problem for every integers i

and j

We define the following decision problem:

k-(i, j)-DSP

Instance : A graph G.

Question: Does there exist k (i, j)-disjoint spanning trees in G ?

Theorem 3. Let i and j be non negative integers. The problem 2-(i, j)-DSP is
an NP-complete problem for every pair of integer (i, j).

Proof. Hasunuma [13] has proved that the following problem is NP-complete:

2-(u, v)-CIST

Instance : A graph G and two vertices u and v of V (G).

Question: Does there exist two completely independent spanning
trees T1 and T2 in G with u ∈ I(T1) and v ∈ I(T2) ?

Initially, the NP-complete problem considered by Hasunuma [13] consists in
determining if there exist two completely independent spanning trees in a graph
G. However, by analyzing Hasunuma’s reduction we can also obtain that the
problem 2-(u, v)-CIST is NP-complete by using the same reduction (it suffices
to consider that u is vB and that v is vR in Hasunuma’s reduction). Also, it is
trivial to prove that the problem 2-(i, j)-DST is in NP since the description of
two spanning trees in a graph G (when dsti,j(G) ≥ 2) ensures the existence of
these two (i, j)-disjoint spanning trees. We use a reduction from 2-(u, v)-CIST.

We introduce the three following operations that will be useful to describe
our reduction:
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Figure 3: The graph H (on the left), the graph H ′ (on the middle) and the
graph H+ (on the right).

Figure 4: Pattern to construct the trees in H (on the left), the graph H ′ (on
the middle) and the graph H+ (on the right) (simple line: edge of T1; dashed
line: edge of T2; boxed vertices: inner vertices of both T1 and T2).

i) H-add is an operation on a graph with two prescribed vertices w1 and w2

that consists in adding the graph H from Figure 3 and identifying w1 with
p1 and w2 with p2;

ii) H ′-add is an operation on a graph with two prescribed vertices w1 and
w2 that consists in adding the graph H ′ from Figure 3 and identifying w1

with p1 and w2 with p2;

ii) H+-add is an operation on a graph with two prescribed vertices w1 and
w2 that consists in adding the graph H+ from Figure 3 and identifying
w1 with p1 and w2 with p2;

Let G be a graph and let u and v be two vertices of V (G). We construct
a graph G′ from G as follows. Let ℓ ≥ 1 be a positive integer. We begin by
constructing two graphs Hℓ and H ′

ℓ by induction. The graph H1 is the graph
H and the graph H ′

1 is the graph H ′. The graph Hℓ+1 is obtained from Hℓ by
doing an H-add on the two vertices of degree 3 in Hℓ (denoted by p′1 and p′2 in
the left part of Figure 3, for ℓ = 1). The graph H ′

ℓ+1 is obtained from H ′
ℓ by

doing an H ′-add on the two vertices of degree 3 (also denoted by p′1 and p′2 in
the middle part of Figure 3, for ℓ = 1). In Hℓ and H ′

ℓ, we denote by p′1 and p′2
the two remaining vertices of degree 3.

Finally, the graph Hi,j is obtained by taking Hi and H ′
j , identifying p′1 in Hi

with a vertex of degree one in H ′
j and p′2 in Hi with the other vertex of degree

one in H ′
j and doing a H+-add on the two vertices of degree 3 which are labeled

by p′1 and p′2 in H ′
j . The graph G′ is obtained by taking a copy of G, adding

Hi,j , identifying the vertex u with a vertex of degree one in Hi,j and identifying
the vertex v with the other vertex of degree one in Hi,j .

Suppose there exist two completely independent spanning trees T1 and T2 in
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G with u ∈ I(T1) and v ∈ I(T2). We can construct two (i, j)-disjoint spanning
trees in G′ by reproducing the trees T1 and T2 in the graph G′ restricted to G
and by using the patterns described in Figure 4 in order to extend the spanning
trees to Hi,j .

Suppose there exist two (i, j)-disjoint spanning trees T1 and T2 in G′. Note
that there are i articulation vertices in the graph G′ restricted to Hi,j . These i
articulation vertices should be inner vertices in both T1 and T2. Thus, the trees
T1 and T2 restricted to G are internally vertex-disjoint. By Proposition 2.1, the
vertex x (obtained by H+-add in Hi,j and illustrated in Figure 3) should be
adjacent to an inner vertex of T1 and to an inner vertex of T2. Thus in order
that T1 and T2 be connected, there must be a path from x to u in T1 and a
path from x to v in T2 (we can exchange T1 and T2 if necessary). Note that
the vertices y and y′ from a copy of H ′ (illustrated in Figure 3) cannot be both
inner vertices of the same tree since it would be impossible to have a path from
x to u in T1 and another path from x to v in T2. Thus, in order that y and y′

belong to both T1 and T2 , the edge yy′ should belong to both T1 and T2 (since
we already have i articulation vertices). Moreover, since there are j copies of
H ′ in the graph Hi,j , the trees T1 and T2 restricted to G are both internally
vertex-disjoint and edge-disjoint.

4 Sufficient conditions to have (i, j)-disjoint span-

ning trees

4.1 k-connectivity

We begin this section by proving classical properties about cut sets.

Proposition 4.1. Let G be a graph and let T1, . . . , Tk be (i, j)-disjoint spanning
trees in G. For every subset of vertices A ⊆ V (G) such that |A| < k and G−A
is not connected, (at least) one vertex of A is in I(T1, . . . Tk). For every subset
of edges B ⊆ E(G) such that such that |B| < k and G−B is not connected, (at
least) one edge of B is in E(T1, . . . Tk).

Proof. Let A ⊆ V (G) be a subset of vertices such that |A| < k and G − A is
not connected. Remark that I(Tℓ) ∩ A should not be empty, for every integer
ℓ, 1 ≤ ℓ ≤ k, since it would imply that Tℓ is not connected. Since |A| < k, a
vertex of A should be in I(T1, . . . Tk). The same property holds for B.

Proposition 4.2. Let G be a graph and let T1, . . . , Tk be (i, j)-disjoint spanning
trees in G. Let a be the number of articulation vertices which do not belong to
bridges in G and let b be the number of bridges in G. We have i ≥ a + 2b and
j ≥ b.

Proof. Since an articulation vertex belongs to every spanning tree of G, we have
i ≥ a. The same goes for the bridges and their extremities.
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Since the presence of a k-cut in a graph G implies that there do not exist k+1
disjoint connected dominating set, it is natural to ask whether a k-connected
graph, for k sufficiently large, contains at least two disjoint connected domi-
nating sets [16]. In the paper in which completely independent spanning trees
have been introduced [11], the same question has been asked for two completely
independent spanning trees.

Using the construction from Kriesell [20] or Péterfalvi [27], we can obtain a
family of k-connected graphs that do not contain two completely independent
spanning trees. We recall the construction of the family of graphs considered
by Kriesell [20].

Definition 4.3 ([20]). Let k and ℓ be two integers such that ℓ ≥ k. Let Gk,ℓ be
the bipartite graph with vertex set {1, . . . , ℓ}∪ {uA| A ⊆ {1, . . . ℓ}, |A| = k} and
edge set {iuA| i ∈ A, uA ∈ V (Gk,ℓ), 1 ≤ i ≤ ℓ}. The graph Gk,ℓ corresponds to
the incidence graph of the complete k-uniform hypergraph with ℓ vertices.

Note that the graph Gk,ℓ is k-connected and bipartite. Using a similar proof
than that of Kriesell, we obtain the following theorem which shows that there
exist k-connected graphs which do not contain two (i, j)-disjoint spanning trees,
for every three positive integers k ≥ 2, i and j.

Theorem 4. Let i, j and k ≥ 2 be integers. For any ℓ ≥ 2k + i − 1, the graph
Gk,ℓ does not contain two (i, j)-disjoint spanning trees.

Proof. Suppose there exist two (i, j)-disjoint spanning trees T1 and T2 in Gk,ℓ.
Let H1 and H2 be the two subsets of vertices forming a bipartition of Gk,ℓ, with
H1 = {1, . . . , ℓ} and H2 = {uA| A ⊆ {1, . . . ℓ}, |A| = k}. Let B = I(T1, T2)∩H1.
Note that, by definition of (i, j)-disjoint spanning trees, |B| ≤ i. We consider
a set A0 ⊂ H1 \ B, |A0| = k. By Proposition 2.1, at least one inner vertex of
T1 is adjacent to uA0

. This inner vertex of T1 is denoted by v0. Inductively,
since |H1| = ℓ ≥ 2k + i − 1, for 1 ≤ q ≤ k − 1 , we can create a set Aq ⊆
H1 \ (B ∪ {u0, . . . , uq−1}) with |Aq| = k and obtain that there exists a vertex
vq ∈ Aq ∩ I(T1) adjacent to uAq

. The set D = {v0, . . . , vk−1} ⊆ H1 is such that
|D| = k and D ⊆ I(T1). Hence, we have a contradiction with Proposition 2.1.ii),
since uD has no neighbor which is a inner vertex of T2 and Gk,ℓ has diameter
greater than 2 when ℓ > k.

4.2 Dirac’s and Ore’s conditions

We begin this subsection by proving that there are at least two disjoint domi-
nating sets in some particular graphs.

Proposition 4.4. There exist two disjoint connected dominating sets in C4 and
three disjoint connected dominating sets in K3,3

Proof. These disjoint connected dominating sets are illustrated in Figure 5.

A graph G satisfies the condition of Dirac if δ(G) ≥ |V (G)|/2 and satisfies
the condition of Ore if min{d(u) + d(v)| uv /∈ E(G)} ≥ |V (G)|. Araki [1]
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Figure 5: Disjoint connected dominating sets in C4 (on the left) and in K3,3 (on
the right) (circles: D1; triangles: D2; squares: D3).

proved that every graph G with |V (G)| ≥ 7 satisfying Dirac’s condition contains
two completely independent spanning trees. Moreover, Fan, Hong and Liu [6]
proved that every graph G with |V (G)| ≥ 7 satisfying Ore’s condition contains
two completely independent spanning trees. The only graphs with |V (G)| <
7 satisfying the Dirac condition or the Ore condition which do not contain
two completely independent spanning trees are P2, C4 and K3,3. Thus, by
Proposition 4.4, we obtain the two following theorems:

Theorem 5 ([1]). Let G be a graph. If δ(G) ≥ |V (G)|/2, then there exist two
disjoint connected dominating sets.

Theorem 6 ([6]). Let G be a graph. If min{d(u)+d(v)| uv /∈ E(G)} ≥ |V (G)|,
then there exist two disjoint connected dominating sets.

Moreover, there exists a graph of order n satisfying δ(G) ≥ ⌈n/2⌉ − 1 and
min{d(u) + d(v)| uv /∈ E(G)} ≥ n− 1, that does not contain two disjoint con-
nected dominating sets. Such graph can be constructed by taking two complete
graphs K⌊(n+1)/2⌋ and K⌈(n+1)/2⌉, for n a positive integer, and by identifying a
vertex of the first clique with a vertex of the second clique. This fact implies
that the bounds in the previous theorems are tight. It could be possible to im-
prove the recent results about Dirac’s condition [4, 15, 17] by only considering
disjoint connected dominating sets.

5 Number of inner vertices and edges in (i, j)-

disjoint spanning trees

5.1 Required number of edges

We begin this section by giving necessary conditions on the number of edges of
a graph G in order to have k (i, j)-disjoint spanning trees.

Proposition 5.1. Let G be a graph of order n and let T1, . . . , Tk be (i, j)-disjoint
spanning trees in G. We have |E(G)| ≥ k(n− 1)− j(k − 1).

Proof. Suppose G contains at least k (i, j)-disjoint spanning trees. Since every
spanning tree contains n− 1 edges and since an edge in E(T1, . . . Tk) can be in
at most k trees, we obtain that G contains at least k(n−1)− j(k−1) edges.
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u u v

Figure 6: The graph P ∗
6 (on the left) and the graph P−

6 (on the right).

Note that the grid G(2, n) satisfies the equality for k = 2 and j = n. This
last proposition can be improved for i = 0 [10] since, by Proposition 1.2.i), an
edge in E(T1, . . . Tk) can be in at most two trees.

Corollary 5.2. Let G be a graph of order n and let T1, . . . , Tk be (0, j)-disjoint
spanning trees in G. We have |E(G)| ≥ k(n− 1)− j.

Moreover, for an arbitrary large j, the following bound is known.

Proposition 5.3. [10] A graph G of order n such that dc(G) ≥ k has at least
n(k + 1)/2− k edges. This bound is sharp since dc(Kk,k) = k.

5.2 Distribution of the inner vertices

The following observation illustrates the existence of an (i, j)-disjoint spanning
tree with possibly less inner vertices than the others.

Observation 5.4. Let G be a graph of order n and let T1, . . . , Tk be (i, j)-
disjoint spanning trees in G. There exists a tree T among T1, . . . , Tk satisfying
|I(T )| ≤ ⌊(n− i)/k⌋+ i.

Two sets of vertices V1 and V2 are balanced if ||V1| − |V2|| ≤ 1. We begin
by proving that there exists a graph G satisfying dc(G) ≥ 2 but in which no
two disjoint connected dominating sets are balanced. Let P ∗

n be the graph
constructed by taking one copy of Pn, by adding a new vertex u and by adding
the edges between u and the vertices of Pn. Figure 6 illustrates the graph P ∗

n

for n = 6.

Proposition 5.5. Let n ≥ 5. For any two disjoint connected dominating sets
D1 and D2 in P ∗

n , ||D1| − |D2|| ≥ n− 5.

Proof. Suppose without loss of generality that u /∈ D1. Since D1 should be
connected, it should contain consecutive vertices of Pn. Moreover, since D1

should be dominating, it should contain every vertex of Pn, except its extrem-
ities. Thus, |D1| ≥ n − 2 and consequently |D2| ≤ 3. Therefore, we have
||D1| − |D2|| ≥ n− 5.

Note that the graph P ∗
n does not contain two completely independent span-

ning trees. Thus, it could be true that every graph containing two completely
independent spanning trees contains two completely independent spanning trees
T1 and T2 such that ||I(T1)| − |I(T2)|| ≤ 1. However, the following proposition
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illustrates that it is not the case. Let P+
n be the graph obtained by taking one

copy of P ∗
n , by adding a new vertex v and by adding the edge uv and the edges

between v and the extremities of Pn, u being the vertex of maximal degree in
P ∗
n , Pn being the induced path of n vertices in P ∗

n obtained by removing u.
Figure 6 illustrates the graph P+

n for n = 6.

Proposition 5.6. Let n ≥ 3. For any two completely independent spanning
trees T1 and T2 in P+

n , ||I(T1)| − |I(T2)|| ≥ n− 2.

Proof. First, observe that there exist two completely independent spanning trees
in P+

n since {u, v} and V (P+
n ) \ {u, v} is a 0-CIST-partition. Now, suppose

there exist two completely independent spanning trees T1 and T2 and suppose
without loss of generality that u /∈ I(T1). Since the graph induced by the
vertices of I(T1) should be connected, it should contain consecutive vertices
of Pn. Moreover, I(T1) should be dominating set. Since either {u} and the
subsets of V (P+

n ) \ {u} or {u, v} and the proper subsets of V (P+
n ) \ {u, v} do

not form a 0-CIST partition, we have I(T1) = V (P+
n )\{u, v} and I(T2) = {u, v}.

Therefore, we have ||I(T1)| − |I(T2)|| ≥ n− 2.

Even if there exist graphs only containing two non-balanced disjoint con-
nected dominating sets, it could be interesting to find classes of graphs for
which there always exist two disjoint connected dominating sets which are bal-
anced. For example, the class of graphs with minimum degree at least |V (G)|/2,
is such a class [17].

6 (i, j)-disjoint spanning trees in some simple classes

of graphs

6.1 Square of graphs

The square of a graph G, denoted by G2, is the graph obtained from G by adding
edges between every two vertices u and v of G with dG(u, v) = 2. Araki [1] has
studied the square of graphs and has proven that there exists a tree T such
that there are no two completely independent spanning trees in T 2 and that in
the square of every 2-connected graph, there are two completely independent
spanning trees. Moreover, the family of trees such there are no two completely
independent spanning trees in T 2 has been determined. We begin this section
by proving that there exist two (0, 1)-disjoint spanning trees in the square of
every graph.

Proposition 6.1. Let G be graph. There exist two (0, 1)-disjoint spanning trees
in G2.

Proof. Let T be a spanning tree of G let V1 and V2 be a bipartition of T . The
sets V1 and V2 form an 1-CIST-partition of G2 since both G[V1] and G[V2] are
connected in G2 and since B(V1, V2) is a connected graph (which can be a tree
in the case G is a tree). Thus, by Theorem 1, there exist two (0, 1)-disjoint
spanning trees in G2.
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We finish the section by determining which square of graph contains two com-
pletely independent spanning trees (the case of trees has already been treated
[1]).

Proposition 6.2. Let G be a connected graph which is not a tree. There exist
two completely independent spanning trees in G2.

Proof. Since G is not a tree, there exists an induced cycle C in G. Let u be a
vertex of C which has a neighbor v not belonging to C. If such vertex does not
exist, then G is cycle and G2 contains two completely independent spanning
trees [1]. Let uw be an edge of C, let T be a spanning tree of G−uw and let V1

and V2 be a bipartition of T . Remark that both G[V1] and G[V2] are connected
and that every edge of T belongs to B(V1, V2). Our goal is to prove that there
is one more edge in B(V1, V2), i.e, that B(V1, V2) is connected and is not a tree.
First, if C is of even length, then u ∈ V1 and w ∈ V2 (or u ∈ V2 and w ∈ V1, by
symmetry) and uw ∈ E(B(V1, V2)) \ E(T ). Second if C is of odd length, then
u ∈ V1, w ∈ V1 and v ∈ V2 (or v ∈ V1, u ∈ V2 and w ∈ V2, by symmetry) and
vw ∈ E(B(V1, V2)) \ E(T ). Thus, by Theorem 1, there exist two completely
independent spanning trees in G2.

Note that the square of a star (a tree of diameter at most 2) is a clique and
can contain an arbitrary large number of completely independent spanning trees
(this number depends on the degree of the central vertex). Thus, it could be in-
teresting to determine which square of graph contains k completely independent
spanning trees for k > 2.

6.2 k-connected interval graph

We begin by recalling the definition of a path-decomposition of a graph G.

Definition 6.3. Let G be a graph. A sequence of subsets X1, . . . , Xℓ of vertices
of G is a path-decomposition of G if the two following properties are satisfied:

i) for each edge e of G, there exists an integer i such that both extremities of
e belong to the subset Xi;

ii) for every three integers 1 ≤ i ≤ j ≤ k ≤ ℓ, Xi ∩Xk ⊆ Xj.

An interval graph is the intersection graph of a family of intervals of the real
line. We recall that an interval graph has a path-decomposition X1, . . . , Xℓ for
which each Xi, 1 ≤ i ≤ ℓ, forms a maximal clique in G. We also recall that for
a k-connected interval graph G with path-decomposition X1, . . . , Xℓ, we have
|Xi ∩Xi+1| ≥ k, for every integer i, 1 ≤ i < ℓ (otherwise Xi ∩ Xi+1 would be
a cut set of order less than k). The following property is true for k-connected
interval graphs.

Theorem 7. Let k ≥ 2 be an integer. Every k-connected interval graph G
satisfies dc(G) ≥ k.
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Figure 7: Three completely independent spanning trees of K6 (on the left),
three (0, 2)-disjoint spanning trees of K5 (on the middle) and four (1, 3)-disjoint
spanning trees of K6 (on the right) (thin line: edge of T4; hexagon: I(T4);
pentagon: I(T1) ∩ I(T2) ∩ I(T3) ∩ I(T4)).

Proof. Let G be a k-connected interval graph. Let X1, . . . , Xℓ be a path-
decomposition of G, for which every Xi forms a maximal clique. If ℓ = 1,
then G is a k-connected complete graph, i.e., G = Kn for n ≥ k. Thus G
satisfies dc(G) = n ≥ k. Hence, suppose ℓ ≥ 2. Our goal is to construct dis-
joint connected dominating sets D1, . . . , Dk by setting Di = ∪1≤j≤ℓ−1{x

j
i}, for

1 ≤ i ≤ k.
By hypothesis, |X1∩X2| ≥ k, and there exist k different vertices x1

1, . . . , x
1
k ∈

X1∩X2 forming k disjoint connected dominating sets on the graph G[X1∪X2].
We set Di = {x1

i }, for every integer i, 1 ≤ i ≤ k. Suppose ℓ > n and that,
by induction, that we have already determined x1

i , . . . , x
n−1
i , for every integer

i, 1 ≤ i ≤ k and that D1, . . . , Dk are disjoint connected dominating sets on the
graph G[X1 ∪ . . . ∪Xn], for Di = ∪1≤j≤n−1{x

j
i}. Now our goal is to construct

disjoint connected dominating sets on the graph G[X1 ∪ . . . ∪Xn+1].
Let i be an integer, 1 ≤ i ≤ k. If Xn ∩Xn+1 ∩ {xj

i} 6= ∅, then we set xn
i =

xn−1
i , otherwise we set to xn

i a vertex not in (Xn∩Xn+1∩{x
n
1 , . . . , x

n
k})\{x

n−1
i }.

Such a vertex exists since otherwise it would imply that |Xn ∩Xn+1| < k. Fi-
nally, the sets D1 = ∪1≤j≤n{x

j
1}, . . . , Dk = ∪1≤j≤n{x

j
k} are disjoint connected

dominating sets on the graph G[X1 ∪ . . . ∪Xn+1]. Consequently, by induction,
we can construct k disjoint connected dominating sets on the graph G.

The previous theorem can not be generalized to chordal graphs since there
exist k-connected chordal graphs, for k ≥ 2, which do not contain two disjoint
connected dominating sets [27].

6.3 Complete graphs

By dsti,j(G) we denote the maximum number of (i, j)-disjoint spanning trees in
G. Remark that there are n disjoint connected dominating sets in Kn and that
there are ⌊n/2⌋ completely independent spanning trees in Kn [22].

We give the following intermediate result about (0, ℓ)-disjoint spanning trees.

Proposition 6.4. Let n be an integer. We have dst0,ℓ(Kn) = ⌊n/2⌋+min(⌊ℓ/(n−
1) + 1odd(n)/2⌋, ⌈n/2⌉), where 1odd(n) = 1 if n is odd and 0 otherwise.
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Proof. First, suppose n is even. Let i = ⌊ℓ/(n− 1)⌋. We begin by proving that
dst0,ℓ(Kn) < n/2 + i + 1 for 0 ≤ i < n/2. Suppose that there are n/2 + i + 1
(0, ℓ)-disjoint spanning trees. By Corollary 5.2, we have |E(Kn)| ≥ (n/2 + i +
1)(n−1)−ℓ. Observe that (n/2+ i+1)(n−1)−ℓ = n(n+1)/2+ i(n−1)−1−ℓ.
Since |E(Kn)| = n(n − 1)/2, we have ℓ ≥ i(n − 1) + n − 1 = (i + 1)(n − 1),
contradicting the definition of i. We are going to prove that we can construct
n/2 + i (0, ℓ)-disjoint spanning trees in Kn, for 1 ≤ i ≤ n/2. We construct two
kinds of spanning trees. First, we construct 2i spanning trees T1, . . . , T2i which
are spanning stars. Second, we construct n/2− i spanning trees in Kn each tree
with two inner vertices, as in [22] (with disjoint inner vertices). The left part
of Figure 7 illustrates this construction for K6. There are 2i(2i− 1)/2 common
edges between the spanning stars and 2i(n/2 − i) common edges between the
inner vertices of T1, . . . , T2i and the remaining vertices. Thus, there are i(n− 1)
common edges and by definition ℓ ≥ i(n− 1).

Second, suppose n is odd. Let i = ⌊(ℓ/(n− 1) + 1/2⌋. We begin by proving
that dst0,ℓ(Kn) < (n − 1)/2 + i + 1 for 0 ≤ i < (n + 1)/2. Suppose that
there are (n − 1)/2 + i + 1 (0, ℓ)-disjoint spanning trees. By Corollary 5.2, we
have |E(Kn)| ≥ ((n − 1)/2 + i + 1)(n − 1) − ℓ. Observe that ((n − 1)/2 +
i + 1)(n − 1) − ℓ = n(n − 1)/2 + i(n − 1) + (n − 1)/2 − ℓ. Since |E(Kn)| =
n(n − 1)/2, we have ℓ ≥ i(n − 1) + (n − 1)/2, contradicting the definition of
i. We begin by constructing (n − 1)/2 + i (0, ℓ)-disjoint spanning trees in Kn,
for 1 ≤ i ≤ (n + 1)/2. We construct two kinds of spanning trees. First, we
construct 2i− 1 spanning trees T1, . . . , T2i−1 which are spanning stars. Second,
we construct (n − 1)/2 − i + 1 spanning trees in Kn, each tree having two
inner vertices, following the construction described in [22] (with disjoint inner
vertices). There are (2i − 1)(2i − 2)/2 common edges between the spanning
stars and (2i − 1)((n − 1)/2 − i) common edges between the inner vertices of
T1, . . . , T2i−1 and the remaining vertices. Thus, there are (2i− 1)(i− 1)+ (2i−
1)((n − 1)/2 − i + 1) = i(n − 1) − (n − 1)/2 common edges and by definition
ℓ ≥ i(n− 1)− (n− 1)/2.

The middle part of Figure 7 depicts three (0, 2)-disjoint spanning trees in
K5.

Proposition 6.5. Let n be a positive integer. For 1 ≤ ℓ < (n − 1), we have
dst1,ℓ(Kn) ≤ ⌊n/2⌋+ ⌊ℓ/2− 1even(n)/2⌋, where 1even(n) = 1 if n is even, and 0
otherwise. Moreover, if ℓ ≥ (n− 1), then dst1,ℓ(Kn) is not finite.

Proof. Observe that a connected dominating set of Kn can contain only one
vertex. Thus, if ℓ ≥ (n− 1), then dst1,ℓ(Kn) is not finite.

First suppose n is even. Let i = ⌊ℓ/2−1/2⌋. We prove that we can construct
n/2 + i (1, ℓ)-disjoint spanning trees in Kn, for 1 ≤ i ≤ n/2 − 1. Let B be an
induced Kn−2(i+1) of G = Kn. We begin by creating n/2 − i − 1 completely
independent spanning trees T1, . . . , Tn/2−i−1 in B, as in [22]. Let u be a vertex
of G − B. We are going to extend these trees in order they span the whole
graph G. To each tree Tk, 1 ≤ k ≤ n/2 − i − 1, we add the vertex u and an
edge incident to u and to a vertex of I(Tk) ∩B. We finally add to Tk the edges
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incident to u and to every vertex of G − B. We now construct the remaining
trees T ′

1, . . . , T
′
2i+1 as follows. Each tree T ′

k, 1 ≤ k ≤ 2i + 1, has two inner
vertices: u and a vertex uk of G − (B ∪ {u}) different for each tree. Each tree
T ′
k also contains the edges incident to u and to every vertex of G − B and the

edges incident to uk and to every vertex of B. It is easy to verify that the trees
T1, . . . , Tn/2−i−1, T

′
1, . . . , T

′
2i+1 have only one common vertex (the vertex u) and

2i+ 1 = ℓ common edges (the edges incident to u in G−B).
Second, suppose n is odd. Let i = ⌊ℓ/2⌋. We prove that we can construct

(n− 1)/2 + i (1, ℓ)-disjoint spanning trees in Kn, for 1 ≤ i ≤ (n− 1)/2. Let B
be an induced Kn−2i−1 of Kn. We begin by creating (n − 1)/2 − i completely
spanning trees T1, . . . , T(n−1)/2−i in B, as in [22] and extend them to the whole
graph G as for the case n even. We construct the trees T ′

1, . . . , T
′
2i similarly as in

the case n even. It is easy to verify that the trees T1, . . . , T(n−1)/2−i, T
′
1, . . . , T

′
2i

have only one common vertex (the vertex u) and 2i common edges (the edges
incident to u in G−B).

The right part of Figure 7 depicts four (1, 3)-disjoint spanning trees in K6.
Note that we can obtain a lower bound on the number of (1, ℓ)-disjoint trees in
Kn by using Proposition 5.1. However, in this case, we do not obtain a tight
bound. Moreover, Proposition 5.1 implies that dsti,0(Kn) = ⌊n/2⌋ for every
positive integer i.

6.4 Cylinders

Let n1 and n2 be positive integers with n1 ≥ 3 and n2 ≥ 3. Let V (C(n1, n2)) =
{(i, j)| 0 ≤ i < n1, 0 ≤ j < n2} and E(C(n1, n2)) = {(i, j) (i′, j′′)| i = i′, j =
j′ ± 1 ∨ j = j′, |i− i′| = 1 (mod n1)}.

Theorem 8. There exist two (0, n1 − 2)-disjoint spanning trees in the cylinder
C(n1, n2).

Proof. We describe these two trees by giving their edge sets:
E(T1) = {(0, j)(0, j+1)| j ∈ {0, . . . , n2−2}}∪{(i, j)(i+1, j)| i ∈ {0, . . . , n1−

2}, j ∈ {0, 2, 4, . . . , 2⌊(n2 − 1)/2⌋}} ∪ {(i, j)(i, j + 1)| i ∈ {1, . . . , n1 − 2}, j ∈
{0, 2, 4, . . . , 2⌊(n2−1)/2⌋}}∪{(0, j)(n1−1, j)| j ∈ {1, 3, 5, . . . , 2⌊(n2−2)/2⌋+1}}.

E(T2) = {(n1 − 1, j)(n1 − 1, j+1)| j ∈ {0, . . . , n2 − 2}}∪ {(i, j)(i+1, j)| i ∈
{0, . . . , n1 − 2}, j ∈ {1, 3, 5, . . . , 2⌊(n2 − 2)/2⌋ + 1}} ∪ {(i, j)(i, j + 1)| i ∈
{1, . . . , n1 − 2}, j ∈ {1, 3, 5, . . . , 2⌊(n2 − 2)/2⌋ + 1}} ∪ {(0, j)(n1 − 1, j)| j ∈
{1, 3, 5, . . . , 2⌊(n2 − 1)/2⌋}} ∪ {(i, 0)(i, 1)| i ∈ {1, . . . , n1 − 2}}.

Observe that C(n1, n2) contains 2n1n2 − n1 edges. Hence, by Corollary 5.2,
we can conclude that there does not exist two (0,m)-disjoint spanning trees in
C(n1, n2), for m < n1 − 2.

6.5 square grids

Let n1 and n2 be positive integers with n1 ≥ 3 and n2 ≥ 3. Let V (G(n1, n2)) =
{(i, j)| 0 ≤ i < n1, 0 ≤ j < n2} and E(G(n1, n2)) = {(i, j) (i′, j′′)| i = i′±1, j =
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Figure 8: Two (0, 3)-disjoint spanning trees of C(5, 6).

j′ ∨ i = i′, i = j′ ± 1}.
In two papers [7, 21], the trees with a maximum number of leaves in G(n1, n2)

have been determined. In particular, Fujie [7] has shown that a spanning
tree of G(n1, n2) has at least ⌈n1n2/3⌉ inner vertices. Hartnell and Rall [10]
have proven that there do not exist two disjoint connected dominating sets in
G(n1, n2), except if n1 ≤ 2 or n2 ≤ 2. However, this is not the case for 1-rooted
connected dominating set. We finish this paper by giving a construction of two
1-rooted connected dominating sets in G(n1, n2) for n1 ≥ n1 and n2 ≥ 3. In
Figure 9, we exhibit two trees induced by two 1-rooted connected dominating
sets in G(7, 13). In this example, we have minimized the number of common
edges.

Theorem 9. There exist two 1-rooted connected dominating sets in the grid
G(n1, n2), for every n1 ≥ 3 and n2 ≥ 3.

Proof. Suppose without loss of generality that n1 ≤ n2. If n1 = 3, then one
can easily construct two 1-rooted connected dominating sets by setting D1 =
{(1, j)|j ∈ {0, . . . , n2 − 1}} and by setting D2 = V (G(3, n2)) \D1 ∪ {(1, 0)}.

Now suppose that n1 ≥ 4. We construct D1 as follows:
D1 = {(0, i)| i ∈ {0, . . . , n2−1}}∪{(n1−1−2i, j)| i ∈ {0, . . . , ⌊(n1+1)/4⌋}, 2i+
1 ≤ j ≤ n2 − 2 − 2i} ∪{(2 + 2i, j)| i ∈ {0, . . . , ⌊(n1 − 1)/4⌋}, 2i + 1 ≤ j ≤
n2−4−2i}∪{(i, 1+2j)| 2j+2 ≤ i ≤ n1−1−2j, j ∈ {0, . . . , ⌊n1/4⌋}∪{(i, n2−
2− 2j)| 2j ≤ i ≤ n1 − 1− 2j, j ∈ {0, . . . , ⌊(n1 + 2)/4⌋}.
The set D2 is V (G(n1, n2))\D1∪{(1, n2−2)}. Note that D1∩D2 = {(1, n2−2)}.

Figure 9 illustrates this construction, with circle vertices corresponding to
D1 and triangles to D2 (the square vertex being both in D1 and D2).

Open questions

In this introducing paper about (i, j)-disjoint spanning trees, we tried to cover
a large number of issues. However, there still remains a lot of interesting prop-
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Figure 9: Two (1, 18)-disjoint spanning trees of G(7, 13).

erties to be found about this notion. We finish this paper by giving some open
questions:

1. Does there exist k (logk(n), 0)-disjoint spanning trees in every k-connected
graph of order n?

2. Determine conditions in order to guarantee the existence of k completely
independent spanning trees, k ≥ 3, in the square of graphs.

3. Determine conditions on chordal graphs in order to guarantee the existence
of two disjoint connected dominating set.

4. Determine dsti,j(Kn) for the remaining cases.

5. Determine dsti,j for the complete k-partite graphs.

6. Determine the minimum number of common edges m in order to have two
(1,m)-disjoint spanning trees in the square grid.

References

[1] T. Araki, Dirac’s condition for completely independent spanning trees,
Journal of Graph Theory 77 (2014), 171–179.

[2] B. Barden, J. Davis, R. Libeskind-Hadas, W. Williams, On edge-disjoint
spanning trees in hypercubes, Information Processing Letters 70 (1999),
13–16.

21



[3] D. M. Blough, H. Wang, Multicast in wormhole-switched torus networks us-
ing edge-disjoint spanning trees, Journal of Parallel and Distributed Com-
puting 61 (2001), 1278–1306.

[4] H-Y. Chang, H-L. Wang, J-S. Yang, J-M. Chang A note on the degree
condition of completely independent spanning trees, IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences
E98.A (2015), 2191–2196.

[5] B. Cheng, D. Wang, J. Fan Constructing completely independant spanning
trees in crossed cubes, Discrete Applied Mathematics 219 (2017), 100–109.

[6] G. Fan, Y. Hong, Q. Liu, Ore’s condition for completely independent
spanning trees, Discrete Applied Mathematics 177 (2014), 95–100.

[7] T. Fujie, An exact algorithm for the maximum leaf spanning tree problem,
Computers and Operations Research 30 (2003), 1931–1944.

[8] Z. Ge, S. L. Hakimi, Disjoint rooted spanning trees with small depths in
de Bruijn and Kautz graphs, SIAM J. Comput 26 (1997), 79–92.

[9] S. Guba, S. Khuller, Approximation Algorithms for Connected Dominating
Sets, Algorithmica 20 (1998), 374–387.

[10] B. L. Hartnell, D. F. Rall, Connected Domatic Number in Planar Graphs,
Czechoslovak Mathematical Journal 51 (2001), 173-179.

[11] T. Hasunuma, Completely independent spanning trees in the underlying
graph of line graph, Discrete mathematics 234 (2001), 149–157.

[12] T. Hasunuma, H. Nagamochi, Independent spanning trees with small
depths in iterated line digraphs, Discrete Applied Mathematics 110 (2001),
189–211.

[13] T. Hasunuma, Completely independent spanning trees in maximal planar
graphs, Lecture Notes in Computer Science 2573 (2002), 235–245.

[14] T. Hasunuma, C. Morisaka, Completely independent spanning trees in
torus networks, Networks 60 (2012), 56–69.

[15] T. Hasunuma, Minimum degree conditions and optimal graphs for com-
pletely independent spanning trees, Lecture Notes in Computer Science
9538 (2016), 260–273.

[16] S. T. Hedetniemi and R. Laskar, Connected domination in graphs, Graph
Theory and Combinatorics (1984), 209–217.

[17] X. Hong and Q. Liu, Degree condition for completely independent spanning
trees, Information Processing Letters (2016), 644–648.

22



[18] T-K. Hung, S-C. Ku, B-F. Wang, Constructing edge-disjoint spanning trees
in product networks, Parallel and Distributed Systems 61 (2003), 213–221.

[19] Y. Iwasaki, Y. Kajiwara, K. Obokata, Y. Igarashi, Independent spanning
trees of chordal rings, Inform. Process. Lett. 69 (1999), 155–160.

[20] M. Kriesell, Edge-disjoint trees containing some given vertices in a graph,
Journal of Combinatorial Theory, Series B 88 (2003), 53–65.

[21] P. C. Li and M. Toulouse, Maximum Leaf Spanning Tree Problem for Grid
Graphs, The Journal of Combinatorial Mathematics and Combinatorial
Computing 73 (2010), 181-193.

[22] M. Matsushita, Y. Otachi, T. Araki, Completely independent spanning
trees in (partial) k-trees, Discussiones Mathematicae Graph Theory 35
(2015), 427–437.

[23] K. Obokata, Y. Iwasaki, F. Bao, Y. Igarashi, Independent spanning trees
in product graphs and their construction, IEICE Trans. E79-A (1996),
1894–1903.

[24] K-J. Pai, S-M. Tang, J-M. Chang, J-S. Yang, Completely Independent
Spanning Trees on Complete Graphs, Complete Bipartite Graphs and Com-
plete Tripartite Graphs, Advances in Intelligent Systems and Applications
20 (2013), 107–113.

[25] K-J. Pai, J-S. Yang, S-C. Yao, S-M. Tang, J-M. Chang, Completely In-
dependent Spanning Trees on Some Interconnection Networks, IEICE
TRANSACTIONS on information and systems 97 (2014), 2514–2517.

[26] K-J. Pai, J-M. Chang, Constructing two completely independant span-
ning trees in hypercube-variant networks, Theorical Computer Science 652
(2016), 28–37.

[27] F. Péterfalvi, Two counterexamples on completely independent spanning
trees. Discrete mathematics 312 (2012), 808–810.

[28] P-J. Wan, K. M. Alzoubi, O. Frieder, Distributed construction of con-
nected dominating set in wireless ad hoc networks, Mobile Networks and
Applications - Discrete algorithms and methods for mobile computing and
communications 9 (2004), 141–149.

[29] B. Zelinka, Connected domatic Number of a graph, Czechoslovak Mathe-
matical Journal 36 (1986), 387-392.

23


