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This work deals with the large-scale mathematical modelling of flow of gas at low pressure in porous media. At the pore scale, this type of flow is characterised by a wall-slip effect, which at the sample scale entails a dependence of permeability upon gas pressure. This latter property is described by Klinkenberg's law. The goal of the present work is to examine the robustness of this law, by determining whether it is still verified on a large-scale: upscaling is thus applied, starting with Klinkenberg's law at the local scale. A Klinkenberg's flow of gas in a two-constituent composite porous medium is considered, and the constituents are firstly assumed to be homogeneous. The cases of low and of high permeability contrast are successively examined. Upscaling is performed using the homogenisation method of multiple scale expansions. In both cases, the large-scale permeability tensor differs from its liquid counterpart. Except in the particular case of equal Klinkenberg factors, Klinkenberg's law is not verified at low permeability contrast. At high permeability contrast, the large-scale gas permeability verifies Klinkenberg's law. The case of heterogeneous constituents is then examined. It is shown that the large-scale permeability differs from its liquid counterpart, but it does not verify Klinkenberg's law.

Introduction

Darcy's law may break down for flow of gases at low pressures through porous media: Klinkenberg's effect may occur which can have significant impact on gas flow behaviours, especially in low permeable media. [START_REF] Klinkenberg | The permeability of porous media to liquids and gas. Drilling and Production Practice[END_REF] observed that at low or near atmospheric pressure, the gas permeability k g of a porous sample is greater than its liquid permeability k l . This phenomenon is called Klinkenberg's effect and is described by the so-called Klinkenberg's equation

k g = k l 1 + b p , (1.1)
where b is the Klinkenberg factor, which depends on the rock properties, as well as, to a lesser degree, on the nature of the gas used, and p is the arithmetic mean of the inlet and outlet pressures of the sample. Therefore, Klinkenberg's equation (1.1) describes a non-local flow behaviour. This law characterises the fact that Klinkenberg's effect becomes less significant at higher pressures, and it follows that lim p→∞ k g = k l .

(1.2) Physically, Klinkenberg's effect is significant in any situation where the mean free path of a gas molecule λ, that is, the mean distance that it travels before it collides with another molecule [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF][START_REF] Cercignani | Mathematical Methods in Kinetic Theory[END_REF])

λ = µ √ πRT /2M p , (1.3)
is comparable with the pore dimension l p . This leads to a non-negligible Knudsen number, the ratio of molecular mean free path to pore size

Kn = λ l p ≈ 1.
(1.4)

Klinkenberg's effect is thus expected to occur at low pressure, as λ is inversely proportional to p, and in very fine-grained porous media. In Darcy's flow regime and at high pressure (λ l p ), the boundary condition at the fluid/solid interface at the pore scale is that the fluid molecules are static and therefore that the fluid adheres to the pore wall. At low pressure and if the mean free path λ approaches the pore size, then significant molecular collisions are with the pore wall rather than with other gas molecules. Thus, the fluid/solid boundary molecules are no longer static and a wall-slip flow occurs: the local flow velocity is a non-vanishing velocity on the pore walls. Gas molecules move on the pore surface and contribute to their overall flux. This slippage increases the flow rate over that predicted by Darcy's law. Since the vast majority of permeability measurements are done with near atmospheric gas flow, the deviations from Darcy's law may thus be important and, consequently, the permeability may be overestimated.

Modelling and predicting the occurrence of Klinkenberg's effect is crucial to any area which involves gas flow through porous media: petroleum engineering [START_REF] Jones | A rapid accurate unsteady-state Klinkenberg permeameter[END_REF][START_REF] Sampath | Factors affecting gas slippage in tight sandstones of cretaceous age in the uinta basin[END_REF], geothermal reservoir engineering [START_REF] Wu | Gas flow in porous media with Klinkenberg's effect[END_REF][START_REF] Persoff | Hydrologic characterization of reservoir metagraywacke from shallow and deep levels of the Geysers vapor-dominated geothermal system, California[END_REF] contaminant transport and remediation [START_REF] Reda | Slip-flow experiments in welded tuff: the Knudsen diffusion problem[END_REF], civil engineering [START_REF] Mcvay | Flow of nitrogen and superheated steam through cement mortar[END_REF], and material engineering for the forming of fibrous materials [START_REF] Starr | Gas transport model chemical vapor infiltration[END_REF][START_REF] Marschall | Gas permeability of the rigid fibrous refractory insulations[END_REF], or for testing analysis of ceramics [START_REF] Glass | Permeability and infiltration of partially sintered ceramics[END_REF], or pneumatics [START_REF] Baehr | Evaluation of the unsaturated zone air permeability through pneumatic tests[END_REF]. In Reda (1897), [START_REF] Baehr | Evaluation of the unsaturated zone air permeability through pneumatic tests[END_REF] and [START_REF] Persoff | Hydrologic characterization of reservoir metagraywacke from shallow and deep levels of the Geysers vapor-dominated geothermal system, California[END_REF], experimental evidence is given Klinkenberg's effect could not be neglected in low permeability media. In comparison with the considerable amount of studies on theory and applications of isothermal flow of gases through porous media, very few studies are explicitly concerned with Klinkenberg's effect. In [START_REF] Wu | Gas flow in porous media with Klinkenberg's effect[END_REF], a set of analytical solutions for steady-state and transient gas flows in porous media with Klinkenberg's effect is developed. The coupling between wall-slip and inertial effects has been investigated in [START_REF] Skjetne | Model for wall-slip in the Darcy and Forchheimer gas flow regimes[END_REF] and [START_REF] Skjetne | High Velocity flow in porous media; analytical, numerical and experimental studies[END_REF]. Most of the works on Klinkenberg's effect are actually concerned with the determination of the Klinkenberg factor b and its correlation with the properties of the porous medium. [START_REF] Jones | A rapid accurate unsteady-state Klinkenberg permeameter[END_REF] showed that b decreases with increasing permeability. A general analytical expression for b was derived in [START_REF] Skjetne | Model for wall-slip in the Darcy and Forchheimer gas flow regimes[END_REF], by averaging the local properties of the porous medium

b = φT * R h k µ πRT 2M ,
where φ is the porosity, T * is the tortuosity, R h represents the hydraulic radius, µ is the fluid viscosity, R is the gas constant, T denotes the temperature and M is the molecular weight. The parameter b may take a large range of values (see Table I) from 10 -2 for media of great permeability [START_REF] Klinkenberg | The permeability of porous media to liquids and gas. Drilling and Production Practice[END_REF], to 18 for low permeability media [START_REF] Wu | Gas flow in porous media with Klinkenberg's effect[END_REF]. In Skjetne and Auriault (1999), Klinkenberg's law is rigorously derived by homogenisation; the fluid flow equations and the wall-slip condition

v v v = -cλt t t • ∇ ∇ ∇v v v • n n n t t t on ,
(in which c is a constant, n n n and t t t are unit normal and tangential vectors to ) are considered at the pore-scale. Homogenisation of this local description leads to a tensorial form of (1.1) in which the term 1/p is replaced by 1/p:

Kg = Kl Ĩ + β p H , (1.5)
where Kl (the liquid permeability) and H are second-rank and positive tensors and Marschall and Milos Fibrous tile Air 21.5 × 10 3 3.9 × 10 -2 [0.5 × 10 -2 , 0.7] (1998) Equation (1.5) shows that any component of Kg satisfies Klinkenberg's law. An important feature of law (1.5) is that the term 1/p of (1.1) is replaced by 1/p: the gas permeability is therefore independent of the boundary conditions and therefore Equation (1.5) describes a local flow behaviour.

β = cµ √ πRT /2M l p .
The aim of the present work is to examine whether the structure of Klinkenberg's law does survive the upscaling procedure, that is, if it is still satisfied on a large-scale when a Klinkenberg's flow in a two porous constituent medium is considered at the local scale. The upscaling technique is the homogenisation method of multiple scale expansions introduced by [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF] and [START_REF] Sanchez-Palencia | Non-Homogenous Media and Vibration Theory[END_REF]. We apply the formulation of the method suggested in [START_REF] Auriault | Is an equivalent macroscopic description possible?[END_REF], which uses the dimensionless numbers that arise from the physical description at the local scale. Section 2 is devoted to a brief introduction to the method. Then, in Section 3 we consider a Klinkenberg's flow of gas in a two-constituent porous composite. The local scale under consideration is the composite scale: it consists of two interconnected porous constituents in which Klinkenberg's law is supposed to be valid. We analyse the local description and define the range of dimensionless numbers. The order-of-magnitude analysis of the parameters highlights the influence of the gas permeability ratio. Section 4 is devoted to the case of homogeneous constituents. Constituent permeabilities are first considered to be of same order: the obtained large-scale gas permeability tensor strongly differs from its liquid counterpart, but except in the particular case of equal Klinkenberg factors, the 1/p-form of Klinkenberg's law is not satisfied. Then, we consider the case of high permeability contrast: the large-scale description is a strongly non-linear model with memory effects, of whom we extract a linearised version. We demonstrate that in this case Klinkenberg's law is always valid. All the above mentioned results are examined on the simple geometry of a bilaminated composite. Finally, in Section 5 the case of heterogeneous constituents is considered, for which it is shown that the large-scale tensor of gas permeability differs from its liquid counterpart but does not verify Klinkenberg's law.

Homogenisation Method

The essence of homogenisation techniques is to determine an equivalent macroscopic behaviour by upscaling the local description. The fundamental assumption behind any homogenisation method is that the scales must be separate. For a two-scale medium, this condition is expressed as l L, where l and L are the characteristic lengths at the heterogeneity scale and at the macroscopic scale, respectively (Figure 1). This definition conjures up a purely geometric separation of scales, but this fundamental condition must also be satisfied by the physical process considered. As an example, for fluid flow in porous media, the heterogeneity characteristic length l must be small compared to both the length related to the pressure gradient

L e = O |p| |∇ ∇ ∇p| ,
and to the geometric length (i.e., the sample size) L g . The macroscopic scale length is therefore defined as

L = Min L e , L g .
We use the homogenisation method for periodic structures (also called method of multiple scale expansions) introduced by [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF] and [START_REF] Sanchez-Palencia | Non-Homogenous Media and Vibration Theory[END_REF]. When dealing with a two-scale medium, the key parameter of the method is the scale ratio

ε = l L 1. (2.1)
With this homogenisation method, the medium is also assumed to be periodic (Figure 1). This assumption is actually not a restriction; it allows derivation of the macroscopic model without any assumption on the form of the macroscopic equations. In this study, we use the formulation of the method suggested in [START_REF] Auriault | Is an equivalent macroscopic description possible?[END_REF], with which the problem is tackled in a more physical manner. This formulation uses the dimensionless numbers that arise from the local description. These dimensionless numbers must be estimated with respect to the scale ratio ε. Using the two characteristic lengths, two dimensionless space variables are defined

y y y = X X X l , x x x = X X X L , (2.2)
where X X X is the physical space variable. If the condition of separation of scales is satisfied, then y y y and x x x appear as two independent space variables: y y y is the microscopic variable and describes the heterogeneity scale, whereas x x x is the macroscopic space variable. As a consequence, any physical variable of the problem ϕ (e.g., pressure, velocity, permeability. . .) is a priori function of y y y and x x x ϕ = ϕ(y y y, x x x).

(2.

3)

The homogenisation method of multiple scale expansions is based on the fundamental premise that if the scales are well separated, then all physical variables can be looked for in the form of asymptotic expansions in powers of ε ϕ = ϕ (0) (y y y, x x x) + εϕ (1) (y y y, x x x)

+ • • • , (2.4)
in which the functions ϕ i are y y y-periodic.

The method consists of incorporating the variable expansions (2.4) in the dimensionless form of the local description. Solving the boundary-value problems arising at the successive orders of ε leads to the macroscopic description.

Klinkenberg's Flow in a Composite Porous Medium

LOCAL DESCRIPTION

We consider a periodic composite which consists of two interconnected rigid porous constituents. Both constituents are saturated by gas at low pressure. Let denote by the period of characteristic size O(l). Within the period both constituents occupy domains 1 and 2 , respectively, and their common interface is denoted by (Figure 2). For simplicity, both constituents are assumed to be isotropic and their intrinsic permeabilities, that is, their permeabilities to liquid are denoted by k 1 and k 2 , respectively. The whole structure is subject to a macroscopic pressure gradient, which gives rise to an isothermal Klinkenberg's flow. The scale length of the period , l, is assumed to be small compared to the macroscopic scale length

L ε = l L 1. (3.1)
In each constituent, gas flow is described by Klinkenberg's law

v v v α = -K α ∇ ∇ ∇p α in α (α = 1, 2), (3.2)
in which K α is the gas permeability of constituent α and verifies Klinkenberg's law

K α = k α 1 + b α p α > 0 (α = 1, 2). (3.3)
In the above equations, p α , v v v α , k α and b α denote the gas pressure, the gas velocity, the intrinsic liquid permeability and the Klinkenberg factor of constituent α, respectively. (3.4)

We consider the following linear isothermal equation of state for the gas

ρ α = Ap α in α (α = 1, 2),
where ρ α denotes the fluid density and A is a constant. Gas flow over the periodic cell is thus governed by the following set of equations

φ α ∂p α ∂t -∇ ∇ ∇ • (p α K α ∇ ∇ ∇p α ) = 0 in α (α = 1, 2), (3.5) [pK∇ ∇ ∇p] • n n n = 0 on , (3.6) p 1 = p 2 on , (3.7)
where φ α is the porosity of constituent α, n n n denotes a unit normal vector to , [ϕ] represents the discontinuity of ϕ over and where the gas permeability K α is defined by (3.3). Due to both the fluid compressibility and the dependence of K α upon gas pressure, the above set of equations turns out to be strongly non-linear.

NORMALISATION AND ORDER-OF-MAGNITUDE ANALYSIS

The purpose of this section is to define the set of non-dimensional numbers that characterise the local description (3.5)-(3.7), and then to estimate them with respect to powers of the scale ratio ε (3.1). From Equation (3.5) we can define

Q 1 = |φ 1 (∂p 1 /∂t)| |∇ ∇ ∇ • (p 1 K 1 ∇ ∇ ∇p 1 )| , ( 3.8) 
and

Q 2 = |φ 2 (∂p 2 /∂t)| |∇ ∇ ∇ • (p 2 K 2 ∇ ∇ ∇p 2 )| = O(Q 1 ) × O φ 2 φ 1 × O p 1 p 2 × O K 1 K 2 .
(3.9)

Now, from Equation (3.6) arises

A = |(p 1 K 1 ∇ ∇ ∇p 1 ) • n| |(p 2 K 2 ∇ ∇ ∇p 2 ) • n| = O K 1 K 2 × O (p 1 ) 2 (p 2 ) 2 . (3.10)
For estimating these non-dimensional numbers, let arbitrarily consider l as the reference characteristic length. When using l as the reference length, the estimations of Q 1 , Q 2 and A are denoted by Q 1 l , Q 2 l and A l . By assuming for simplicity that

φ 1 φ 2 = O(1), (3.11)
and by considering boundary condition (3.7) which gives:

p 1 p 2 = O(1), (3.12)
we thus get

Q 2 l = O(Q 1 l ) × O K 1 K 2 , (3.13) A l = O K 1 K 2 . (3.14)
Now, the orders of magnitude of Q 1 and Q 2 are subject to restrictive conditions: there exist orders of magnitude of Q α for which homogenisation cannot be applied. Moreover, the macroscopic transient regime is closely linked to the flow regime in the constituent of greater permeability. Assuming that 1 be the constituent of greater permeability (K 1 K 2 ), gas flow can macroscopically be described by means of an equivalent continuous macroscopic model (i.e., homogenisation can be applied), if on a macroscopic point of view and in an order-of-magnitude sense, the transient term is lower than or equal to the mass-balance term in 1

φ 1 ∂p 1 ∂t L O |∇ ∇ ∇ • (K 1 p 1 ∇ ∇ ∇p 1 )| L . (3.15)
This condition, which is a classical result from homogenisation theory [START_REF] Auriault | Porous deformable media saturated by a very compressible fluid: quasi-statics[END_REF], actually means that the existence of an equivalent macroscopic description requires a sufficiently large characteristic flow time T c . Condition (3.15), which is expressed with respect to L, can also be written

Q 1 L = O φ 1 L 2 p 1 K 1 T c O(1). (3.16)
It can be shown that the order

Q 1 L = O(1) (3.17)
gives rise to a transient regime at the macroscopic scale, while the order

Q 1 L < O(1) (3.18)
leads to a steady-state macroscopic flow regime. We consider the case (3.17) of greater interest, which when using l for estimating Q 1 corresponds to

Q 1 l = O(ε 2 ). (3.19)
According to (3.13), it follows that

Q 2 l = O(ε 2 ) × O K 1 K 2 . (3.20)
The only remaining parameter is the order of magnitude of the permeability ratio

κ = O K 1 K 2 ,
and we thus have to consider the following orders of magnitude

Q 1 l = O(ε 2 ), Q 2 l = O(ε 2 κ), A l = O(κ), B l = O(1). (3.21)
There are two orders of magnitude of interest for κ

• Low permeability contrast: κ = O(1); • High permeability contrast: κ = O(ε -2 ). (3.22)
The order of magnitude κ = O(ε -2 ) gives rise to macroscopic memory effects. This is a classical result of homogenisation theory applied to composite media which has first been demonstrated in [START_REF] Auriault | Effective macroscopic description of heat conduction in periodic composites[END_REF]. We do not consider the case κ = O(ε -1 ), as it would lead to a particular subcase of the model obtained for κ = O(1) [START_REF] Auriault | Effective macroscopic description of heat conduction in periodic composites[END_REF].

DIMENSIONLESS LOCAL DESCRIPTION

According to the above estimations and considerations, the dimensionless writing of the local description (3.5)-(3.7) is therefore the following, in which all quantities are now non-dimensional quantities (for simplicity and clarity we have kept, for the dimensionless quantities, the same notations as for their physical counterparts)

ε 2 φ 1 ∂p 1 ∂t -∇ ∇ ∇ • (p 1 K 1 ∇ ∇ ∇p 1 ) = 0 in 1 , (3.23) ε 2 κ φ 2 ∂p 2 ∂t -∇ ∇ ∇ • (p 2 K 2 ∇ ∇ ∇p 2 ) = 0 in 2 , (3.24) (p 1 K 1 ∇ ∇ ∇p 1 ) • n n n = κ -1 (p 2 K 2 ∇ ∇ ∇p 2 ) • n n n on , (3.25) p 1 = p 2 on , (3.26) in which K α = k α 1 + b α p α (α = 1, 2). (3.27)
We consider the dimensionless space variables y y y and x x x defined by (2.2); the dimensionless gradient operator is therefore given by

∇ ∇ ∇ = ∇ ∇ ∇ y + ε∇ ∇ ∇ x , (3.28)
where ∇ ∇ ∇ y and ∇ ∇ ∇ x are the gradient operators with respect to y y y and x x x, respectively.

As physical variables of the problem, the pressure fields p α and the gas permeabilities K α are functions of both space variables p α = p α (y y y, x x x, t), K α = K α (y y y, x x x, t).

Two situations may at that stage be distinguished:

• Homogeneous constituents: k α and b α are constants;

• Heterogeneous constituents: k α = k α (y y y, x x x), b α = b α (y y y, x x x).

For applying the homogenisation procedure, the physical variables are looked for in the form of asymptotic expansions in power of ε. Thus, the pressure fields p α and the gas permeabilities K α are written as follows:

p α (y y y, x x x, t) = p (0) α (y y y, x x x, t) + εp (1) α (y y y, x x x, t)

+ • • • , (3.29) K α (y y y, x x x, t) = K (0) α (y y y, x x x, t) + εK (1) α (y y y, x x x, t) + • • • , (3.30)
in which the functions p (i) α and K (i) α are y y y-periodic. When considering heterogeneous constituents, the intrinsic permeabilities k α and the Klinkenberg factors b α must also be looked for in the form of asymptotic expansions in power of ε: k α (y y y, x x x) = k (0) α (y y y, x x x) + εk (1) α (y y y, x x x)

+ • • • , (3.31) b α (y y y, x x x) = b (0) α (y y y, x x x) + εb (1) α (y y y, x x x) + • • • , (3.32)
in which the functions k (i) α and b (i) α are y y y-periodic. The method consists then of incorporating the above expansions and expression (3.28) for the dimensionless gradient operator in the dimensionless local description (3.23)-(3.26) and in Equation (3.27) which defines the gas permeabilities K α . Then, identification at the successive orders of ε allows construction of appropriate boundary-value problems. Solving the boundary-value problems leads to the macroscopic behaviour. Application of this procedure to the two cases defined by (3.22) and when both constituents are homogeneous is the purpose of the next section. The case of heterogeneous constituents is then considered in Section 5. 1), the dimensionless local description is written as

Homogeneous Constituents

LOW PERMEABILITY CONTRAST

Derivation of the Large-Scale Model

When κ = K 1 /K 2 = O(
ε 2 φ α ∂p α ∂t -∇ ∇ ∇ • (p α K α ∇ ∇ ∇p α ) = 0 in α (α = 1, 2), (4.1) [pK∇ ∇ ∇p] • n n n = 0 on , (4.2) (4.3) p 1 = p 2 on .
From the first-order boundary-value problem, we obtain p (0) 1 = p (0) 2 = p (0) (x x x, t), (4.4)

and

K (0) 1 = K (0) 1 (x x x, t), K (0) 2 = K (0) 2 (x x x, t), (4.5)
where

K (0) α = k α 1 + b α p (0) α . (4.6)
At the next order, the set (4.1)-( 4.3) leads to a boundary-value problem of unknown p (1) α , whose solution is given by p (1) = τ τ τ g (y y y, p ( 0) ) • ∇ ∇ ∇ x p (0) + p (1) (x x x, t), (4.7)

where p ( 1) is an arbitrary function independent of y y y. The vector τ τ τ g is y y y-periodic, continuous over , average to zero for uniqueness

τ τ τ g = 1 | | τ τ τ g d = 0,
and is the solution to the well-posed following linear boundary-value problem

∂ ∂y i ∂τ gα j ∂y i + δ ij = 0 in α , (4.8) K (0) 1 ∂τ g1 j ∂y i + δ ij • n i = K (0) 2 ∂τ g2 j ∂y i + δ ij • n i on , ( 4 
.9)

τ g1 i = τ g2 i on . (4.10)
We note that τ τ τ g depends upon the first-order pressure field p (0) . Then, we average over the third-order boundary-value problem, to obtain 

φ ∂p (0) ∂t -∇ ∇ ∇ x • p (0) K (0) ∇ ∇ ∇ y p (1) + ∇ ∇ ∇ x p (0) = 0, ( 4 
= 1 | | d = 1 | | 1 1 d + 1 | | 2 2 d .
Using the expression (4.7) obtained for p (1) , Equation (4.11) can be rewritten as

φ ∂p (0) ∂t -∇ ∇ ∇ x • p (0) K g ∇ ∇ ∇ x p (0) = 0, (4.12)
in which K g is the tensor of effective gas permeability and is defined by:

K g ij = 1 | | K (0) ∂τ g j ∂y i + I ij d . (4.13)
Equation (4.12) describes the large-scale gas flow behaviour. In its writing, this macroscopic model is identical to that obtained in the classical case of gas flow in a porous composite. The only specific aspect of this model is with respect to the effective gas permeability tensor, K g , which we examine below. For details on the derivation of the macroscopic model, the reader is referred to Appendix A.

Effective Gas Permeability

The tensor of effective gas permeability is thus given by

K g ij = 1 | | k 1 + b p (0) ∂τ g j ∂y i + I ij d , (4.14)
where τ τ τ g is the solution to the boundary-value problem (4.8)-(4.10). It can easily be shown that K g is a positive symmetrical second-rank tensor. Let now examine the corresponding tensor of effective liquid permeability K l , which is defined by (4.15) in which τ τ τ l has the same properties as τ τ τ g (y y y-periodic, continuous over and average to zero), but is the solution to the following boundary-value problem

K l ij = 1 | | k ∂τ l j ∂y i + I ij d ,
∂ ∂y i ∂τ lα j ∂y i + δ ij = 0 in α , (4.16) k 1 ∂τ l1 j ∂y i + δ ij • n i = k 2 ∂τ l2 j ∂y i + δ ij • n i on , ( 4 
.17)

τ l1 i = τ l2 i on . (4.18)
Comparing boundary-value problem (4.8)-(4.10) to the set (4.16)-(4.18) that define τ τ τ g and τ τ τ l , respectively, it follows that

τ τ τ g = τ τ τ l when b 1 = b 2 , τ τ τ g = τ τ τ l otherwise.
The tensor K g can be rewritten as

K g = G Ĩ + 1 p (0) J , (4.19)
where 0) ), otherwise. Therefore, Klinkenberg's law is only verified in the particular case of equal Klinkenberg factors: b 1 = b 2 . When b 1 = b 2 , even though the effective gas permeability differs from the effective liquid permeability, the tensor does not verify Klinkenberg's law; it can only be satisfied for isolated components (under specific geometric and flow conditions) for which ∂τ l i ∂y j = ∂τ g i ∂y j = 0.

G = K l , J independent of p (0) , when b 1 = b 2 , G = K l , J = J (p (

Illustration: Bilaminated Composite

In order to illustrate the above results, we consider a periodic bilaminated porous composite. The composite is l-periodic in the y 1 -direction and of infinity period in both the y 2 and y 3 directions. The periodic cell, which is sketched in Figure 3, consists of two homogeneous porous layers 1 and 2 of thickness ηl and (1η)l, respectively, where η denotes the volume fraction of layer 1 . Each layer is assumed to be homogeneous and isotropic, of liquid permeability k α (α = 1, 2) and of gas permeability

K α = k α 1 + b α p (α = 1, 2). (4.20)
The components of the effective liquid and gas tensors ( K l and K g ) are the arithmetic mean and the geometric mean, for the flows parallel and perpendicular to the layers, respectively:

K l 12 = K l 13 = K l 23 = 0, (4.21) K l 22 = K l 33 = ηk 1 + (1 -η)k 2 = K l , (4.22) Figure 3. Periodic cell of the bilaminated composite. K l 11 = k 1 k 2 (1 -η)k 1 + ηk 2 = K l ⊥ , (4.23) K g 12 = K g 13 = K g 23 = 0, (4.24) K g 22 = K g 33 = ηK 1 + (1 -η)K 2 = K g , (4.25) K g 11 = K 1 K 2 (1 -η)K 1 + ηK 2 = K g ⊥ . (4.26)
Introducing expressions (4.20) into (4.25) and (4.26) yields

K g 11 = K l 11 (1 + b 1 /p) (1 + b 2 /p) 1 + B/p , K g 22 = K l 22 1 + B p , K g 33 = K l 33 1 + B p , (4.27)
where

B = (1 -η)k 2 b 2 + ηk 1 b 1 (1 -η)k 2 + ηk 1 .
Therefore, K g 22 and K g 33 verify Klinkenberg's law whereas K g 11 does not, which shows that for the flow in a bilaminated composite, Klinkenberg's law survives upscaling for a flow parallel to the layers but it does not for a flow perpendicular to the layers. As expected, when b 1 = b 2 = b, K g 11 verifies Klinkenberg's law:

K g 11 = K l 11 1 + b p .

HIGH PERMEABILITY CONTRAST

Derivation of the Large-Scale Model

When κ = K 1 /K 2 = O(ε -2 ), the local description (3.23)-(3.26) becomes ε 2 φ 1 ∂p 1 ∂t -∇ ∇ ∇ • (p 1 K 1 ∇ ∇ ∇p 1 ) = 0 in 1 , (4.28) φ 2 ∂p 2 ∂t -∇ ∇ ∇ • (p 2 K 2 ∇ ∇ ∇p 2 ) = 0 in 2 , (4.29) (p 1 K 1 ∇ ∇ ∇p 1 ) • n n n = ε 2 (p 2 K 2 ∇ ∇ ∇p 2 ) • n n n on , (4.30) p 1 = p 2 on (4.31)
Considering Equations (4.28) and (4.30) at the first order, we obtain a boundaryvalue problem defined over 1 , from which we get

p (0) 1 = p (0) 1 (x x x, t), K (0) 1 = K (0) 1 (x x x, t), (4.32)
and where

K (0) 1 = k 1 1 + b 1 p (0) 1 . (4.33)
At the second order, Equations (4.28) and (4.30) constitute a well-posed linear boundary-value problem of unknown p (1) 1 , and whose solution can be written as

p (1) 1 = χ χ χ(y y y, p (0) 1 ) • ∇ ∇ ∇p (0) 1 + p(1) 1 (x x x), (4.34) 
where p(1) 1 is an arbitrary function and χ χ χ is y y y-periodic, satisfies the condition 1

| 1 | 1 χ χ χ d = 0,
and is the solution to the following boundary-value problem

∂ ∂y i ∂χ j ∂y i + δ ij = 0 in 1 , (4.35) ∂χ j ∂y i + δ ij n i = 0 on . ( 4.36) 
We now consider Equations (4.29) and (4.31) at the first order

φ 2 ∂p (0) 2 ∂t -∇ ∇ ∇ y • p (0) 2 K (0) 2 ∇ ∇ ∇ y p (0) 2 = 0 in 2 , (4.37) p (0) 2 = p (0) 1 (x x x, t) on , ( 4.38) 
where p (0) 2 and K (0) 2 are y y y-periodic and where

K (0) 2 = k 2 1 + b 2 p (0) 2 . (4.39)
The solution p (0) 2 to the above boundary-value problem can be written as:

p (0) 2 = F p (0) 1 (x x x, t), y y y, t , (4.40)
in which F is a non-linear functional with memory effects [START_REF] Auriault | Effective macroscopic description of heat conduction in periodic composites[END_REF]. Due to the strong non-linearity of the problem, there is no explicit expression for defining F.

We then average over 1 the third-order of Equation (4.28); After using the divergence theorem and the third-order of boundary condition (4.30), the 2 -average of (4.37) is then required to obtain

η 1 φ 1 ∂p (0) 1 ∂t + φ 2 ∂ p (0) 2 2 ∂t -∇ ∇ ∇ x • p (0) 1 K (0) 1 ∇ ∇ ∇ y p (1) 1 + ∇ ∇ ∇ x p (0) 1 1 = 0, (4.41) in which η 1 = | 1 |/| |
denotes the volume fraction of domain 1 and where the α -average (α = 1, 2) is defined by

• α = 1 | | α • d .
Using the expression obtained for p (1) 1 , Equation (4.41) can be rewritten as

η 1 φ 1 ∂p (0) 1 ∂t + φ 2 ∂ F 2 ∂t -∇ ∇ ∇ x • p (0) 1 K g ∇ ∇ ∇ x p (0) 1 = 0, (4.42)
that describes the large-scale gas flow behaviour, and in which the tensor of effective gas permeability K g is defined by

K g ij = K (0) 1 1 | | 1 ∂χ j ∂y i + I ij d . (4.43)
This large-scale description is a strongly non-linear model with memory effects (characterised by the term ∂ F 2 /∂t), of whom a linearised version is extracted below. The fact that a high contrast of properties leads to memory effects is a wellknown result of the homogenisation theory [START_REF] Auriault | Effective macroscopic description of heat conduction in periodic composites[END_REF] for thermal conduction in composites. In the absence of Klinkenberg's effect, the mathematical model (4.42) would have the same form: as in Section 4.1, Klinkenberg's effect entails only a modification of the effective tensor of permeability, which we examine in paragraph 4.2.3. Details on the above derivation are given in Appendix B.1.

Linearised Model

In order to get more insight into expression (4.40) and its consequences on the macroscopic flow behaviour, we consider a low pressure level

b 2 p (0) 2 1,
which enables us to derive a linearised form of model (4.42). In effect, K (0) 2 , which is defined by (4.39), can now be approximate by

K (0) 2 k 2 b 2 p (0) 2 . (4.44)
It can be shown (see Appendix B.2 for details) that, in Fourier space, the macroscopic flow behaviour is described by (4.45) in which φ is the bulk porosity, and where

[ φ -η 2 φ 2 β ] iωp (0) 1 -∇ ∇ ∇ x • p (0) 1 K ∇ ∇ ∇ x p (0) 1 = 0,
β(x x x, y y y, ω) = p (0) 2 -p (0) 1 p (0) 1 , β = 1 | | 2 β(x x x, y y y, ω) d .
When written in time space, Equation (4.45) becomes (4.46) where B denotes the inverse Fourier transform of β /iω. Equation (4.46) is a linearised form of the macroscopic gas flow behaviour (4.42). The convolution product in Equation (4.46) characterises the presence of memory effects.

φ ∂p (0) 1 ∂t -η 2 φ 2 t -∞ B(t -τ ) ∂ 2 p (0) 1 ∂t 2 dτ -∇ ∇ ∇ x • p (0) 1 K g ∇ ∇ ∇ x p (0) 1 = 0,

Effective Gas Permeability

The tensors of effective gas and liquid permeabilities read, respectively

K g ij = k 1 1 + b 1 p (0) 1 | | 1 ∂χ j ∂y i + I ij d , ( 4.47) 
and (4.48) where χ χ χ is the solution to the boundary-value problem (4.35)-(4.36). It follows that

K l ij = k 1 1 | | 1 ∂χ j ∂y i + I ij d ,
K g ij = K l ij 1 + b 1 p (0) . (4.49)
Klinkenberg's law is therefore always verified at large-scale in the case of high permeability contrast.

Illustration: Bilaminated Composite

Let now examine the above results on the bilaminated composite described in Section 4.1.3 (Figure 3). The components of the effective tensors K l and K g are the following K l 11 = 0, (4.50)

K l 22 = K l 33 = ηk 1 = K l ,
(4.51) K l 12 = K l 13 = K l 23 = 0, (4.52)

K g 11 = 0, (4.53)

K g 22 = K g 33 = ηK 1 = K g , (4.54) K g 12 = K g 13 = K g 23 = 0. (4.55)
It follows that

K g 11 = K l 11 = 0, (4.56) K g 22 = K l 22 1 + b 1 p , (4.57) K g 33 = K l 33 1 + b 1 p , (4.58)
which confirms that Klinkenberg's law is valid.

Let us now examine on this particular geometry the linearised model derived in Section 4.2.2. The coefficient β of the model expressed in Fourier space (4.45) and the memory function B of the time-space model (4.46) can easily be calculated [START_REF] Auriault | Effective macroscopic description of heat conduction in periodic composites[END_REF])

β = (1 -η) 1 - tanh(γ √ i) γ √ i with γ = ωφ 2 k 2 b 2 (1 -η)l 2 .
(4.59)

B(t) = 8(1 -η) ∞ j =0 exp(-(2j + 1) 2 π 2 τ/4) (2j + 1) 2 π 2 , τ = 4k 2 b 2 t φ 2 (1 -η) 2 l 2 .
(4.60)

Heterogeneous Constituents

The above results can easily be extended to the case of heterogeneous constituents, for which we have to account for expansions (3.31) and (3.32). Introducing the dependence of k α and b α on the space variables does not change the writing of the large-scale models (4.12) and (4.42), obtained for low and for high permeability contrast, respectively. The large-scale gas flow behaviours are anyhow modified, due to the consequences on the definitions of the effective tensors of gas permeability.

LOW PERMEABILITY CONTRAST

The effective tensor of gas permeability becomes

K g ij = 1 | | K (0) (y y y, x x x) ∂τ g j ∂y i + I ij d , (5.1)
where

K (0) α (y y y, x x x) = k (0) α (y y y, x x x) 1 + b (0) α (y y y, x x x) p (0) (x x x) , (5.2)
and in which the vector τ τ τ g is y y y-periodic, average to zero and is the solution to the following boundary-value problem, for γ = K (0) (y y y, x x x):

∂ ∂y i γ α ∂τ α j ∂y i + δ ij = 0 in α , (5.3) γ 1 ∂τ 1 j ∂y i + δ ij n i = γ 2 ∂τ 2 j ∂y i + δ ij n i on , (5.4) τ 1 i = τ 2 i on .
(5.5)

As for the effective tensor of liquid permeability, it is now defined by

K l ij = 1 | | k (0) (y y y, x x x) ∂τ l j ∂y i + I ij d , ( 5.6) 
where the vector τ τ τ l is y y y-periodic, average to zero and is the solution to (5.3)-(5.5) for γ = k (0) (y y y, x x x). It follows that τ τ τ g = τ τ τ l , and the tensor K g can be written as

K g = G Ĩ + 1 p (0)
J , G = Kl , J = J (p (0) ).

(5.7)

Therefore, Klinkenberg's law is never verified in that case.

HIGH PERMEABILITY CONTRAST

The effective tensor of gas permeability is now defined by

K g ij = 1 | | 1 K (0) 1 ∂χ gj ∂y i + I ij d , (5.8)
where

K (0) 1 (y y y, x x x) = k (0) 1 (y y y, x x x) 1 + b (0)
1 (y y y, x x x) p (0) (x x x) , (5.9) and in which the vector χ χ χ g is y y y-periodic, average to zero and is the solution to the following boundary-value problem, for γ = K (0) 1 (y y y, x x x): ∂ ∂y i γ ∂χ j ∂y i + δ ij = 0 in 1 , (5.10) γ ∂χ j ∂y i + δ ij n i = 0 on .

(5.11)

The effective tensor of liquid permeability is now given by

K l ij = 1 | | 1 k (0)
1 (y y y, x x x) ∂χ lj ∂y i + I ij d , (5.12)

where the vector χ χ χ l is y y y-periodic, average to zero and is the solution to (5.10)-(5.11) for γ = k (0) 1 (y y y, x x x). It turns out that χ χ χ g = χ χ χ l , and K g can therefore be written in the form (5.7). Klinkenberg's law is thus not verified. Note that if constituent 2 is heterogeneous while constituent 1 is homogeneous, the conclusions of Section 4.2 remain valid: Klinkenberg's law is verified.

Conclusions

The objective of this work was to determine whether Klinkenberg's law survives upscaling, that is, if the large-scale tensor of effective gas permeability could be expressed as

Kg = Kl Ĩ + β p H ,
where Kl is the effective liquid permeability. Using the homogenisation method of multiple scale expansions, we have derived the large-scale mathematical models and the effective tensors of gas permeability of a Klinkenberg's gas flow in a two-constituent porous composite. By distinguishing the cases of low and of high permeability contrast we have derived two kinds of large-scale models. In their writing, these models are identical to those obtained in the absence of Klinkenberg's effect. The only specific aspect of these models is concerned with the effective tensors of gas permeability which differ from their liquid counterparts. We have shown that Klinkenberg's law survives upscaling only in the two following cases:

1. At low permeability contrast, when both constituents are homogeneous and both Klinkenberg factors are equal; 2. At high permeability contrast when the constituent of greater permeability is homogeneous.

In any other situation, Klinkenberg's law is not verified and the large-scale effective tensor of gas permeability can be expressed as follows:

Kg = G Ĩ + J p , G = Kl , J = J (p). η 1 φ 1 ∂p (0) 1 ∂t + φ 2 ∂ p (0) 2 2 ∂t -∇ ∇ ∇ x • p (0) 1 K (0) 1 (∇ ∇ ∇ y p (1) 1 + ∇ ∇ ∇ x p (0) 1 ) 1 = 0, (B.21)
where according to (B.18) we have

φ 2 ∂ p (0) 2 2 ∂t = φ 2 1 | | 2 ∂p (0) 2 ∂t d = φ 2 1 | | 2
∂F(p (0) 1 , y y y, t) ∂t d .

Using the expression obtained for p (1) 1 , Equation (B.21) can be rewritten as (B.22) in which the tensor of effective permeability K is defined by As a consequence, K (0) 2 , defined by (B.17), can be approximate as follows where W is y y y-periodic.

η 1 φ 1 ∂p (0) 1 ∂t + φ 2 ∂ F 2 ∂t -∇ ∇ ∇ x • p (0) 1 K g ∇ ∇ ∇ x p (0) 1 = 0,
K g ij = K (0)
K (0)
Let W be the Hilbert space of regular, complex-valued functions θ defined on 2 , y y y-periodic, zero-valued over , which is equipped with the following inner product where scalar β is the pulsation dependent and complex-valued particular solution to Equation (B.29) when p (0) 1 = -1. In Fourier space, the macroscopic description is thus written as

(θ 1 , θ 2 ) W( 2 ) = 2 (k 2 b 2 ∇ ∇ ∇ y θ 1 ∇ ∇ ∇ y θ2 + iωφ 2 θ 1 θ2 ) d ,
[ φ -η 2 φ 2 β ] iωp (0) 1 -∇ ∇ ∇ x • (p (0) 1 K g ∇ ∇ ∇ x p (0) 1 ) = 0 (B.31)
When written in time space, Equation (B.31) becomes φ ∂p ( 0)

1 ∂t -η 2 φ 2 t -∞ B(t -τ ) ∂ 2 p (0) 1 ∂t 2 dτ -∇ ∇ ∇ x • (p (0) 1 K g ∇ ∇ ∇ x p (0) 1 ) = 0,
where B denotes the inverse Fourier transform of β /iω.

Figure 1 .

 1 Figure 1. Two-scale medium: (a) macroscopic sample; (b) periodic cell.

Figure 2 .

 2 Figure 2. Periodic cell of the composite.

  .11) in which φ = η 1 φ 1 +η 2 φ 2 denotes the composite bulk porosity and η α = | α |/| | represents the volume fraction of constituent α. Symbol • denotes the average over and is defined by

  , the simplified form of boundary-value problem (B.15)-(B.16) with respect to W is written asφ 2 iω(p (0) 1 -W ) + ∇ ∇ ∇ y • (k 2 b 2 ∇ ∇ ∇ y W ) = 0 in 2 , (B.27) W = 0 on ,(B.28) 

  where θ2 denotes the complex conjugate of θ 2 . The equivalent variational formulation of (B.27)-(B.28) is written as ∀θ ∈ W(2), (W, θ) W( 2 ) =of the solution stem from Lax-Milgram lemma. This solution can be written as W (x x x, y y y) = -β(x x x, y y y, ω)p(0) 1 (x x x), (B.30)

Table I .

 I Typical values of the Klinkenberg factor b

	Author(s)	Material	Gas	k (10 -5 m 2 )	b(MPa)	p (MPa)
	Klinkenberg (1941) Glass filter Air	2.36	0.68	[0.02, 9]
		Rock	Air	23.6	0.16	[0.01, 5.1]
		Rock	Air	170	0.075	[0.02, 0.17]
	Liang et al. (2001)	Quartzite	Air	0.05	1.11	[2, 12]
	Wu et al. (1998)	Rock	Nitrogen	1.61 × 10 -5 18.8	[1, 2]
	McVay and Rish	Cement	Nitrogen	8.04 × 10 -2	0.81	[2.5, 10]
	(1995)					
		Cement	Vapor	8.04 × 10 -2	0.77	[2.5, 10]

The dimensionless local description is written as

[pK∇ ∇ ∇p] • n n n = 0 on , (A.2)

3)

The first-order boundary-value problem reads ∇ ∇ ∇ y • (p (0) α K (0) α ∇ ∇ ∇ y p (0) α ) = 0 in α , (A.4) [p (0) K (0) ∇ ∇ ∇ y p (0) ] • n n n = 0 on , (A.5)

2 on , (A.6) in which p (0) α and K (0) α are y y y-periodic and where

This is a well-posed non-linear problem of unknowns p (0) α and K (0) α . After using the divergence theorem, boundary-condition (A.5) and periodicity, the -average of Equation (A.4) gives

As a result of the positivity of

According to boundary-condition (A.6) we get

and from Equation (A.7) we deduce

At the next order, the set (A.1)-(A.3) gives the following linear boundary-value problem of unknown p (1) α

2 on , (A.12) in which p (1) α is y y y-periodic. Let V( ) be the Hilbert space of regular functions θ defined and continuous over , that are y y y-periodic and that satisfy the condition

Furthermore, this Hilbert space is equipped with the following inner product

Note that the additional condition (A.13) is introduced in order to provide the product (θ 1 , θ 2 ) V( ) with the required properties of an inner product. The following variational formulation is thus equivalent, modulo an added constant, to the boundary-value problem (A.10)-(A.12):

Existence and uniqueness of the solution to (A.14) are proved by Lax-Milgram lemma. This solution is given by

where p ( 1) is an arbitrary function independent of y y y. The vector τ τ τ g is y y y-periodic, continuous over , average to zero for uniqueness

and is the solution to the well-posed following boundary-value problem

In other words, τ g i is the particular solution to the boundary-value problem defined by Equations (A.10)-(A.12) when ∂p (0) /∂x j e j = e i . At the third-order, boundary-value problem (A.10)-(A.12) reads

where p (2) 1 and p (2) 2 are y y y-periodic. Then, we average (A.19) over . After using the divergence theorem and boundary condition (A.20), we obtain

Using the expression (A.15) obtained for p (1) , Equation (A.22) can be rewritten as

in which K g is the tensor of effective permeability and is defined by: The local description is written as follows

Considering Equations (B.1) and (B.3) at the first order, we obtain the following non-linear boundary-value problem defined over 1

in which p (0) 1 and K (0) 1 are y y y-periodic and where

As a result of the positivity of K ( 0) 1 (the reasoning is identical to that conducted for the first-order problem in Appendix A), we get

At the second order, Equations (B.1) and (B.3) read

where p (1) 1 is y y y-periodic. The equivalent variational formulation of the above linear boundary-value problem of unknown p (1) 1 is written as (B.11) and its solution can be written as

where p(1) 1 is an arbitrary function and χ χ χ is y y y-periodic, satisfies the condition 1 

where p (0) 2 and K (0) 2 are y y y-periodic and where

Assuming the existence of the solution p (0) 2 to the above boundary-value problem, it can be written as:

in which F is a non-linear functional with memory effects. At the third order, Equations (B.1) and (B.3) read

1 K ( 0) 1 (∇ ∇ ∇ y p (2) 1 + ∇ ∇ ∇ x p (1) 1 )] --∇ ∇ ∇ y • [(p (0) 1 K (1) 1 + p (1) 1 K (0) 1 )(∇ ∇ ∇ y p (1) 1 + ∇ ∇ ∇ x p (0) 1 )] = 0 in 1 , (B.19)

[p (0) 1 K (0) 1 (∇ ∇ ∇ y p (2) 1 + ∇ ∇ ∇ x p (1) 1 )] • n n n + + [(p (0) 1 K (1) 1 + p (1) 1 K (0) 1 )(∇ ∇ ∇ y p (1) 1 + ∇ ∇ ∇ x p (0) 1 )] • n n n = (p (0) 2 K (0) 2 ∇ ∇ ∇ y p (0) 2 ) • n n n on , (B.20)

where p (2) 1 and K (1) 1 are y y y-periodic. We then average (B.19) over 1 ; after using the divergence theorem and boundary condition (B.20), the 2 -average of (B.15) is then required to obtain