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Acoustics with wall-slip flow of gas-saturated porous media
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Abstract

This work is aimed at deriving and at analyzing the dynamic filtration law that describes the acoustics of a gas 
saturated porous medium, when a wall-slip flow occurs due to low gas pressure. The dynamic filtration law is derived by 
upscaling the pore-scale description that consists of the equations of linear acoustics and a wall-slip condition on the 
pore wall. We have shown that the effective dynamic permeability depends on the Knudsen number and can be 
approximated by the generalized Klinkenberg�s law at low Knudsen numbers. Analysis of these results on a simple 
geometry proves that this approximation fails at reproducing the macroscopic inertial effects at high pulsations.
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1. Introduction

The objective of this work is to derive the dynamic filtration law that describes the acoustics of a rigid

porous medium saturated by a gas when a wall-slip flow occurs on the pore wall due to low gas pressure.

Our purpose is to use an upscaling technique, namely the homogenisation method of multiple scale

expansions (Benssoussan et al., 1978; Sanchez-Palencia, 1980), so as to derive the macroscopic dynamic

filtration law by starting from the pore-scale description; this latter consists of the equations of linear

acoustics for the fluid and a wall-slip condition on the solid/fluid interface.

At constant pulsation x, homogenisation of the pore-scale description that consists of the equations of
linear acoustics and the no-slip condition on the pore wall leads to the generalized Darcy� law (Biot, 1956;

Levy, 1979; Auriault, 1980; Burridge and Keller, 1981):
* Co

E-m
v ¼ �eK ðxÞ$p; ð1Þ
in which the dynamic permeability tensor is complex-valued, pulsation dependent and inversible:
eK�1 ¼ eH ¼ eH1 þ i eH2:
The generalized Darcy�s law can thus be rewritten as follows:
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$ð/pÞ ¼ �/ eH1v� eH ð2Þ
/
2v_ ;
x

where / represents the porosity. This writing expresses a momentum balance in which the viscous term

/ eH1v characterizes the dissipation and the inertial term /
x
eH2 _v is related to the effective fluid density.

At low gas pressure, the no-slip condition on the pore wall may break down. The wall-slip flow is due to

the fact that the mean free path of a molecule k, i.e. the mean distance that it travels before it collides with

another molecule, is inversely proportional to the pressure:
k ¼ l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRT=2M

p
:

Hence, at low gas pressure the mean free path may become comparable with the pore size l. In other words,

the Knudsen number may reach the order of one:
Kn ¼
k
l
6Oð1Þ:
As a result, gas molecules diffuse on the pore wall: a wall-slip flow occurs. This phenomenon, which has

widely been investigated in quasi-statics is called Klinkenberg�s effect. At the sample scale, it leads to

important deviations from Darcy�s law. For describing the phenomenon at the sample scale, Klinkenberg

(1941) proposed to replace the permeability in Darcy�s law by a pressure-dependent gas permeability:
kg ¼ klð1þ 4cKnÞ ¼ kl 1

�
þ b
p

�
; ð3Þ
in which kl denotes the liquid permeability and where c and b are constants. In Skjetne and Auriault (1999),
a tensorial form of Klinkenberg�s law (3) is derived by homogenisation by considering a quasi-static wall-

slip flow at the pore scale.

The question of the dynamic filtration law when a local wall-slip flow occurs has not yet been addressed.

This investigation by homogenisation consists of the extensions of Auriault (1980) to the local wall-slip flow

problem and of Skjetne and Auriault (1999) to the acoustic regime. One of the issues is thus to determine

whether there exists a generalized Klinkenberg�s law, i.e. whether the dynamic permeability could be such

as:
eKg ¼ eKlðxÞ½1þ KnecðxÞ�: ð4Þ
The paper is organized in four parts. Firstly in Section 2, we briefly introduce the homogenisation
method. Then, in Section 3, we analyze the pore scale gas wall-slip flow problem. Section 4 is devoted to the

homogenisation of this local description. The general dynamic filtration law is derived by considering a

Knudsen number of order of one. As in Skjetne and Auriault (1999), a perturbation analysis in terms of Kn

is then carried out in Section 5 to obtain an approximation Kapp of the general dynamic filtration law Keff at

low Knudsen number (4). Finally, in Section 6, we examine our results on the simple geometry of a bundle

of capillaries. We show that the wall-slip entails a decrease in both the dissipation and the inertial terms.

The comparison of eKeff with eKapp shows that approximating eKeff by eKapp at low Knudsen numbers is only

appropriate at low pulsations.
2. Homogenisation method

The essence of homogenisation techniques is to determine an equivalent macroscopic behaviour by
upscaling the local description. The fundamental assumption behind any homogenisation method is that

the scales must be separated. This condition is expressed as l � L, where l and L are the characteristic



lengths at the heterogeneity scale and the macroscopic scale, respectively. This definition conjures up a

purely geometric separation of scales, but this fundamental condition must also be satisfied by the physical

process considered. For wave propagation in a heterogeneous medium, the heterogeneity characteristic

length l must also be small compared to the wavelength.
We use the homogenisation method for periodic structures (also called method of multiple scale

expansions) introduced by Benssoussan et al. (1978) and Sanchez-Palencia (1980). The key parameter of the

method is the scale ratio:
e ¼ l
L
� 1: ð5Þ
With this homogenisation method, the medium is also assumed to be periodic. This assumption is actually

not a restriction; it allows derivation of the macroscopic model without any assumption on the form of the

macroscopic equations. In this study, we use the methodology suggested in Auriault (1991), with which the
problem is tackled in a more physical manner. This formulation uses the dimensionless numbers that arise

from the local description. These dimensionless numbers must be estimated with respect to the scale ratio e.
Using the two characteristic lengths, two dimensionless space variables are defined:
y ¼ X

l
; x ¼ X

L
;

where X is the physical space variables. If the condition of separation of scales is satisfied, then y and x
appear as two independent space variables: y is the microscopic variable and describes the heterogeneity

scale, whereas x is the macroscopic variable. As a consequence, the physical variables of the problem, p, q
and v, are a priori functions of y and x:
p ¼ pðy; xÞ; q ¼ qðy; xÞ; v ¼ vðy; xÞ:

The homogenisation method of multiple scale is based on the fundamental premise that if the scales are well

separated, then all physical variables can be looked for in the form of asymptotic expansions in powers of e:
p ¼ pð0Þðx; yÞ þ epð1Þðx; yÞ þ � � � ð6Þ

q ¼ qð0Þðx; yÞ þ eqð1Þðx; yÞ þ � � � ð7Þ

v ¼ vð0Þðx; yÞ þ evð1Þðx; yÞ þ � � � ð8Þ

in which the functions pðiÞ, qðiÞ and vðiÞ are y-periodic. The method consists of incorporating expansions (6)–

(8) in the dimensionless form of the local description. Solving the boundary-value problems arising at the

successive orders of e leads to the macroscopic description.
3. Pore-scale gas wall-slip flow problem

We consider a periodic rigid porous medium saturated by a gas at low pressure. Let us denote by X the
period and by l its scale length, which is small compared to a typical macroscopic length L. Within the

period, Xp and Xs represent the fluid and solid parts of the period, respectively, and C denotes the pore

surface (Fig. 1).

We shall consider isothermal motions of the fluid which are small enough to be governed by the line-

arized Navier–Stokes equations. In order to account for a possible Klinkenberg�s effect, we consider a wall-

slip condition on C. For time harmonic motions with angular frequency x, these equations are
l$2vþ ðgþ lÞ$ð$ � vÞ � $p ¼ ixqev in Xp; ð9Þ
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Fig. 1. Two-scale medium: (a) macroscopic sample, (b) periodic cell.
ixqþ qe$ � v ¼ 0 in Xp; ð10Þ

p ¼ Aq ðA is a constantÞ in Xp; ð11Þ

v ¼ �ckt1 � ð$vÞ � nt1 on C: ð12Þ

In the above equations, l and g denote the viscosities, qe represents the density at equilibrium, v, p and q
denote the fluid velocity, the pressure and the density perturbations, respectively, and c is a constant.

Vectors t1 and n represent the unit vectors tangential and normal to C, respectively.
From the above local description (9)–(12) arise the four following dimensionless numbers:
Q ¼ j$pj
jl$2vj

; Rt ¼
qe ov

ot

�� ��
jl$2vj

; S ¼
oq
ot

�� ��
jqe$ � vj ; B ¼ j � ckt1:ð$vÞ:nt1j

jvj :
We shall now relate the order of magnitude of these dimensionless numbers to the magnitude of e. We

arbitrarily choose the local scale length l as the reference characteristic length for estimating the differential

operators. The dimensionless number Q is the ratio of the pressure gradient to the viscous forces. It can be

shown that Ql ¼ Oðe�1Þ (Auriault, 1980). The transient Reynolds number, Rt, is the ratio of the transient

term to the viscous term. Under acoustic perturbations the inertial term does act at the local scale, which
reads Rtl ¼ Oð1Þ. The Strouhal number, S, characterizes the transient behaviour of flow and a macroscopic

transient behaviour corresponds to SL ¼ Oð1Þ which gives Sl ¼ OðeÞ. The reader is referred to Auriault

(1980) for details on the estimation of Q, Rt and S. Now, the parameter B is a measure of the wall-slip effect.

As c ¼ Oð1Þ (Cercignani, 1988), we obtain
B ¼ OðKnÞ:
The dimensionless writing of the local description (9)–(12) is therefore the following, in which all quantities
are now dimensionless quantities (for ease of formulation we have kept, for the dimensionless quantities,

the same notations as for their physical counterparts):
l$2vþ ðgþ lÞ$ð$ � vÞ � e�1$p ¼ ixqev in Xp; ð13Þ

eixqþ qe$ � v ¼ 0 in Xp; ð14Þ

p ¼ Aq in Xp; ð15Þ

v ¼ �Knt1:ð$vÞ � nt1 on C: ð16Þ

The dimensionless gradient operator is given by
$ ¼ $y þ e$x;



where $y and $x are the gradient operators with respect to y and x, respectively. The purpose of the next

section is the derivation of the macroscopic description when Kn ¼ Oð1Þ, which means that: e � Kn � e�1.

The subcase defined by e � Kn � 1 will then be considered in Section 5.
4. Derivation of the dynamic filtration law

We now consider the case Kn ¼ Oð1Þ and apply the homogenisation procedure by incorporating the

asymptotic expansions (6)–(8) in the dimensionless local description (13)–(16).

The lowest order of Eqs. (13) and (15) yields
pð0Þ ¼ pð0Þðx; tÞ and qð0Þ ¼ qð0Þðx; tÞ:
Considering the next order, we obtain a boundary-value problem of unknowns vð0Þ and pð1Þ:
$2
yv

ð0Þ � $xpð0Þ � $ypð1Þ ¼ ixqevð0Þ in Xp; ð17Þ

$y � vð0Þ ¼ 0 in Xp; ð18Þ

vð0Þ ¼ �Knt
ð0Þ
1 � $yv

ð0Þ � ntð0Þ1 on C; ð19Þ
where vð0Þ and pð1Þ are X-periodic.
The solution to this system may be written as follows:
vð0Þ ¼ �~kðy;Kn;xÞ$xpð0Þ:
Its average over the period yields:
hvð0Þi ¼ �eKeffðKn;xÞ$xpð0Þ; eKeff ¼ h~kðy;Kn;xÞi; ð20Þ
where h�i denotes the average over the period and is defined by:
h�i ¼ 1

jXj

Z
Xp

�dX:
Eq. (20) is the generalized filtration law. It differs from the generalized Darcy�s law (1) in the fact that the

effective dynamic permeability tensor eKeff depends upon the Knudsen number.
5. Low Knudsen number approximation: generalized Klinkenberg’s law

In the above derivation of the macroscopic filtration law, we have considered Kn ¼ Oð1Þ, that is

e � Kn � e�1. In order to get more insight into the expression of eKeff , let now consider the case of low

Knudsen number:
e � Kn � 1:
As in Skjetne and Auriault (1999), we now look for vð0Þ and pð1Þ in the form of asymptotic expansions of Kn:
vð0Þ ¼ v0 þ Knv
1 þ ðKnÞ2v2 þ � � � ð21Þ

pð1Þ ¼ p0 þ Knp1 þ ðKnÞ2p2 þ � � � ð22Þ
Substituting the above expansions into boundary-value problem (17)–(19) yields at the first order:



$2
yv

0 � $xpð0Þ � $yp0 ¼ ixqev0 in Xp; ð23Þ
$y � v0 ¼ 0 in Xp; ð24Þ
v0 ¼ 0 on C: ð25Þ
The solution to this linear well-posed problem is:
v0 ¼ �~k0ðy;xÞ$xpð0Þ;
and its average over the period is written as:
hv0i ¼ �eK 0ðxÞ$xpð0Þ; ð26Þ
where
eK 0 ¼ h~k0i:

eK 0 is the dynamic permeability tensor in the absence of wall-slip flow.

At the second order, we obtain the following wall-slip correction problem:
$2
yv

1 � $yp1 ¼ ixqev1 in Xp; ð27Þ
$y � v1 ¼ 0 in Xp; ð28Þ
v1 ¼ �t
ð0Þ
1 � $yv

0 � ntð0Þ1 on C: ð29Þ
The average over the period of the solution v1 to the above well-posed problem is written as:
hv1i ¼ �eK 1ðxÞ$xpð0Þ; ð30Þ
in which eK 1 is a complex permeability tensor.

According to (26) and (30), the average of expansion (21) up to the second order leads to:
hvð0Þi ¼ �ðeK 0 þ Kn
eK 1Þ$xpð0Þ; ð31Þ
which can also be written as:
hvð0Þi ¼ �eKapp$xpð0Þ; ð32Þ
eKapp ¼ eK 0ðxÞð1þ Kn
eCðxÞÞ: ð33Þ
It appears that the structure of Eq. (33) is similar to Klinkenberg�s law (4). Tensors eK 0 and eC are complex

and pulsation dependent. When taking x ¼ 0, the inertial terms in systems (23)–(25) and (27)–(29) vanish

and eKapp is then the Klinkenberg gas permeability. When written in time space, Eq. (32) would display a

convolution product which characterizes memory effects. These effects are not due to the wall-slip flow as

they already exist in the absence of the wall-slip (Auriault, 1980).

In order to illustrate the above results, to examine the influence of the wall-slip effect upon the dynamic
filtration law and to compare eKeff and eKapp, we now consider the problem on the simple geometry of a

bundle of capillaries.



6. Results in a bundle of capillaries

6.1. Dynamic filtration law

The purpose of this section is to examine the macroscopic law for the acoustics with wall-slip effects of a

bundle of capillaries of radius a saturated by a gas. According to the results obtained in Section 4, the

macroscopic behaviour is described by
hvð0Þi ¼ �KeffðKn;xÞ
dpð0Þ

dx
:

The dynamic permeability Keff is defined by
Keff ¼
/
pa2

Z
0

2prkðr;Kn;xÞdr; ð34Þ
where k is such that
vð0Þ ¼ �k
dpð0Þ

dx
: ð35Þ
In a single capillary, the local boundary-value problem (17)–(19) reduces to:
d2vð0Þ

dr2
þ 1

r
dvð0Þ

dr
� ixqe

l
vð0Þ ¼ 1

l
dpð0Þ

dx
; ð36Þ

1

l
dpð1Þ

dr
¼ 0; ð37Þ

vð0ÞðaÞ ¼ �ck
dvð0Þ

dr
: ð38Þ
Solving the above boundary-value problem and then using (35) and (34) yields:
Keff ¼ � /
ixqe

J2ðaaÞ þ KnaaJ1ðaaÞ
J0ðaaÞ � KnaaJ1ðaaÞ

; ð39Þ
where Ji are Bessel functions and a ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixqe=l

p
. It can be seen from Eq. (39) that the generalized Klin-

kenberg�s law (4) is not verified. Let define the inverse permeability by K�1
eff ¼ Heff ¼ H1 þ iH2. The term H1

represents the dissipation whereas H2x�1 is the inertial term. The curves of H1 and H2x�1 with respect to the

dimensionless pulsation x� ¼ xqea2=l are plotted in Fig. 2 for different values of Kn. When Kn ¼ 0, the

profiles of both curves are those obtained in the case of acoustics without Klinkenberg�s effect: the inertial
term tends towards 1 whereas the dissipation term increases with the pulsation. The enhanced value of
H2x�1 (i.e. greater than 1) at low pulsation is due to the added mass effect. When the Knudsen number is

increased, both the dissipative and the inertial terms decrease as a result of the increase of the wall-slip

effect.

6.2. Generalized Klinkenberg’s law

We now consider the case e � Kn � 1 (Section 5). The macroscopic law reads
hvð0Þi ¼ �KappðxÞ
dpð0Þ

dx
;
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Fig. 2. Variations of Heff ¼ H1 þ iH2 with respect to the dimensionless pulsation for distinct values of the Knudsen number. Plain line:

0:1H1 (dissipative term); dashed line: x�1H2 (inertial term).
where
Kapp ¼ K0 þ KnK1:
The expression of Kapp may be obtained by either solving both systems (23)–(25) and (27)–(29) for deter-
mining K0 and K1, respectively, or by considering a limited expansion of Keff for low values of Kn. We thus

obtain:
Kapp ¼ � /
ixq

J2ðaaÞ
J0ðaaÞ

�
þ Kn

2J 2
1 ðaaÞ

J 2
0 ðaaÞ

�
: ð40Þ
This expression for Kapp allows us to evaluate how Keff deviates from the generalised Klinkenberg�s law. It
can be shown that:
Keff

K0
¼ Kapp

K0
þ K2

naa
K1

K0

J1ðaaÞ
J0ðaaÞ � KnaaJ1ðaaÞ

� �
:

The curves of the real and imaginary parts of Heff ¼ 1=Keff and Happ ¼ 1=Kapp with respect to the log of the

dimensionless pulsation x� are plotted in Fig. 3, for different values of the Knudsen number. At low

Knudsen number (Fig. 3a), the dissipation term (i.e. the real part) of Happ is in good agreement with that of
Heff , as long as logx�

6 1, whereas the inertial term is slightly underestimated for any value of the pulsation.

For Kn ¼ 0:5 (Fig. 3b), both the real and imaginary parts of Happ strongly differ from those of Heff . In

particular, the fact that the imaginary part is lower than one, which is physically meaningless, proves that

the approximation Happ for Heff (resp. Kapp for Keff ) is no longer valid.

Fig. 4 shows the plots of the real and imaginary parts of Heff and Happ with respect to the Knudsen

number, for two values of the dimensionless pulsation (x� ¼ 0:05 and x� ¼ 5). The real parts of Happ and

Heff perfectly coincide for both values of the pulsation (Fig. 4a), whereas the imaginary parts strongly differ

as soon as Kn is greater than 0.05.
Therefore, on this simple geometry, the low Knudsen number approximation Kapp of the dynamic

permeability Keff is valid when Kn 6 0:05 and logx�
6 1.
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7. Conclusion

We have derived the dynamic filtration law that describes the acoustics with wall-slip flow of a gas

saturated rigid porous medium. The most general law differs from the generalized Darcy�s law in the fact

that the effective dynamic permeability depends on the Knudsen number. We have shown that at low
Knudsen number, the dynamic permeability could be approximated by the generalized Klinkenberg�s law.
Analysis of these results on the simple geometry of a bundle of capillaries has led to the conclusion that the

generalized Klinkenberg�s law fails at reproducing the inertial effect at high pulsation. Further develop-

ments of the present work should include computation and analysis of the dynamic permeability on more

complex geometries.
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