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Abstract. This work deals with the large-scale mathematical modelling of flow of gas at low pressure 
in porous media. At the pore scale, this type of flow is characterised by a wall-slip effect, which at 
the sample scale entails a dependence of permeability upon gas pressure. This latter property is 
described by Klinkenberg’s law. The goal of the present work is to examine the robustness of this 
law, by determining whether it is still verified on a large-scale: upscaling is thus applied, starting 
with Klinkenberg’s law at the local scale. A Klinkenberg’s flow of gas in a two-constituent composite 
porous medium is considered, and the constituents are firstly assumed to be homogeneous. The cases 
of low and of high permeability contrast are successively examined. Upscaling is performed using 
the homogenisation method of multiple scale expansions. In both cases, the large-scale permeability 
tensor differs from its liquid counterpart. Except in the particular case of equal Klinkenberg factors, 
Klinkenberg’s law is not verified at low permeability contrast. At high permeability contrast, the 
large-scale gas permeability verifies Klinkenberg’s law. The case of heterogeneous constituents is 
then examined. It is shown that the large-scale permeability differs from its liquid counterpart, but it 
does not verify Klinkenberg’s law.

Key words: gas flow, composite porous medium, Klinkenberg’s law, gas permeability, upscaling, 
homogenisation.

1. Introduction

Darcy’s law may break down for flow of gases at low pressures through porous
media: Klinkenberg’s effect may occur which can have significant impact on gas
flow behaviours, especially in low permeable media. Klinkenberg (1941) observed
that at low or near atmospheric pressure, the gas permeability kg of a porous sample
is greater than its liquid permeability kl. This phenomenon is called Klinkenberg’s 
effect and is described by the so-called Klinkenberg’s equation

kg = kl

(
1 + b

p̄

)
, (1.1)

where b is the Klinkenberg factor, which depends on the rock properties, as well
as, to a lesser degree, on the nature of the gas used, and p̄ is the arithmetic mean
of the inlet and outlet pressures of the sample. Therefore, Klinkenberg’s equa-
tion (1.1) describes a non-local flow behaviour. This law characterises the fact that



Klinkenberg’s effect becomes less significant at higher pressures, and it follows
that

lim
p̄→∞ kg = kl. (1.2)

Physically, Klinkenberg’s effect is significant in any situation where the mean free
path of a gas molecule λ, that is, the mean distance that it travels before it collides
with another molecule (Cercignani, 1988, 1990)

λ = µ
√

πRT/2M

p
, (1.3)

is comparable with the pore dimension lp. This leads to a non-negligible Knudsen
number, the ratio of molecular mean free path to pore size

Kn = λ

lp
≈ 1. (1.4)

Klinkenberg’s effect is thus expected to occur at low pressure, as λ is inversely
proportional to p, and in very fine-grained porous media. In Darcy’s flow regime
and at high pressure (λ 	 lp), the boundary condition at the fluid/solid interface
at the pore scale is that the fluid molecules are static and therefore that the fluid
adheres to the pore wall. At low pressure and if the mean free path λ approaches
the pore size, then significant molecular collisions are with the pore wall rather
than with other gas molecules. Thus, the fluid/solid boundary molecules are no
longer static and a wall-slip flow occurs: the local flow velocity is a non-vanishing
velocity on the pore walls. Gas molecules move on the pore surface and contribute
to their overall flux. This slippage increases the flow rate over that predicted by
Darcy’s law. Since the vast majority of permeability measurements are done with
near atmospheric gas flow, the deviations from Darcy’s law may thus be important
and, consequently, the permeability may be overestimated.

Modelling and predicting the occurrence of Klinkenberg’s effect is crucial to
any area which involves gas flow through porous media: petroleum engineering
(Jones, 1972; Sampath and Keighin, 1982), geothermal reservoir engineering (Wu
et al., 1998; Persoff and Hulen, 2001) contaminant transport and remediation (Reda,
1987), civil engineering (McVay and Rish, 1995), and material engineering for
the forming of fibrous materials (Starr, 1995; Marschall and Milos, 1998), or for
testing analysis of ceramics (Glass and Green, 1999), or pneumatics (Baehr and
Hult, 1991). In Reda (1897), Baehr and Hult (1991) and Persoff and Hulen (2001),
experimental evidence is given Klinkenberg’s effect could not be neglected in low
permeability media. In comparison with the considerable amount of studies on
theory and applications of isothermal flow of gases through porous media, very
few studies are explicitly concerned with Klinkenberg’s effect. In Wu et al. (1998),
a set of analytical solutions for steady-state and transient gas flows in porous media
with Klinkenberg’s effect is developed. The coupling between wall-slip and inertial



effects has been investigated in Skjetne and Gudmundsson (1993) and Skjetne
(1995). Most of the works on Klinkenberg’s effect are actually concerned with
the determination of the Klinkenberg factor b and its correlation with the proper-
ties of the porous medium. Jones (1972) showed that b decreases with increasing
permeability. A general analytical expression for b was derived in Skjetne and
Gudmundsson (1993), by averaging the local properties of the porous medium

b = φT ∗Rh

k
µ

√
πRT

2M
,

where φ is the porosity, T ∗ is the tortuosity, Rh represents the hydraulic radius, µ

is the fluid viscosity, R is the gas constant, T denotes the temperature and M is the
molecular weight. The parameter b may take a large range of values (see Table I)
from 10−2 for media of great permeability (Klinkenberg, 1941), to 18 for low per-
meability media (Wu et al., 1998). In Skjetne and Auriault (1999), Klinkenberg’s
law is rigorously derived by homogenisation; the fluid flow equations and the
wall-slip condition

vvv = −cλttt · ∇∇∇vvv · nnn ttt on �,

(in which c is a constant, nnn and ttt are unit normal and tangential vectors to �) are
considered at the pore-scale. Homogenisation of this local description leads to a
tensorial form of (1.1) in which the term 1/p is replaced by 1/p:

K̃g = K̃l

(
Ĩ + β

p
H̃

)
, (1.5)

where K̃l (the liquid permeability) and H̃ are second-rank and positive tensors and

β = cµ
√

πRT/2M

lp
.

Table I. Typical values of the Klinkenberg factor b

Author(s) Material Gas k (10−5 m2) b (MPa) p (MPa)

Klinkenberg (1941) Glass filter Air 2.36 0.68 [0.02, 9]

Rock Air 23.6 0.16 [0.01, 5.1]

Rock Air 170 0.075 [0.02, 0.17]

Liang et al. (2001) Quartzite Air 0.05 1.11 [2, 12]

Wu et al. (1998) Rock Nitrogen 1.61 × 10−5 18.8 [1, 2]

McVay and Rish Cement Nitrogen 8.04 × 10−2 0.81 [2.5, 10]

(1995)

Cement Vapor 8.04 × 10−2 0.77 [2.5, 10]

Marschall and Milos Fibrous tile Air 21.5 × 103 3.9 × 10−2 [0.5 × 10−2, 0.7]

(1998)



Equation (1.5) shows that any component of K̃g satisfies Klinkenberg’s law. An
important feature of law (1.5) is that the term 1/p of (1.1) is replaced by 1/p: the
gas permeability is therefore independent of the boundary conditions and therefore
Equation (1.5) describes a local flow behaviour.

The aim of the present work is to examine whether the structure of
Klinkenberg’s law does survive the upscaling procedure, that is, if it is still satisfied
on a large-scale when a Klinkenberg’s flow in a two porous constituent medium
is considered at the local scale. The upscaling technique is the homogenisation
method of multiple scale expansions introduced by Bensoussan et al. (1978) and
Sanchez-Palencia (1980). We apply the formulation of the method suggested in
Auriault (1991), which uses the dimensionless numbers that arise from the phys-
ical description at the local scale. Section 2 is devoted to a brief introduction
to the method. Then, in Section 3 we consider a Klinkenberg’s flow of gas in
a two-constituent porous composite. The local scale under consideration is the
composite scale: it consists of two interconnected porous constituents in which
Klinkenberg’s law is supposed to be valid. We analyse the local description and
define the range of dimensionless numbers. The order-of-magnitude analysis of
the parameters highlights the influence of the gas permeability ratio. Section 4 is
devoted to the case of homogeneous constituents. Constituent permeabilities are
first considered to be of same order: the obtained large-scale gas permeability
tensor strongly differs from its liquid counterpart, but except in the particular case
of equal Klinkenberg factors, the 1/p-form of Klinkenberg’s law is not satisfied.
Then, we consider the case of high permeability contrast: the large-scale descrip-
tion is a strongly non-linear model with memory effects, of whom we extract a
linearised version. We demonstrate that in this case Klinkenberg’s law is always
valid. All the above mentioned results are examined on the simple geometry of
a bilaminated composite. Finally, in Section 5 the case of heterogeneous con-
stituents is considered, for which it is shown that the large-scale tensor of gas
permeability differs from its liquid counterpart but does not verify Klinkenberg’s
law.

2. Homogenisation Method

The essence of homogenisation techniques is to determine an equivalent macro-
scopic behaviour by upscaling the local description. The fundamental assump-
tion behind any homogenisation method is that the scales must be separate. For
a two-scale medium, this condition is expressed as l 	 L, where l and L are the
characteristic lengths at the heterogeneity scale and at the macroscopic scale, re-
spectively (Figure 1). This definition conjures up a purely geometric separation of
scales, but this fundamental condition must also be satisfied by the physical pro-
cess considered. As an example, for fluid flow in porous media, the heterogeneity



Figure 1. Two-scale medium: (a) macroscopic sample; (b) periodic cell.

characteristic length l must be small compared to both the length related to the
pressure gradient

Le = O

( |p|
|∇∇∇p|

)
,

and to the geometric length (i.e., the sample size) Lg. The macroscopic scale length
is therefore defined as

L = Min
(
Le, Lg

)
.

We use the homogenisation method for periodic structures (also called method
of multiple scale expansions) introduced by Bensoussan et al. (1978) and Sanchez-
Palencia (1980). When dealing with a two-scale medium, the key parameter of the
method is the scale ratio

ε = l

L
	 1. (2.1)

With this homogenisation method, the medium is also assumed to be periodic
(Figure 1). This assumption is actually not a restriction; it allows derivation of
the macroscopic model without any assumption on the form of the macroscopic
equations. In this study, we use the formulation of the method suggested in Auriault
(1991), with which the problem is tackled in a more physical manner. This formu-
lation uses the dimensionless numbers that arise from the local description. These
dimensionless numbers must be estimated with respect to the scale ratio ε. Using
the two characteristic lengths, two dimensionless space variables are defined

yyy = XXX

l
, xxx = XXX

L
, (2.2)

where XXX is the physical space variable. If the condition of separation of scales is
satisfied, then yyy and xxx appear as two independent space variables: yyy is the micro-
scopic variable and describes the heterogeneity scale, whereas xxx is the macroscopic
space variable. As a consequence, any physical variable of the problem ϕ (e.g.,
pressure, velocity, permeability. . .) is a priori function of yyy and xxx

ϕ = ϕ(yyy,xxx). (2.3)



The homogenisation method of multiple scale expansions is based on the funda-
mental premise that if the scales are well separated, then all physical variables can
be looked for in the form of asymptotic expansions in powers of ε

ϕ = ϕ(0)(yyy,xxx) + εϕ(1)(yyy,xxx) + · · · , (2.4)

in which the functions ϕi are yyy-periodic.
The method consists of incorporating the variable expansions (2.4) in the di-

mensionless form of the local description. Solving the boundary-value problems
arising at the successive orders of ε leads to the macroscopic description.

3. Klinkenberg’s Flow in a Composite Porous Medium

3.1. LOCAL DESCRIPTION

We consider a periodic composite which consists of two interconnected rigid por-
ous constituents. Both constituents are saturated by gas at low pressure. Let denote
by ! the period of characteristic size O(l). Within the period both constituents
occupy domains !1 and !2, respectively, and their common interface is denoted
by � (Figure 2). For simplicity, both constituents are assumed to be isotropic and
their intrinsic permeabilities, that is, their permeabilities to liquid are denoted by
k1 and k2, respectively. The whole structure is subject to a macroscopic pressure
gradient, which gives rise to an isothermal Klinkenberg’s flow. The scale length of
the period !, l, is assumed to be small compared to the macroscopic scale length L

ε = l

L
	 1. (3.1)

In each constituent, gas flow is described by Klinkenberg’s law

vvvα = −Kα∇∇∇pα in !α (α = 1, 2), (3.2)

in which Kα is the gas permeability of constituent α and verifies Klinkenberg’s law

Kα = kα

(
1 + bα

pα

)
> 0 (α = 1, 2). (3.3)

In the above equations, pα , vvvα , kα and bα denote the gas pressure, the gas velo-
city, the intrinsic liquid permeability and the Klinkenberg factor of constituent α,
respectively.

Figure 2. Periodic cell of the composite.



(3.4)

We consider the following linear isothermal equation of state for the gas

ρα = Apα in !α (α = 1, 2),

where ρα denotes the fluid density and A is a constant.

Gas flow over the periodic cell ! is thus governed by the following set of
equations

φα

∂pα

∂t
− ∇∇∇ · (pαKα∇∇∇pα) = 0 in !α (α = 1, 2), (3.5)

[pK∇∇∇p]� · nnn = 0 on �, (3.6)

p1 = p2 on �, (3.7)

where φα is the porosity of constituent α, nnn denotes a unit normal vector to �,
[ϕ]� represents the discontinuity of ϕ over � and where the gas permeability Kα is
defined by (3.3). Due to both the fluid compressibility and the dependence of Kα

upon gas pressure, the above set of equations turns out to be strongly non-linear.

3.2. NORMALISATION AND ORDER-OF-MAGNITUDE ANALYSIS

The purpose of this section is to define the set of non-dimensional numbers that
characterise the local description (3.5)–(3.7), and then to estimate them with re-
spect to powers of the scale ratio ε (3.1). From Equation (3.5) we can define

Q1 = |φ1(∂p1/∂t)|
|∇∇∇ · (p1K1∇∇∇p1)| , (3.8)

and

Q2 = |φ2(∂p2/∂t)|
|∇∇∇ · (p2K2∇∇∇p2)| = O(Q1) × O

(
φ2

φ1

)
× O

(
p1

p2

)
× O

(
K1

K2

)
.

(3.9)

Now, from Equation (3.6) arises

A = |(p1K1∇∇∇p1) · n|
|(p2K2∇∇∇p2) · n| = O

(
K1

K2

)
× O

(
(p1)

2

(p2)
2

)
. (3.10)

For estimating these non-dimensional numbers, let arbitrarily consider l as the
reference characteristic length. When using l as the reference length, the estima-
tions of Q1, Q2 and A are denoted by Q1l , Q2l and Al. By assuming for simplicity
that ∣∣∣∣φ1

φ2

∣∣∣∣ = O(1), (3.11)



and by considering boundary condition (3.7) which gives:∣∣∣∣p1

p2

∣∣∣∣ = O(1), (3.12)

we thus get

Q2l = O(Q1l) × O

(
K1

K2

)
, (3.13)

Al = O

(
K1

K2

)
. (3.14)

Now, the orders of magnitude of Q1 and Q2 are subject to restrictive conditions:
there exist orders of magnitude of Qα for which homogenisation cannot be applied.
Moreover, the macroscopic transient regime is closely linked to the flow regime in
the constituent of greater permeability. Assuming that !1 be the constituent of
greater permeability (K1 � K2), gas flow can macroscopically be described by
means of an equivalent continuous macroscopic model (i.e., homogenisation can
be applied), if on a macroscopic point of view and in an order-of-magnitude sense,
the transient term is lower than or equal to the mass-balance term in !1∣∣∣∣φ1

∂p1

∂t

∣∣∣∣
L

� O
(|∇∇∇ · (K1p1∇∇∇p1)|L

)
. (3.15)

This condition, which is a classical result from homogenisation theory (Auriault
et al., 1990), actually means that the existence of an equivalent macroscopic de-
scription requires a sufficiently large characteristic flow time Tc. Condition (3.15),
which is expressed with respect to L, can also be written

Q1L
= O

(
φ1L

2

p1K1Tc

)
� O(1). (3.16)

It can be shown that the order

Q1L
= O(1) (3.17)

gives rise to a transient regime at the macroscopic scale, while the order

Q1L
< O(1) (3.18)

leads to a steady-state macroscopic flow regime. We consider the case (3.17) of
greater interest, which when using l for estimating Q1 corresponds to

Q1l = O(ε2). (3.19)

According to (3.13), it follows that

Q2l = O(ε2) × O

(
K1

K2

)
. (3.20)



The only remaining parameter is the order of magnitude of the permeability ratio

κ = O

(
K1

K2

)
,

and we thus have to consider the following orders of magnitude

Q1l = O(ε2), Q2l = O(ε2 κ), Al = O(κ), Bl = O(1). (3.21)

There are two orders of magnitude of interest for κ

• Low permeability contrast: κ = O(1);
• High permeability contrast: κ = O(ε−2). (3.22)

The order of magnitude κ = O(ε−2) gives rise to macroscopic memory effects.
This is a classical result of homogenisation theory applied to composite media
which has first been demonstrated in Auriault (1983). We do not consider the case
κ = O(ε−1), as it would lead to a particular subcase of the model obtained for
κ = O(1) (Auriault, 1983).

3.3. DIMENSIONLESS LOCAL DESCRIPTION

According to the above estimations and considerations, the dimensionless writing
of the local description (3.5)–(3.7) is therefore the following, in which all quantities
are now non-dimensional quantities (for simplicity and clarity we have kept, for the
dimensionless quantities, the same notations as for their physical counterparts)

ε2 φ1
∂p1

∂t
− ∇∇∇ · (p1K1∇∇∇p1) = 0 in !1, (3.23)

ε2 κ φ2
∂p2

∂t
− ∇∇∇ · (p2K2∇∇∇p2) = 0 in !2, (3.24)

(p1K1∇∇∇p1) · nnn = κ−1 (p2K2∇∇∇p2) · nnn on �, (3.25)

p1 = p2 on �, (3.26)

in which

Kα = kα

(
1 + bα

pα

)
(α = 1, 2). (3.27)

We consider the dimensionless space variables yyy and xxx defined by (2.2); the di-
mensionless gradient operator is therefore given by

∇∇∇ = ∇∇∇y + ε∇∇∇x, (3.28)

where ∇∇∇y and ∇∇∇x are the gradient operators with respect to yyy and xxx, respectively.



As physical variables of the problem, the pressure fields pα and the gas per-
meabilities Kα are functions of both space variables

pα = pα(yyy,xxx, t), Kα = Kα(yyy,xxx, t).

Two situations may at that stage be distinguished:

• Homogeneous constituents: kα and bα are constants;
• Heterogeneous constituents: kα = kα(yyy,xxx), bα = bα(yyy,xxx).

For applying the homogenisation procedure, the physical variables are looked for
in the form of asymptotic expansions in power of ε. Thus, the pressure fields pα

and the gas permeabilities Kα are written as follows:

pα(yyy,xxx, t) = p(0)
α (yyy,xxx, t) + εp(1)

α (yyy,xxx, t) + · · · , (3.29)

Kα(yyy,xxx, t) = K(0)
α (yyy,xxx, t) + εK(1)

α (yyy,xxx, t) + · · · , (3.30)

in which the functions p(i)
α and K(i)

α are yyy-periodic.
When considering heterogeneous constituents, the intrinsic permeabilities kα

and the Klinkenberg factors bα must also be looked for in the form of asymptotic
expansions in power of ε:

kα(yyy,xxx) = k(0)
α (yyy,xxx) + εk(1)

α (yyy,xxx) + · · · , (3.31)

bα(yyy,xxx) = b(0)
α (yyy,xxx) + εb(1)

α (yyy,xxx) + · · · , (3.32)

in which the functions k(i)
α and b(i)

α are yyy-periodic.
The method consists then of incorporating the above expansions and expression

(3.28) for the dimensionless gradient operator in the dimensionless local descrip-
tion (3.23)–(3.26) and in Equation (3.27) which defines the gas permeabilities Kα .
Then, identification at the successive orders of ε allows construction of appropri-
ate boundary-value problems. Solving the boundary-value problems leads to the
macroscopic behaviour. Application of this procedure to the two cases defined by
(3.22) and when both constituents are homogeneous is the purpose of the next
section. The case of heterogeneous constituents is then considered in Section 5.

4. Homogeneous Constituents

4.1. LOW PERMEABILITY CONTRAST

4.1.1. Derivation of the Large-Scale Model
When κ = K1/K2 = O(1), the dimensionless local description is written as

ε2 φα

∂pα

∂t
− ∇∇∇ · (pαKα∇∇∇pα) = 0 in !α (α = 1, 2), (4.1)

[pK∇∇∇p]� · nnn = 0 on �, (4.2)



(4.3)

 

p1 = p2 on �.

From the first-order boundary-value problem, we obtain

p
(0)
1 = p

(0)
2 = p(0)(xxx, t), (4.4)

and

K
(0)

1 = K
(0)

1 (xxx, t), K
(0)

2 = K
(0)

2 (xxx, t), (4.5)

where

K(0)
α = kα

(
1 + bα

p
(0)
α

)
. (4.6)

At the next order, the set (4.1)–(4.3) leads to a boundary-value problem of unknown
p(1)

α , whose solution is given by

p(1) = τττg(yyy, p(0)) · ∇∇∇xp(0) + p(1)(xxx, t), (4.7)

where p(1) is an arbitrary function independent of yyy. The vector τττg is yyy-periodic,
continuous over �, average to zero for uniqueness

〈τττ g〉 = 1

|!|
∫

!

τττ g d! = 0,

and is the solution to the well-posed following linear boundary-value problem

∂

∂yi

(
∂τgαj

∂yi

+ δij

)
= 0 in !α, (4.8)

K
(0)

1

(
∂τg1j

∂yi

+ δij

)
· ni = K

(0)

2

(
∂τg2j

∂yi

+ δij

)
· ni on �, (4.9)

τg1i
= τg2i

on �. (4.10)

We note that τττg depends upon the first-order pressure field p(0).
Then, we average over ! the third-order boundary-value problem, to obtain

〈φ〉∂p(0)

∂t
− ∇∇∇x · 〈p(0)K(0)

(∇∇∇yp
(1) + ∇∇∇xp(0)

)〉
!

= 0, (4.11)

in which 〈φ〉 = η1φ1+η2φ2 denotes the composite bulk porosity and ηα = |!α|/|!|
represents the volume fraction of constituent α. Symbol 〈·〉! denotes the average
over ! and is defined by

〈/〉! = 1

|!|
∫

!

/ d! = 1

|!|
∫

!1

/1 d! + 1

|!|
∫

!2

/2 d!.



Using the expression (4.7) obtained for p(1), Equation (4.11) can be rewritten as

〈φ〉∂p(0)

∂t
− ∇∇∇x ·

(
p(0)K̃0

g∇∇∇xp
(0)
)

= 0, (4.12)

in which K̃0
g is the tensor of effective gas permeability and is defined by:

K0
gij

= 1

|!|
∫

!

K(0)

(
∂τgj

∂yi

+ Iij

)
d!. (4.13)

Equation (4.12) describes the large-scale gas flow behaviour. In its writing, this
macroscopic model is identical to that obtained in the classical case of gas flow in
a porous composite. The only specific aspect of this model is with respect to the
effective gas permeability tensor, K̃0

g, which we examine below. For details on the
derivation of the macroscopic model, the reader is referred to Appendix A.

4.1.2. Effective Gas Permeability
The tensor of effective gas permeability is thus given by

K0
gij

= 1

|!|
∫

!

k

(
1 + b

p(0)

) (
∂τgj

∂yi

+ Iij

)
d!, (4.14)

where τττg is the solution to the boundary-value problem (4.8)–(4.10).
It can easily be shown that K̃0

g is a positive symmetrical second-rank tensor.

Let now examine the corresponding tensor of effective liquid permeability K̃0
l ,

which is defined by

K0
lij = 1

|!|
∫

!

k

(
∂τlj

∂yi

+ Iij

)
d!, (4.15)

in which τττ l has the same properties as τττg (yyy-periodic, continuous over � and
average to zero), but is the solution to the following boundary-value problem

∂

∂yi

(
∂τlαj

∂yi

+ δij

)
= 0 in !α, (4.16)

k1

(
∂τl1j

∂yi

+ δij

)
· ni = k2

(
∂τl2j

∂yi

+ δij

)
· ni on �, (4.17)

τl1i
= τl2i

on �. (4.18)

Comparing boundary-value problem (4.8)–(4.10) to the set (4.16)–(4.18) that define
τττg and τττ l, respectively, it follows that

τττg = τττ l when b1 = b2, τττg �= τττ l otherwise.



The tensor K̃0
g can be rewritten as

K̃0
g = G̃

(
Ĩ + 1

p(0)
J̃

)
, (4.19)

where

G̃ = K̃0
l , J̃ independent of p(0), when b1 = b2,

G̃ �= K̃0
l , J̃ = J̃ (p(0)), otherwise.

Therefore, Klinkenberg’s law is only verified in the particular case of equal
Klinkenberg factors: b1 = b2. When b1 �= b2, even though the effective gas per-
meability differs from the effective liquid permeability, the tensor does not verify
Klinkenberg’s law; it can only be satisfied for isolated components (under specific
geometric and flow conditions) for which

∂τli

∂yj

= ∂τgi

∂yj

= 0.

4.1.3. Illustration: Bilaminated Composite
In order to illustrate the above results, we consider a periodic bilaminated porous
composite. The composite is l-periodic in the y1-direction and of infinity period
in both the y2 and y3 directions. The periodic cell, which is sketched in Figure 3,
consists of two homogeneous porous layers !1 and !2 of thickness ηl and (1 −
η)l, respectively, where η denotes the volume fraction of layer !1. Each layer is
assumed to be homogeneous and isotropic, of liquid permeability kα(α = 1, 2) and
of gas permeability

Kα = kα

(
1 + bα

p

)
(α = 1, 2). (4.20)

The components of the effective liquid and gas tensors (K̃0
l and K̃0

g) are the arith-
metic mean and the geometric mean, for the flows parallel and perpendicular to the
layers, respectively:

K0
l12

= K0
l13

= K0
l23

= 0, (4.21)

K0
l22

= K0
l33

= ηk1 + (1 − η)k2 = K0
l‖, (4.22)

Figure 3. Periodic cell of the bilaminated composite.



K0
l11

= k1k2

(1 − η)k1 + ηk2
= K0

l⊥, (4.23)

K0
g12

= K0
g13

= K0
g23

= 0, (4.24)

K0
g22

= K0
g33

= ηK1 + (1 − η)K2 = K0
g‖, (4.25)

K0
g11

= K1K2

(1 − η)K1 + ηK2
= K0

g⊥ . (4.26)

Introducing expressions (4.20) into (4.25) and (4.26) yields

K0
g11

= K0
l11

(1 + b1/p) (1 + b2/p)

1 + B/p
, K0

g22
= K0

l22

(
1 + B

p

)
,

K0
g33

= K0
l33

(
1 + B

p

)
, (4.27)

where

B = (1 − η)k2b2 + ηk1b1

(1 − η)k2 + ηk1
.

Therefore, K0
g22

and K0
g33

verify Klinkenberg’s law whereas K0
g11

does not, which
shows that for the flow in a bilaminated composite, Klinkenberg’s law survives
upscaling for a flow parallel to the layers but it does not for a flow perpendicular to
the layers. As expected, when b1 = b2 = b, K0

g11
verifies Klinkenberg’s law:

K0
g11

= K0
l11

(
1 + b

p

)
.

4.2. HIGH PERMEABILITY CONTRAST

4.2.1. Derivation of the Large-Scale Model
When κ = K1/K2 = O(ε−2), the local description (3.23)–(3.26) becomes

ε2 φ1
∂p1

∂t
− ∇∇∇ · (p1K1∇∇∇p1) = 0 in !1, (4.28)

φ2
∂p2

∂t
− ∇∇∇ · (p2K2∇∇∇p2) = 0 in !2, (4.29)

(p1K1∇∇∇p1) · nnn = ε2 (p2K2∇∇∇p2) · nnn on �, (4.30)

p1 = p2 on � (4.31)



Considering Equations (4.28) and (4.30) at the first order, we obtain a boundary-
value problem defined over !1, from which we get

p
(0)

1 = p
(0)

1 (xxx, t), K
(0)

1 = K
(0)

1 (xxx, t), (4.32)

and where

K
(0)

1 = k1

(
1 + b1

p
(0)

1

)
. (4.33)

At the second order, Equations (4.28) and (4.30) constitute a well-posed linear
boundary-value problem of unknown p

(1)

1 , and whose solution can be written as

p
(1)

1 = χχχ(yyy, p
(0)

1 ) · ∇∇∇p
(0)

1 + p̄
(1)

1 (xxx), (4.34)

where p̄
(1)

1 is an arbitrary function and χχχ is yyy-periodic, satisfies the condition

1

|!1|
∫

!1

χχχ d! = 0,

and is the solution to the following boundary-value problem

∂

∂yi

(
∂χj

∂yi

+ δij

)
= 0 in !1, (4.35)

(
∂χj

∂yi

+ δij

)
ni = 0 on �. (4.36)

We now consider Equations (4.29) and (4.31) at the first order

φ2
∂p

(0)

2

∂t
− ∇∇∇y ·

(
p

(0)

2 K
(0)

2 ∇∇∇yp
(0)

2

)
= 0 in !2, (4.37)

p
(0)

2 = p
(0)

1 (xxx, t) on �, (4.38)

where p
(0)

2 and K
(0)

2 are yyy-periodic and where

K
(0)

2 = k2

(
1 + b2

p
(0)

2

)
. (4.39)

The solution p
(0)

2 to the above boundary-value problem can be written as:

p
(0)

2 = F
(
p

(0)

1 (xxx, t),yyy, t
)

, (4.40)

in which F is a non-linear functional with memory effects (Auriault, 1983). Due to
the strong non-linearity of the problem, there is no explicit expression for defining
F .



We then average over !1 the third-order of Equation (4.28); After using the di-
vergence theorem and the third-order of boundary condition (4.30), the !2-average
of (4.37) is then required to obtain

η1φ1
∂p

(0)

1

∂t
+ φ2

∂
〈
p

(0)

2

〉
!2

∂t
− ∇∇∇x ·

〈
p

(0)

1 K
(0)

1

(
∇∇∇yp

(1)

1 + ∇∇∇xp
(0)

1

)〉
!1

= 0,

(4.41)

in which η1 = |!1|/|!| denotes the volume fraction of domain !1 and where the
!α-average (α = 1, 2) is defined by

〈·〉!α
= 1

|!|
∫

!α

· d!.

Using the expression obtained for p
(1)
1 , Equation (4.41) can be rewritten as

η1φ1
∂p

(0)

1

∂t
+ φ2

∂ 〈F〉!2

∂t
− ∇∇∇x ·

(
p

(0)
1 K̃00

g ∇∇∇xp
(0)
1

)
= 0, (4.42)

that describes the large-scale gas flow behaviour, and in which the tensor of effec-
tive gas permeability K̃00

g is defined by

K00
gij

= K
(0)

1

1

|!|
∫

!1

(
∂χj

∂yi

+ Iij

)
d!. (4.43)

This large-scale description is a strongly non-linear model with memory effects
(characterised by the term ∂ 〈F〉!2

/∂t), of whom a linearised version is extracted
below. The fact that a high contrast of properties leads to memory effects is a well-
known result of the homogenisation theory (Auriault, 1983) for thermal conduction
in composites. In the absence of Klinkenberg’s effect, the mathematical model
(4.42) would have the same form: as in Section 4.1, Klinkenberg’s effect entails
only a modification of the effective tensor of permeability, which we examine in
paragraph 4.2.3. Details on the above derivation are given in Appendix B.1.

4.2.2. Linearised Model
In order to get more insight into expression (4.40) and its consequences on the
macroscopic flow behaviour, we consider a low pressure level

b2

p
(0)
2

� 1,

which enables us to derive a linearised form of model (4.42). In effect, K
(0)

2 , which
is defined by (4.39), can now be approximate by

K
(0)

2 � k2
b2

p
(0)

2

. (4.44)



It can be shown (see Appendix B.2 for details) that, in Fourier space, the macro-
scopic flow behaviour is described by

[〈φ〉 − η2φ2 〈β〉] iωp
(0)

1 − ∇∇∇x ·
(
p

(0)

1 K̃00∇∇∇xp
(0)

1

)
= 0, (4.45)

in which 〈φ〉 is the bulk porosity, and where

β(xxx,yyy, ω) = p
(0)

2 − p
(0)

1

p
(0)

1

, 〈β〉 = 1

|!|
∫

!2

β(xxx,yyy, ω) d!.

When written in time space, Equation (4.45) becomes

〈φ〉∂p
(0)

1

∂t
− η2φ2

∫ t

−∞
B̂(t − τ)

∂2p
(0)

1

∂t2
dτ − ∇∇∇x ·

(
p

(0)

1 K̃00
g ∇∇∇xp

(0)

1

)
= 0,

(4.46)

where B̂ denotes the inverse Fourier transform of 〈β〉 /iω.
Equation (4.46) is a linearised form of the macroscopic gas flow behaviour

(4.42). The convolution product in Equation (4.46) characterises the presence of
memory effects.

4.2.3. Effective Gas Permeability
The tensors of effective gas and liquid permeabilities read, respectively

K00
gij

= k1

(
1 + b1

p(0)

)
1

|!|
∫

!1

(
∂χj

∂yi

+ Iij

)
d!, (4.47)

and

K00
lij = k1

1

|!|
∫

!1

(
∂χj

∂yi

+ Iij

)
d!, (4.48)

where χχχ is the solution to the boundary-value problem (4.35)–(4.36). It follows
that

K00
gij

= K00
lij

(
1 + b1

p(0)

)
. (4.49)

Klinkenberg’s law is therefore always verified at large-scale in the case of high
permeability contrast.

4.2.4. Illustration: Bilaminated Composite
Let now examine the above results on the bilaminated composite described in
Section 4.1.3 (Figure 3). The components of the effective tensors K̃00

l and K̃00
g

are the following

K00
l11

= 0, (4.50)



K00
l22

= K00
l33

= ηk1 = K00
l‖ , (4.51)

K00
l12

= K00
l13

= K00
l23

= 0, (4.52)

K00
g11

= 0, (4.53)

K00
g22

= K00
g33

= ηK1 = K00
g‖, (4.54)

K00
g12

= K00
g13

= K00
g23

= 0. (4.55)

It follows that

K00
g11

= K00
l11

= 0, (4.56)

K00
g22

= K00
l22

(
1 + b1

p

)
, (4.57)

K00
g33

= K00
l33

(
1 + b1

p

)
, (4.58)

which confirms that Klinkenberg’s law is valid.
Let us now examine on this particular geometry the linearised model derived in

Section 4.2.2. The coefficient 〈β〉 of the model expressed in Fourier space (4.45)
and the memory function B̂ of the time–space model (4.46) can easily be calculated
(Auriault, 1983)

〈β〉 = (1 − η)

(
1 − tanh(γ

√
i)

γ
√

i

)
with γ =

√
ωφ2

k2b2

(1 − η)l

2
. (4.59)

B̂(t) = 8(1 − η)

∞∑
j=0

exp(−(2j + 1)2π2τ/4)

(2j + 1)2π2
, τ = 4k2b2t

φ2(1 − η)2l2
.

(4.60)

5. Heterogeneous Constituents

The above results can easily be extended to the case of heterogeneous constitu-
ents, for which we have to account for expansions (3.31) and (3.32). Introducing
the dependence of kα and bα on the space variables does not change the writing
of the large-scale models (4.12) and (4.42), obtained for low and for high per-
meability contrast, respectively. The large-scale gas flow behaviours are anyhow
modified, due to the consequences on the definitions of the effective tensors of gas
permeability.



5.1. LOW PERMEABILITY CONTRAST

The effective tensor of gas permeability becomes

K0
gij

= 1

|!|
∫

!

K(0)(yyy,xxx)

(
∂τgj

∂yi

+ Iij

)
d!, (5.1)

where

K(0)
α (yyy,xxx) = k(0)

α (yyy,xxx)

(
1 + b(0)

α (yyy,xxx)

p(0)(xxx)

)
, (5.2)

and in which the vector τττg is yyy-periodic, average to zero and is the solution to the
following boundary-value problem, for γ = K(0)(yyy,xxx):

∂

∂yi

[
γα

(
∂ταj

∂yi

+ δij

)]
= 0 in !α, (5.3)

γ1

(
∂τ1j

∂yi

+ δij

)
ni = γ2

(
∂τ2j

∂yi

+ δij

)
ni on �, (5.4)

τ1i
= τ2i

on �. (5.5)

As for the effective tensor of liquid permeability, it is now defined by

K0
lij = 1

|!|
∫

!

k(0)(yyy,xxx)

(
∂τlj

∂yi

+ Iij

)
d!, (5.6)

where the vector τττ l is yyy-periodic, average to zero and is the solution to (5.3)–(5.5)
for γ = k(0)(yyy,xxx). It follows that τττg �= τττ l, and the tensor K̃0

g can be written as

K̃0
g = G̃

(
Ĩ + 1

p(0)
J̃

)
, G̃ �= K̃l, J̃ = J̃ (p(0)). (5.7)

Therefore, Klinkenberg’s law is never verified in that case.

5.2. HIGH PERMEABILITY CONTRAST

The effective tensor of gas permeability is now defined by

K00
gij

= 1

|!|
∫

!1

K
(0)
1

(
∂χgj

∂yi

+ Iij

)
d!, (5.8)

where

K
(0)

1 (yyy,xxx) = k
(0)

1 (yyy,xxx)

(
1 + b

(0)

1 (yyy,xxx)

p(0)(xxx)

)
, (5.9)



and in which the vector χχχg is yyy-periodic, average to zero and is the solution to the
following boundary-value problem, for γ = K

(0)
1 (yyy,xxx):

∂

∂yi

[
γ

(
∂χj

∂yi

+ δij

)]
= 0 in !1, (5.10)

γ

(
∂χj

∂yi

+ δij

)
ni = 0 on �. (5.11)

The effective tensor of liquid permeability is now given by

K00
lij

= 1

|!|
∫

!1

k
(0)
1 (yyy,xxx)

(
∂χlj

∂yi

+ Iij

)
d!, (5.12)

where the vector χχχ l is yyy-periodic, average to zero and is the solution to
(5.10)–(5.11) for γ = k

(0)

1 (yyy,xxx).
It turns out that χχχ g �= χχχ l, and K̃00

g can therefore be written in the form (5.7).
Klinkenberg’s law is thus not verified. Note that if constituent !2 is heterogeneous
while constituent !1 is homogeneous, the conclusions of Section 4.2 remain valid:
Klinkenberg’s law is verified.

6. Conclusions

The objective of this work was to determine whether Klinkenberg’s law survives
upscaling, that is, if the large-scale tensor of effective gas permeability could be
expressed as

K̃g = K̃l

(
Ĩ + β

p
H̃

)
,

where K̃l is the effective liquid permeability. Using the homogenisation method of
multiple scale expansions, we have derived the large-scale mathematical models
and the effective tensors of gas permeability of a Klinkenberg’s gas flow in a
two-constituent porous composite. By distinguishing the cases of low and of high
permeability contrast we have derived two kinds of large-scale models. In their
writing, these models are identical to those obtained in the absence of Klinkenberg’s
effect. The only specific aspect of these models is concerned with the effective
tensors of gas permeability which differ from their liquid counterparts. We have
shown that Klinkenberg’s law survives upscaling only in the two following cases:

1. At low permeability contrast, when both constituents are homogeneous and
both Klinkenberg factors are equal;

2. At high permeability contrast when the constituent of greater permeability is
homogeneous.



In any other situation, Klinkenberg’s law is not verified and the large-scale effective
tensor of gas permeability can be expressed as follows:

K̃g = G̃

(
Ĩ + J̃

p

)
, G̃ �= K̃l, J̃ = J̃ (p).

Appendix A. Homogeneous Constituents and Low Permeability Contrast:
Derivation of the Large-Scale Model (Section 4.1)

The dimensionless local description is written as

ε2 φα

∂pα

∂t
− ∇∇∇ · (pαKα∇∇∇pα) = 0 in !α (α = 1, 2), (A.1)

[pK∇∇∇p]� · nnn = 0 on �, (A.2)

p1 = p2 on �. (A.3)

The first-order boundary-value problem reads

∇∇∇y · (p(0)
α K(0)

α ∇∇∇yp
(0)
α ) = 0 in !α, (A.4)

[p(0)K(0)∇∇∇yp
(0)]� · nnn = 0 on �, (A.5)

p
(0)
1 = p

(0)
2 on �, (A.6)

in which p(0)
α and K(0)

α are yyy-periodic and where

K(0)
α = kα

(
1 + bα

p
(0)
α

)
. (A.7)

This is a well-posed non-linear problem of unknowns p(0)
α and K(0)

α .
After using the divergence theorem, boundary-condition (A.5) and periodicity,

the !-average of Equation (A.4) gives∫
!

K(0)
α ∇∇∇y(p

(0)
α )2 d! = 0.

As a result of the positivity of K(0)
α , we get

∇∇∇y(p
(0)
α )2 = 0,

According to boundary-condition (A.6) we get

p
(0)

1 = p
(0)

2 = p(0)(xxx, t), (A.8)



and from Equation (A.7) we deduce

K
(0)

1 = K
(0)

1 (xxx, t), K
(0)

2 = K
(0)

2 (xxx, t). (A.9)

At the next order, the set (A.1)–(A.3) gives the following linear boundary-value
problem of unknown p(1)

α

∇∇∇y · [K(0)
α (∇∇∇yp

(1)
α + ∇∇∇xp(0)

α )] = 0 in !α, (A.10)

[K(0)(∇∇∇yp(1) + ∇∇∇xp
(0))]� · nnn = 0 on �, (A.11)

p
(1)

1 = p
(1)

2 on �, (A.12)

in which p(1)
α is yyy-periodic.

Let V(!) be the Hilbert space of regular functions θ defined and continuous
over !, that are yyy-periodic and that satisfy the condition

〈θ〉 = 1

|!|
∫

!

θ d! = 0. (A.13)

Furthermore, this Hilbert space is equipped with the following inner product

(θ1, θ2)V(!) =
∫

!

K(0)∇∇∇yθ1∇∇∇yθ2 d!.

Note that the additional condition (A.13) is introduced in order to provide the
product (θ1, θ2)V(!) with the required properties of an inner product. The follow-
ing variational formulation is thus equivalent, modulo an added constant, to the
boundary-value problem (A.10)–(A.12):

∀ θ ∈ V(!), (p(1), θ)V(!) = −
∫

!

K(0)∇∇∇xp
(0)∇∇∇yθ d!. (A.14)

Existence and uniqueness of the solution to (A.14) are proved by Lax–Milgram
lemma. This solution is given by

p(1) = τττ g(yyy, p(0)) · ∇∇∇xp
(0) + p(1)(xxx, t), (A.15)

where p(1) is an arbitrary function independent of yyy. The vector τττ g is yyy-periodic,
continuous over �, average to zero for uniqueness

〈τττ g〉 = 1

|!|
∫

!

τττ g d! = 0,

and is the solution to the well-posed following boundary-value problem

∂

∂yi

(
∂τgαj

∂yi

+ δij

)
= 0 in !α, (A.16)



K
(0)

1

(
∂τg1j

∂yi

+ δij

)
· ni = K

(0)

2

(
∂τg2j

∂yi

+ δij

)
· ni on �, (A.17)

τg1i
= τg2i

on �. (A.18)

In other words, τgi
is the particular solution to the boundary-value problem defined

by Equations (A.10)–(A.12) when ∂p(0)/∂xj �ej = �ei .
At the third-order, boundary-value problem (A.10)–(A.12) reads

φα

∂p(0)

∂t
− ∇∇∇x · [p(0)K(0)

α (∇∇∇yp
(1)
α + ∇∇∇xp(0))] −

− ∇∇∇y · [p(0)K(0)
α (∇∇∇yp(2)

α + ∇∇∇xp
(1)
α )] −

− ∇∇∇y · [(p(0)K(1)
α + p(1)

α K(0)
α )(∇∇∇yp(1)

α + ∇∇∇xp
(0))] = 0 in !α, (A.19)

[p(0)K(0)
α (∇∇∇yp

(2)
α + ∇∇∇xp(1))]� · nnn +

+ [(p(0)K(1)
α + p(1)

α K(0)
α )(∇∇∇yp(1)

α + ∇∇∇xp
(0))]� · nnn = 0 on �, (A.20)

p
(2)

1 = p
(2)

2 on �, (A.21)

where p
(2)

1 and p
(2)

2 are yyy-periodic. Then, we average (A.19) over !.
After using the divergence theorem and boundary condition (A.20), we obtain

〈φ〉∂p(0)

∂t
− ∇∇∇x · 〈p(0)K(0)(∇∇∇yp(1) + ∇∇∇xp

(0))〉! = 0. (A.22)

Using the expression (A.15) obtained for p(1), Equation (A.22) can be rewritten as

〈φ〉∂p(0)

∂t
− ∇∇∇x · (p(0)K̃0

g∇∇∇xp
(0)) = 0, (A.23)

in which K̃0
g is the tensor of effective permeability and is defined by:

K0
gij

= 1

|!|
∫

!

K(0)

(
∂τgj

∂yi

+ Iij

)
d!. (A.24)

Appendix B. Homogeneous Constituents and High Permeability Contrast:
Derivation of the Large-Scale Model (Section 4.2)

B.1. GENERAL LARGE-SCALE MODEL (SECTION 4.2.1)

The local description is written as follows

ε2 φ1
∂p1

∂t
− ∇∇∇ · (p1K1∇∇∇p1) = 0 in !1, (B.1)



φ2
∂p2

∂t
− ∇∇∇ · (p2K2∇∇∇p2) = 0 in !2, (B.2)

(p1K1∇∇∇p1) · nnn = ε2 (p2K2∇∇∇p2) · nnn on �, (B.3)

p1 = p2 on � (B.4)

Considering Equations (B.1) and (B.3) at the first order, we obtain the following
non-linear boundary-value problem defined over !1

∇∇∇y · (p
(0)
1 K

(0)
1 ∇∇∇yp

(0)
1 ) = 0 in !1, (B.5)

(p
(0)
1 K

(0)
1 ∇∇∇yp

(0)
1 ) · nnn = 0 on �, (B.6)

in which p
(0)
1 and K

(0)
1 are yyy-periodic and where

K
(0)

1 = k1

(
1 + b1

p
(0)
1

)
. (B.7)

As a result of the positivity of K
(0)

1 (the reasoning is identical to that conducted for
the first-order problem in Appendix A), we get

p
(0)

1 = p
(0)

1 (xxx, t), K
(0)

1 = K
(0)

1 (xxx, t). (B.8)

At the second order, Equations (B.1) and (B.3) read

∇∇∇y · [K(0)

1 (∇∇∇yp
(1)

1 + ∇∇∇xp
(0)

1 )] = 0 in !1, (B.9)

[K(0)

1 (∇∇∇yp
(1)

1 + ∇∇∇xp
(0)

1 )] · nnn = 0 on �, (B.10)

where p
(1)

1 is yyy-periodic. The equivalent variational formulation of the above linear
boundary-value problem of unknown p

(1)

1 is written as

∀ θ ∈ V(!1), (p
(1)

1 , θ)V(!1) = −
∫

!

K
(0)

1 ∇∇∇xp
(0)

1 ∇∇∇yθ d!, (B.11)

and its solution can be written as

p
(1)

1 = χχχ(yyy, p
(0)

1 ) · ∇∇∇p
(0)

1 + p̄
(1)

1 (xxx), (B.12)

where p̄
(1)

1 is an arbitrary function and χχχ is yyy-periodic, satisfies the condition

1

|!1|
∫

!1

χχχ d! = 0,

and is the solution to the following boundary-value problem

∂

∂yi

(
∂χj

∂yi

+ δij

)
= 0 in !1, (B.13)



(
∂χj

∂yi

+ δij

)
ni = 0 on �. (B.14)

We now consider Equations (B.2) and (B.4) at the first order

φ2
∂p

(0)

2

∂t
− ∇∇∇y · (p

(0)

2 K
(0)

2 ∇∇∇yp
(0)

2 ) = 0 in !2, (B.15)

p
(0)

2 = p
(0)

1 (xxx, t) on �, (B.16)

where p
(0)

2 and K
(0)

2 are yyy-periodic and where

K
(0)
2 = k2

(
1 + b2

p
(0)

2

)
. (B.17)

Assuming the existence of the solution p
(0)

2 to the above boundary-value problem,
it can be written as:

p
(0)
2 = F(p

(0)
1 (xxx, t),yyy, t), (B.18)

in which F is a non-linear functional with memory effects.
At the third order, Equations (B.1) and (B.3) read

φ1
∂p

(0)
1

∂t
− ∇∇∇x · [p(0)

1 K
(0)

1 (∇∇∇yp
(1)

1 + ∇∇∇xp
(0)

1 )] −
− ∇∇∇y · [p(0)

1 K
(0)

1 (∇∇∇yp
(2)

1 + ∇∇∇xp
(1)

1 )] −
− ∇∇∇y · [(p(0)

1 K
(1)
1 + p

(1)
1 K

(0)
1 )(∇∇∇yp

(1)
1 + ∇∇∇xp

(0)
1 )] = 0 in !1, (B.19)

[p(0)

1 K
(0)

1 (∇∇∇yp
(2)

1 + ∇∇∇xp
(1)

1 )] · nnn +
+ [(p(0)

1 K
(1)

1 + p
(1)

1 K
(0)

1 )(∇∇∇yp
(1)

1 + ∇∇∇xp
(0)

1 )] · nnn
= (p

(0)

2 K
(0)

2 ∇∇∇yp
(0)

2 ) · nnn on �, (B.20)

where p
(2)

1 and K
(1)

1 are yyy-periodic.
We then average (B.19) over !1; after using the divergence theorem and bound-

ary condition (B.20), the !2-average of (B.15) is then required to obtain

η1φ1
∂p

(0)
1

∂t
+ φ2

∂〈p(0)
2 〉!2

∂t
− ∇∇∇x · 〈p(0)

1 K
(0)

1 (∇∇∇yp
(1)

1 + ∇∇∇xp
(0)

1 )〉!1 = 0,

(B.21)

where according to (B.18) we have

φ2
∂〈p(0)

2 〉!2

∂t
= φ2

1

|!|
∫

!2

∂p
(0)
2

∂t
d! = φ2

1

|!|
∫

!2

∂F(p
(0)
1 ,yyy, t)

∂t
d!.



Using the expression obtained for p
(1)

1 , Equation (B.21) can be rewritten as

η1φ1
∂p

(0)

1

∂t
+ φ2

∂〈F〉!2

∂t
− ∇∇∇x ·

(
p

(0)
1 K̃00

g ∇∇∇xp
(0)
1

)
= 0, (B.22)

in which the tensor of effective permeability K̃00 is defined by

K00
gij

= K
(0)
1

1

|!|
∫

!1

(
∂χj

∂yi

+ Iij

)
d! (B.23)

B.2. LINEARISED LARGE-SCALE MODEL (SECTION 4.2.2)

In order to get more insight into expression (B.18), we consider a low pressure
level such that

b2

p
(0)

2

>> 1.

As a consequence, K
(0)

2 , defined by (B.17), can be approximate as follows

K
(0)

2 � k2
b2

p
(0)
2

, (B.24)

and Equation (B.15) becomes linear

φ2
∂p

(0)

2

∂t
− ∇∇∇y · (k2b2∇∇∇yp

(0)

2 ) = 0 in !2. (B.25)

Now we define

W = p
(0)

1 (xxx, t) − p
(0)

2 (B.26)

In Fourier space, the simplified form of boundary-value problem (B.15)–(B.16)
with respect to W is written as

φ2iω(p
(0)

1 − W) + ∇∇∇y · (k2b2∇∇∇yW) = 0 in !2, (B.27)

W = 0 on �, (B.28)

where W is yyy-periodic.
Let W be the Hilbert space of regular, complex-valued functions θ defined on

!2, yyy-periodic, zero-valued over �, which is equipped with the following inner
product

(θ1, θ2)W(!2) =
∫

!2

(k2b2∇∇∇yθ1∇∇∇yθ̃2 + iωφ2θ1θ̃2) d!,



where θ̃2 denotes the complex conjugate of θ2. The equivalent variational formula-
tion of (B.27)–(B.28) is written as

∀θ ∈ W(!2), (W, θ)W(!2) = −
∫

!2

iωφ2p
(0)
1 θ̃ d!. (B.29)

Existence and uniqueness of the solution stem from Lax–Milgram lemma.
This solution can be written as

W(xxx,yyy) = −β(xxx,yyy, ω)p
(0)

1 (xxx), (B.30)

where scalar β is the pulsation dependent and complex-valued particular solution
to Equation (B.29) when p

(0)
1 = −1.

In Fourier space, the macroscopic description is thus written as

[〈φ〉 − η2φ2〈β〉] iωp
(0)

1 − ∇∇∇x · (p
(0)

1 K̃00
g ∇∇∇xp

(0)

1 ) = 0 (B.31)

When written in time space, Equation (B.31) becomes

〈φ〉∂p
(0)

1

∂t
− η2φ2

∫ t

−∞
B̂(t − τ)

∂2p
(0)

1

∂t2
dτ − ∇∇∇x · (p

(0)

1 K̃00
g ∇∇∇xp

(0)

1 ) = 0,

where B̂ denotes the inverse Fourier transform of 〈β〉/iω.
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