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RESUME : Le but de cette étude est de déterminer les modèles mathématiques qui décrivent 
la  migration  de  polluants  en  milieux  poreux  fracturés.  On  utilise  une  méthode 
d’homogénéisation, c’est à dire que les modèles macroscopiques sont rigoureusement déduits 
de la description physique à l’échelle d’un Volume Elementaire Représentatif (VER). Pour 
pouvoir appliquer l’homogénéisation,  la condition fondamentale de séparation des échelles 
doit vérifiée : l / L    . Dans le cadre de cette étude, l  désigne la longueur caractéristique 
du VER ,  c’est  à dire  la  taille  caractéristique  de l’échelle  des  fractures  et  L est  la  taillle 
caractéristique macroscopique. On utilise l’approche introduite dans (Auriault, 1991). Cette 
méthodologie est basée sur sur la définition puis l’évaluation des nombres adimensionnels 
issus de la description à l’échelle du VER. On montre que le comportement macroscopique 
dépend du régime local de transport, lequel est caractérisé par le nombre de Péclet dans les 
fractures. On obtient quatre modèles macroscopiques de transport de soluté en milieux poreux 
fracturés.

ABSTRACT : This  work  is  aimed  towards  deriving  mathematical  models  that  describe 
pollutant migration through fractured porous media. A homogenisation method is used, i .e. 
macroscopic  models  are  rigorously  deduced  from the  physical  description  which  is  valid 
within  a  Representative  Elementary  Volume (REV).  The fundamental  addumption  behind 
homogenisation is the separation of scales which is expressed by : l / L    . In the present 
work,  l  denotes the characteristic size of the REV, i.e. at the fracture’s scale and L is the 
characteristic  macroscopic size.  The approach introduced in (Auriault,  1991) is used. This 
methodology is on the basis of definition and estimation of dimensionless numbers arising 
from the description at the REV’s scale. It is shown that the macroscopic behaviour strongly 
depends upon the local transport regime characterised by the Péclet number in the fractures. 
Four distinct macroscopic models for solute transport in fractured porous media are derived.
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I. INTRODUCTION.

The present  work is  aimed towards  deriving the macroscopic  equations  that  govern 
solute transport in fractured porous media. The medium is assumed to be locally characterised 
by by a Representative Elementary Volume (REV). It consists of a porous matrix domain, 
m , and of a fracture domain,   f , whose common boundary is denoted 

by   (Figure 1).

Figure 1: Periodic cell of the fractured porous medium

The macroscopic models are derived via homogenisation: they are rigorously deduced from 
the  physical  description  at  the  REV’s  scale.  The  fundamental  assumption  behind  all 
homogenisation techniques is that the scales must be separated. This fundamental condition is 
expressed as:  l / L     , where  l  is the characteristic length of the REV and  L  is the
characteristic macroscopic length. In the present study we use the method of homogenisation 
for  periodic  structures  -  also  called  method  of  multiple  scales  -  that  was  introduced  by 
(Bensoussan et al., 1978) and (Sanchez-Palencia, 1980). The key parameter of the method is 
the  length-scale  ratio   .  The  medium  is  also  assumed  to  be  periodic  and  the  period,
 , is O(l) . This assumption is not a restriction: it actually allows derivation of the 

macroscopic description and of the effective coefficients without any preliminary assumption 
on the form of the macroscopic behaviour.
In this work, we use the approach introduced in (Auriault, 1991), by which the problem is 
tackled in a physical rather than mathematical manner. This methodology is on the basis of 
definition and estimation of dimensionless numbers arising from the description at the REV's 
scale. The domains of validity of the derived macroscopic descriptions are provided by means 
of the orders of magnitude of the local dimensionless numbers.

II. DIMENSIONLESS LOCAL DESCRIPTION.

The medium is saturated by water in which a solute is diluted. In the fracture's domain, 
fluid flow is described by Stokes equations and solute transport by the diffusion-convection 
equation.  In the porous matrix the filtration of the liquid is described by Darcy's law and 
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solute  transport  is  supposed to  be governed by a  diffusion-advection  equation.  The latter 
equation results from diffusion in the solid and from diffusion and convection in the pores. 
Note that the behaviour, at the porous matrix scale, of the process of diffusion in both the 
solid and the micropores and of convection in the micropores, may be very different from that 
considered here. In particular, this behaviour is conditioned by the order of magnitude of the 
diffusion coefficient ratio (Auriault and Lewandowska, 1997).
When cast in a dimensionless form (using L  as the reference characteristic length and Tf ,
the characteristic time of the transport process in the fractures as the reference characteristic 
time) the equations that govern fluid flow and solute transport are the following:

 In  f

  
Ff 

 

 


   

 


(  : viscosity;    

r v f : fluid velocity in the fractures; p f : fluid pressure in the fractures; P :

characteristic macroscopic pressure drop; Vf c : characteristic value of   
r v f )

  
r 



v f = 0

N f







 ̃


   

 

   



 

 


 

(c f : solute concentration in the fractures; ˜ D f : tensor of molecular diffusion in the fractures;
Dfc : characteristic value of ˜ D f ; Pe f : Péclet number in the fractures)

 In m

  

r 
v m   

̃

   




 


(  
r v m :  fluid  velocity  in  the  porous matrix;  pm :  fluid  pressure  in  the  porous matrix;  lp :

characteristic  pore-size;  lp
2 /  :  estimation  of  the  permeability;  ˜ K m :  dimensionless

permeability tensor of the porous matrix)

  
r 


v m = 0

Nm






  ̃


   

      


 


 
 

 

(cm : solute concentration in the porous matrix; ˜ D m : tensor of effective diffusion in the

porous matrix; Dmc : characteristic value of ˜ D m ; Pem : Péclet number in the porous matrix)



 On 

  

r v f  

 

 

 

p f  

c f  

  
( ˜ D f

r 
  

   ̃

  

  
 

 

III. ESTIMATION OF THE NON-DIMENSIONAL NUMBERS.

 Estimation of v 
 

 

From Stokes equation in the fractures and Darcy's law in the porous matrix we deduce that 
Vf c and Vm c  are such that:

Vf c
 




⎛
⎝
⎜ ⎞

⎠
  

 





⎛

⎝
⎜ ⎞

⎠
⎟ .

Thus, we get:

v 
 

 

 






⎛

⎝
⎜ ⎞

⎠
⎟

 Estimation of d 
 

 

The tensor of effective diffusion in the porous matrix, Dmc , characterises both the diffusion 
in the solid and the diffusion in the micropores. Therefore
Dmc

         .

( Ds : characteristic diffusion coefficient in the solid; Dmol : characteristic molecular 
diffusion in the micropores; m : tortuosity).
In the fractures, Df  is the tensor of molecular diffusion. Thus
Df  
We therefore deduce that

d 
 

 

  .

 Estimation of Ff 
 


The local flow is generated by a macroscopic pressure gradient, which leads to the following 
estimation:



V fc

l2 = O
δP
L

 ⎛
 ⎝

 ⎞
 ⎠ ,

from which we deduce:
Ff    .

 Estimation of Qm 



  


Qm  can be expressed with respect to Ff  as follows:

Qm  
 



  

 Estimation of N f 


 

 and  Pe f 


 

The orders of magnitude of N f  and Pe f  are actually linked. In effect, both numbers can 
expressed as characteristic time ratios as follows:

N f 




 




,

in which

Td f




 

 is the characteristic time of diffusion in the fractures,

Tc f



 

 is the characteristic time of convection in the fractures.

Thus, we have:
N f       

      

⎧
⎨
⎩

 Estimation of Nm 


 

 and Pe f 
 

 

The orders of magnitude of Nm  and Pem  can be deduced from those of N f  and Pe f :
Nm   

Pem  






⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   

IV. DEFINITION OF CASES OF INTEREST.

The dimensionless description depends upon the orders of magnitude of Pe f  and that of 
lp / l .
The following orders of magnitude will be considered:

Pe f       (predominant diffusion)
Pe f       (equivalent diffusion and convection)
Pe f        (predominant convection)



It has been shown (Auriault and Adler, 1995) that any other order of magnitude for  Pe f  
would either be equivalent to one of the cases investigated here - Pe f     - or lead to a 
non-homogenisable  situation   (i.e.  when  there  is  no  equivalent  macroscopic  continuous 
description) - Pe f     -.
Former studies concerning various physical processes in fractured porous media have shown 
that three characteristic orders of magnitude may be considered for  lp / l  (for example see 
(Royer et al., 1996)):

lp

l
   




 



   

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

The order of magnitude of  lp / l  may have an impact on the order of magnitude of  Pem , 
which defines the solute transport regime in the porous matrix:

Pem  






⎛

⎝
⎜⎜

⎞

⎠
⎟⎟     






⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

When Pe f    or Pe f   , we have
Pem   ,
which shows that the transport regime will always be the same, namely a regime of 
predominant diffusion, whatever the order of lp / l . Therefore, in theses cases, the order of 
lp / l  has no effect.

In contrast, when Pe f    we have

Pem     






⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .

Thus, if lp / l     , then a Péclet number of Pem    is reached, which corresponds 
to a regime of equivalent diffusion and advection in the porous matrix; whereas if 
lp / l    or lp / l    , we get Pem   , i.e. a regime of predominant diffusion. 

Thus, when Pe f   , two orders of magnitude for lp / l  are of interest:
lp

l
     




  .

As a conclusion,  the cases to be investigated are the following:

 Case I: Pe f     



    .

 Case II: Pe f     



    .

 Case III: Pe f        .

- Case III.1: 
lp

l
     .



- Case III.2: 
lp

l
   .

V. DERIVED SCALED-UP MODELS.

The homogenisation method of multiple scales is based upon the fundamental statement that 
if the scales are well separated (  1 ), then all physical variables can be looked for in the 
form of asymptotic expansions in powers of  :

  
r v f 




   


    


   

  p f  
 

  


    
 

   

  c f  
 

   


   
 

   

  
r v m 


 

   


    
 

   

  pm  






  

 




    






  

  cm  
 

   
 

    
 

   
in which the functions   

r 
v f

i
, p f

i
, c f

i
,   
r v m

i
, pm

i
, cm

i
 are  -periodic and where 

  
r y  and    

r x  are  the  microscopic  and  the  macroscopic  dimensionless  space  variables, 
respectively, and are defined by:

  

r y 




,

  

r x 




 ,

(  
r 
X : physical space variable).

The method consists in incorporating these asymptotic  expansions in the non-dimensional 
local description. This leads to governing equations and boundary-conditions at the successive 
orders  of   ,  which  together  with  the  condition  of  periodicity  define  boundary-value 
problems  in  the  periodic  cell.  Once  solved,  their  average  over  the  period  yields  the 
macroscopic behaviour.
The derived macroscopic models are the following:

Fluid flow

  
r 
V f   ̃




  
r 
.

r 
V f = 0

Solute transport

Case I: 
  

 C
∂ t

−
r 

 ∇.( ˜ D ef

r 
 ∇C) = 0 (purely  diffusive 

behaviour)

Case II: 
  

 C
∂ t

−
r 

 ∇.( ˜ D ef

r 
 ∇C − C

r 
V f ) = 0 (convection-diffusion)

Case III.a: 
  

 C
∂ t

− ε
r 

 ∇.[ ˜ D disp

r 
 ∇C − 1

ε
C (

r 
V f + ε

r 
V m)] = 0 (dispersion with influence

 of the porous matrix)

Case III.b: 
  

 C
∂ t

− ε
r 

 ∇.( ˜ D disp

r 
 ∇C − 1

ε
C

r 
V f ) = 0 (dispersion)



˜ K f  is the effective permeability tensor.  ˜ D ef  is the effective diffusion tensor and ˜ D disp  is 
the apparent dispersion tensor. They are defined by boundary-value problems to be solved 
over the REV. ˜ K f  is a symmetrical tensor and depends only upon the geometry of the REV. 
˜ D ef  is also symmetrical and depends upon the cell-geometry and the molecular diffusion. 
˜ D disp  is not symmetrical in the general case and depends upon the pressure gradient.

VI. CONCLUSION.

An important conclusion drawn from this study is that the macroscopic description strongly 
depends  upon  the  local  transport  regime  ( Pe f )  and  in  a  less  extent  upon  the  order  of 
magnitude of lp / l . Four distinct continuous models for solute transport in fractured porous 
media have been derived.
In fractured porous media, dual-porosity effects appear only when the characteristic times of 
the involved physical processes are very different in the porous matrix and in the fractures. 
Thus, since the flow is steady-state, there is no dual-porosity effect in the macroscopic fluid 
flow equations (single-porosity model for fluid flow). In contrast, since the solute transport 
process  is  time-dependent,  dual-porosity  effects  are  present  in  all  macroscopic  transport 
equations, through the expressions obtained for  ˜ D ef  (models I and II) and  ˜ D disp  (models 
IIIa and IIIb). An important feature of model IIIa is that it shows an influence of the advection 
in the porous matrix at the macroscopic scale.
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