
HAL Id: hal-01715696
https://hal.science/hal-01715696v2

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Mesh Refinement algorithm based on dual
trees for cells and faces for multiphase compressible flows

Kevin Schmidmayer, Fabien Petitpas, Eric Daniel

To cite this version:
Kevin Schmidmayer, Fabien Petitpas, Eric Daniel. Adaptive Mesh Refinement algorithm based on
dual trees for cells and faces for multiphase compressible flows. Journal of Computational Physics,
2019, 388, pp.252-278. �10.1016/j.jcp.2019.03.011�. �hal-01715696v2�

https://hal.science/hal-01715696v2
https://hal.archives-ouvertes.fr

Adaptive Mesh Refinement algorithm based on dual trees for cells

and faces for multiphase compressible flows

Kevin Schmidmayera,∗, Fabien Petitpasb, Eric Danielb

aDivision of Engineering and Applied Science, California Institute of Technology
1200 E. California Blvd., Pasadena, CA 91125, USA
bAix Marseille Univ, CNRS, IUSTI, Marseille, France

Abstract

A novel adaptive mesh refinement method is proposed. The novelty of the method lies
in using a dual data structure with two trees: A classical one for the computational cells
and an extra one dedicated to computational cell faces. This new dual structure simplifies
the algorithm, making the method easy to implement. It results in an efficient adaptive
mesh refinement method that preserves an acceptable memory cost. This adaptive mesh
refinement method is then applied to compressible multiphase flows in the framework of
diffuse-interface methods. Efficiency of the method is demonstrated thanks to computational
results for different applications: Transport, shock tube, surface-tension flow, cavitation and
water-droplet atomization, in one and multi-dimensions. The test cases are performed with
the open-source code ECOGEN and with quantitative comparisons regarding non-adaptive
mesh refinement methods to analyze benefits. A discussion specific to parallel computing is
also presented.

Keywords: adaptive mesh refinement, diffuse interface, multiphase flow, compressible flow,
cell tree, face tree

1. Introduction

In computational fluids dynamics, the accuracy of results is conditioned by the refine-
ment level of the computational grid. Nevertheless, the finer is the grid, the more expensive
is the computational cost regarding CPU time as well as memory. For the computation of
steady flows, the use of unstructured grid and mesh refinement techniques at well-defined lo-
cations can lead to very accurate results (see for example simulations around hydrofoils [19]).
For the computations of strongly unsteady flows with shock waves or traveling interfaces,
achievement of accurate results is conditioned by the use of a very small cell size. Thus, a
large amount of computational time is wasted to compute solutions in cells where almost

∗Corresponding author
Email addresses: kevin.schmidmayer@gmail.com (Kevin Schmidmayer),

fabien.petitpas@univ-amu.fr (Fabien Petitpas), eric.daniel@univ-amu.fr (Eric Daniel)

Preprint submitted to Journal of Computational Physics April 3, 2019

nothing occurs. On the strength of these observations, the use of Adaptive Mesh Refinement
(AMR) techniques represents an interesting option to reduce the CPU time cost when the
numerical solution of complex flows is sought. When an AMR method is embedded in a
computational fluid dynamics code, the computational grid is dynamically adapted in order
to be refined where it is necessary and to maintain a coarse grid elsewhere.

AMR methods are suitable and already massively used for many applications: Magne-
tohydrodynamics [2, 10], incompressible multiphase flows as for the droplet motions in a
microchannel [7] and the atomization of liquid impinging jets [32], compressible multiphase
flows as for the leakage of gas from a liquefied-petroleum-gas storage cavern [28] or for bubble
dynamics [40], etc.

The analysis of literature shows there are mainly three existing approaches. The first one
is an approach where the entire computational domain is represented by a coarse base grid
and where more resolution is required, finer and nested grids are laid over coarser grids [3, 4].
This approach is known as patch-based. An example is given on the left image of Figure 1. In
the second approach, the refinement occurs on an individual cell rather than on a complete
cell grid, and this directly defines a tree of cells [41]. Each cell can be refined or unrefined
independently of others. The mesh refinement occurs locally where it is necessary, then at
every level of the tree, the mesh may have a non-uniform and very flexible shape. This second
approach is known as cell-based. An example is given on the right image of Figure 1. The
third approach takes advantages of the two first in a hybrid version known as block-based.

Figure 1: Representative images of two of the three main AMR approaches: On the left, shock reflection
off an oblique wedge for patch-based approach (image from [3], c© 1989, Journal of Computational Physics)
and on the right, air shock on a helium bubble for cell-based approach.

These AMR approaches are implemented in numerous existing packages. Without be-
ing exhaustive, patch-based approach is used in codes such as Chombo [9], SAMRAI [18]
or recently AMReX [43]. One can find implementations of cell-based approach in Ger-
ris/Basilisk [31] or RAMSES [39] for example. While block-based approach is found in codes
such as PARAMESH [23], FLASH [14], NIRVANA [42], ForestClaw [5] or p4est [6].

The aim of this paper is dual. The first goal is to present a new AMR method in
the context of cell-tree approach. The second goal is to present how this method, when
embedded in a computational code, can be used to simulate multiphase compressible flows.
This last point is ensured by coupling the proposed AMR method with numerical specificities
of multiphase models in the framework of the diffuse-interface theory [34].

2

The cell-based approach is originally appealing because of its flexibility to adapt to
strongly unsteady flows. But this flexibility is paid by the fact that standard grid-based
solvers cannot be used directly on a tree. When coupling with a finite volume scheme, the
flux computations and the time-stepping strategy on such a tree are different from those
on a grid, it means that the flow solver is slightly dependent on the level computed. In
addition, accessing neighboring cells is more difficult in a tree than in an array and scanning
the tree to access the nearest neighbors may be an expensive procedure. Khokhlov [20] pro-
posed some improvements to the method: The first one consists of using a Fully Threaded
Tree (FTT) where cells have not only knowledge of their child cells but also of their parent
cells and neighboring cells. This thread provides an efficient parallel access to information
on a tree. Besides, this FTT turns out to be useful for the dynamical refinement based
on physical variations between neighboring cells; refinement generally ensured by tracking
discontinuities such as shock waves or contact discontinuities. Khokhlov also improves the
memory cost for maintaining the tree by regrouping cells in a so-called “oct” structure.

When dealing with compressible multiphase flows, especially in the framework of diffuse-
interface methods [34], some specific features of the models have to be considered before
being solved with AMR techniques:

• First, each phase is described by a set of partial differential equations (typically Navier-
Stokes equations) and its own equation of state. This leads to a large number of
evolution equations in conservative or non-conservative form to solve [16, 30].

• Second, split hyperbolic models may be solved, which introduce a large number of
fluxes to compute between computational cells [13, 38].

Moreover, the numerical solutions of these multiphase flow equations require iterative solvers
for relaxation procedures [15, 36] and expensive Riemann solvers are sometimes needed to
account for real material effects [22]. These specific points complicate the writing of a code
and do not facilitate the use of an AMR technique. In other words, complex compressible,
multiphase, multiphysics flows (including several phases, solids, phase transition, chemical
reactions, viscosity, surface tension...) are fully described by complex mathematical models
and the numerical methods that solve these models involve a significant number of operations
into cells, but also between cells. Embedding such numerical method in an AMR tool without
precaution may lead to very bad efficiency. This is the case when using cell-tree methods,
even in the fully threaded tree framework. Indeed, a lot of operations are required to find
the neighboring cells. This becomes a critical point when the algorithm is used to solve these
complex models coupled with high-order methods where the procedure to find the neighbors
occurs many times at each time step (flux computations at each stage of the high-order
method, gradient computations for numerical purpose or physical description, etc.).

In the novel cell-based AMR method presented in this paper, the AMR algorithm is
simplified and the searching procedure of neighboring cells disappears. The key point is the
role played by cell faces (geometrical contour): Obviously for the flux computations and also
because these faces naturally define neighbors between two cells. This new method extends
FTT approach on two points: The cell-tree structure is slightly modified and a second tree is

3

used to store information on cell faces. The addition of this second face-tree structure reduces
the number of operations during the time-step integration and simplifies the algorithm. The
memory involved is reasonably increased. Reasonably because the number of additional
information stored for each cell face is relatively small in comparison to what is required
into a cell. The AMR algorithm is then extended to take into account specific features of
multiphase flow models.

The paper is organized as follows: First, the extended AMR data structure is described.
Second, the general AMR algorithm in the context of finite volume scheme (coupled with
Riemann solvers for flux computations) is presented. The time-stepping strategy, the ad-
vancing and the mesh-refinement procedures are detailed. Third, the extension of the AMR
method to the diffuse-interface, multiphase-flow model developed in Schmidmayer et al. [38]
is presented. The last part of the paper is devoted to illustrate the interests of the method on
typical test cases: Transport, shock tube, surface-tension flow, cavitation and water-droplet
atomization in one and multi-dimensions. Each test is performed with quantitative compar-
isons regarding exact solutions or results using non-AMR method in order to analyze the
benefits of this new method. A discussion specific to parallel computing is also presented in
this last section.

2. Description of AMR data structure

Let us first recall the data structure of AMR method based on cell trees. A computational
cell is represented by a node at a given level in a tree. Each node of a tree is linked thanks
to threads to:

• A parent node representing a computational cell at lower level. The root of a tree is a
particular node with no parent.

• A given number of child nodes representing computational cells at higher level. The
number of child nodes depends on the geometry and the dimension of the problem.
A leaf of a tree is a particular node with no child and the computation of physical
quantities (not linked to AMR) only occurs on leaf nodes.

Each cell may be split into a given number of child cells and the condition of having at the
maximum one level of difference between each neighboring cell has to be respected, it ensures
a 2:1 size ratio in each direction for neighboring cell. An example of a tree representing data
for a 1D AMR scheme is shown on the left part of Figure 2 and an example of possible
splitting in 1D/2D/3D Cartesian grid is shown on its right part.

2.1. Recall of Khokhlov’s method [20]: Fully Threaded Tree

The tree structure is one obvious structure to define and optimize the cell-data storage
in an AMR method. Its flexibility allows refinement and unrefinement via destruction and
reconstruction of chosen nodes in the tree with no need to regenerate the entire mesh. The
cornerstone of such method lies in the chosen way to browse cells in the tree, which can be
a complex and expensive operation depending on the links between cells. In its simplest

4

l = 0

l = 2

l = 1

Cell
data

Cell
data

Cell
data

Cell
data

Cell
data

1D 3D2D

Figure 2: Figure split in two parts. On the left, an example of a tree representing the data structure for a
1D AMR scheme. “l” expresses the level in the tree. On the right, possible cell splitting. A 1D, 2D and 3D
cell will give birth in a Cartesian grid to 2, 4 and 8 child cells, respectively.

version, a node can only be accessed from browsing the tree from its root. One can easily
understand that the simple operation that consists in locating neighbors of a given cell (for
example to compute inter-cell fluxes) rapidly becomes a source of computational waste. An
alternative solution is the use of a so-called Fully Threaded Tree (FTT) where each node
has the knowledge of its parent node, child nodes and neighbor nodes. This improvement
leads to an easy browsing of the tree in every direction: From parent to child, child to parent
and between neighbors. This ability to browse the tree in all directions has the drawback
to considerably increase the amount of memory by the addition of multiple pointers acting
as threads. It also leads to more complicated maintenance operations on the tree when
refinement and unrefinement occur.

Khokhlov [20] proposed to group cells into octs in order to limit extra storage due to
links between nodes and to limit maintenance operation costs. In 3D, each oct contains 8
organized cells, a pointer to its parent cell at lower level and 6 pointers to parent cells of
neighboring octs. Each cell contains physical flow variables and a pointer to a child oct at
higher level. Most of the pointers, as well as the geometrical properties (level, position, size,
etc.), are grouped to be stored into octs rather than in cells. Consequently, the memory
costs are significantly reduced (especially in 3D) in comparison to the simple FTT version
without an oct structure.

The memory cost saving is undeniable when dealing with Euler equations, it is more
debatable when dealing with complex models for multiphysics problems. In the latter, the
ratio between physical flow variables and geometrical/AMR variables drastically increases.
Khokhlov explains that the cost of his oct-FTT AMR version is 2 words of memory per cell
instead of 17 words/cell for a non-oct version of FTT. These additional memory costs have
to be compared with physical flow variables which must be stored (5 words/cell for Euler
equations but 6xN words/cell for a general N-phase flow without extra physics or additional

5

variable storage). One could also note that high-order numerical methods induce other kinds
of additional memory costs.

Another drawback of oct-trees is that the computational time associated with computing
cell pointers from oct pointers and oct pointers from cell pointers, or in other words the neces-
sary extra time to seek neighbor cells, is estimated at around 20% of the total computational
time when computing single-phase flow with a first-order scheme while the computational
time for the refinement/unrefinement procedure is only around 2% (accordingly to Khokhlov
[20]). Here again, when complex models coupled with high-order numerical solvers are con-
sidered (meaning neighbor searching procedure for each flux computation of the high-order
scheme, for each gradient computation, etc.), this extra computational time involved by the
structure may no longer be negligible.

2.2. Basic idea of the new AMR data structure: The extra cell-face trees

An efficient way to avoid increasing CPU time and difficulty in searching neighbors is to
take advantage of information related to cell faces. In the finite volume framework, a face
may be defined as a geometrical contour between two computational cells that is the seat of
flux calculations. In programming language, it may also be defined as an object that stores
two pointers, one for each neighboring cell on both side of the face. From the face point of
view, they are interpreted as a “left” cell and a “right” cell. Availability of such objects, i.e.
faces storing pointers to their neighboring cells, avoids the need to search for neighbors when
solving inter-cell fluxes (e.g. Riemann problems) in a computational CFD code. In a more
general context of unstructured grids, it also prevents from using a connectivity table. It
implies that finite volume algorithms using such data structure may be easily used whatever
the grid structure is.

Thus, in addition to the cell tree, we propose to define face trees. In these face trees,
faces are represented by nodes that are linked to other face nodes by threads. The duality
of cell tree and face trees represents a complex data structure that greatly simplifies the
algorithm and reduces computational costs. Up to this remark, the new data structure is
composed of:

• Cells that are organized in tree structure (oct tree or not). They may also be linked
to faces.

• Faces that are also organized in tree structures. They can also be grouped in quad
trees to mimic Khokhlov’s oct-cell trees (a face will be split in up to 4 child faces in
3D).

Face trees in the AMR method imply additional memory costs. Nevertheless, with this new
data structure, calculations at faces (fluxes, gradients, etc.) are naturally accessible without
searching for neighbors. More than being interesting for Cartesian meshes, this point could be
an interesting feature for application in the purpose of simulations on unstructured meshes.
Moreover, the oct structure used in Khokhlov’s work can be kept to group information
regarding geometrical properties in the Cartesian framework.

6

2.3. Detailed description of trees

For the sake of clarity, data structure is presented for non-oct trees. The alert reader will
easily extend the method to oct-trees if needed.

The main tree of the method is quite similar to the one of the classical FTT method.
The computational cells constitute the nodes of the cell tree. In particular, they contain the
physical flow properties (depending on the flow model under interest) as well as geometrical
data. These cell nodes also include specific data for the AMR method:

• An integer for its level (0 if the cell is a root, > 0 otherwise),

• A pointer for each of its child cell nodes (up to 8 in 3D Cartesian mesh),

• An additional pointer for each of its faces (up to 6 in 3D Cartesian mesh),

• A pointer for the root of each new internal face tree (up to 12 in 3D Cartesian mesh).
The particular case of the internal faces is presented in the following.

Compared to a classical FTT method, the novelty lies in the pointers towards the faces that
represent an additional memory cost of maximum 11 pointers/cell in 3D (12 new pointers
for internal faces, 1 less because the pointer to the parent cell is no longer needed in the
method). Up to this point, a given cell can either be split or not (if its pointers to child cell
nodes are null).

The novel second data structure is represented by new face trees. The interest of the
presence of such face objects in a finite volume method lies in an improved access for flux
computations between two computational cells, using the “left” and “right” cell pointers of
the face. In this new AMR data structure, faces constitute nodes of new face trees. These
face nodes then include additional data specific to the AMR method:

• An integer for its level,

• A pointer to each of its child face nodes (up to 4 in 3D).

This new data structure possesses some specificities. Indeed, let us consider the example of
a 2D Cartesian cell represented in Figure 3. This cell is surrounded by 4 faces (blue edges).
Refinement of this cell will give birth to 4 new computational cells and 12 new faces. Among
these 12 faces, 8 of them (red dashed edges) are originated from the splitting of the parent
faces and appear naturally as their children. Also, 4 new faces appear inside the parent cell
as the result of the splitting of this cell and are considered as root of new face trees (green
dash-dotted edges). Consequently, splitting of a given cell will act on face trees in two ways:

• It will increase the depth of already existing trees. “External” faces of the parent cell,
that were leaves before splitting, will become parent of new faces (up to 4 in 3D), the
last ones are thus leaves.

• In the same time, it will also generate new “internal” faces that are roots (and leaves)
of new face trees.

7

1 cell
4 faces

4 cells
8 “external” faces
4 “internal” faces

Cell tree Face trees

4 face trees,
each one with 2 leaves

= 8 new faces

4 new “internal” faces
= 4 roots of new

face trees

Figure 3: 2D example of the duality of the cell tree and the face trees.

A 2D example of the links between cell and face trees is illustrated in Figure 4. In this
example, 3 levels are present. The figure is decomposed in three parts:

• The top part shows 2 successive refinements occurring from a given level-0 cell. The
following cell and face trees correspond to this particular splitting.

• The middle part shows the corresponding cell tree represented by square nodes and
composed with 4 level-1 cells and 4 level-2 cells.

• The bottom part shows the corresponding face trees represented by circle nodes. 4
level-0 face trees, 12 level-1 faces (including 4 new level-1 face trees) and 12 level-2
faces (including 4 new level-2 face trees) are generated.

The adopted numeration is ‘XYZ’ with X being C (for cell) or B (for face), Y corresponds
to level number (here from 0 to 2) and Z is the letter corresponding to the entity (A to N
in the present case). Pointers between cells in cell tree, as well as pointers between faces in
face trees, are shown with black solid lines. These pointers are organizing the tree structure.
The other pointers involved in the method, which are pointers between cells and faces, are
non-exhaustively presented through examples in order to facilitate comprehension. These
last pointers can be classified as follows:

• Pointers from cells to their external faces (2 in 1D, 4 in 2D and 6 in 3D). Such pointers
are present for each cell and are needed for gradient computations as well as slope
determination for second-order scheme. Examples of such pointers are shown with
yellow solid lines, where cell C0A points to the 4 faces B0A, B0B, B0C and B0D of
level 0.

8

• Pointers from cells to internal face trees. When a cell is refined, new faces appear
between child cells (1 in 1D, 4 in 2D and 12 in 3D). These faces have the opportunity
to become roots of new face trees which are linked to the parent cell through pointers.
These pointers are needed for refinement/unrefinement purpose. Example of such
pointers are shown with purple long-dashed lines, where cell C0A points to the 4 new
faces B1K, B1L, B1M, and B1N.

• Pointers from faces to cells. Each face possesses two of these pointers which are used to
compute hydrodynamic fluxes and update hydrodynamic part of the solution. These
pointers are used only if the face is a leaf of a face tree. 3 examples corresponding to
different situations are presented. In green dash-dotted lines are shown pointers from
a face of level 1 (B1N) to two level-1 cells (C1C and C1D). In blue dotted lines, an
example of a face (B2J) linked to two cells from different levels (C1C and C2D). The
last example in red dashed lines shows a face (B1A) linked to a level-1 cell (C1A) and
to another cell neighbor (level-0) of cell C0A or one of its child (level-1 cell) not shown
in the figure.

One can note that the number of faces may be significant. Nevertheless, the face trees
reasonably increase the memory involved since they only need a few additional pointers for
each face. Comparison of the required memory with a classical FTT structure is presented in
Table 1 in which the numbers of words per cell and per face are detailed. The total number
of words reported to a cell is also given. For a given 3D hexahedron cell, the new method
requires 11 additional words. Noticing that a face is common to 2 neighboring cells, a cell
requires approximately 3 faces (instead of 6), each of them requiring 5 words.

Data type Classical FTT AMR New AMR

Number of words
per cell

Cell level 1 1
Refinement indicator 1 1
Pointer to parent cell 1 -
Pointers to child cells 8 8

Pointers to neighboring cells 6 -
Pointers to faces - 6

Pointers to internal faces - 12

Number of words
per face

Face level - 1
Pointers to child faces - 4

Total number of words per cell 17 43

Table 1: Memory cost comparison between classical-FTT-AMR method and new AMR method using face
trees. For a given 3D hexahedron cell, the new method requires 11 additional words. Noticing that a face is
common to 2 neighboring cells, a cell requires approximately 3 faces (instead of 6), each of them requiring
5 words. The global overhead of the new method is thus 26 words/cell.

Saving may be done regarding memory costs by using Khokhlov-like oct-tree method for
particular Cartesian grids. Indeed, it is possible to group faces, as it was done for cells using
oct. “External” faces can be grouped in quad (group of 4 faces) and “internal” faces can

9

C0A

Cell tree

Face trees

B0D

B0
A

B0B

B0
C

C1C

C1BC1A

C1D

B1
A

B1C B1D

B1
F

B1
B

B1JB1I

B1
E

B1L

C2A

C2DC2C

C2B

B1
N

B1M

B1
K

B2JB2I

C0A

C1CC1BC1A C1D

C2A C2DC2CC2B

B0B B0C B0DB0A

B1A B1B B1C B1D B1E B1F B1I B1J B1K B1L B1M B1N

B2A B2B B2C B2D B2E B2F B2I B2J B2K B2L B2M B2N

Pointer to another cell
of level 0 or 1

Figure 4: 2D example of links between cell and face trees. Here, some details are given for a cell and its
2 levels of refinement. The top represents the cells appearing from the two successive refinements from a
level-0 parent cell. The middle and bottom sketches are representing the cell tree and face trees, respectively.
Connections between both cell and face trees are presented for some typical situations.

be grouped in dodeca (group of 12 faces). This improvement in term of memory cost is
possible but complicates the AMR algorithm. The global overhead of the new method may
thus reduce to 3.75 words/cell.

As mentioned in Section 2.1, one should note that the global overhead of the new method
has to be compared to the memory cost for storage of geometrical, physical and high-order-
scheme variables, as well as extra quantities stored for computational conveniences, that may

10

represent the larger part of memory costs in multiphase, multiphysics and high-accuracy com-
putations. For example, when considering the single-phase Euler equations on a Cartesian
grid at first order, 3 extra words are needed at least to store flow variables. The ratio between
FTT and the present dual-tree method, in the worst configuration, is approximately equal to
0.43. When considering the complex multiphase flow model presented in Section 4.3, solved
with a second-order scheme, the ratio can easily increase to 0.6 or even more if more than 2
phases are considered.

In the following, the oct-tree structure is not combined with this new AMR method
to totally eliminate the neighbor-searching operations. The algorithm simplicity and the
computational efficiency is thus highlighted.

3. General AMR algorithm

3.1. Finite volume scheme for conservation laws

We consider a system of conservation laws in the following form:

∂U

∂t
+ ∇ · F (U) = S, (1)

with U the conservative-variable vector, F the flux tensor and S the source-term vector.
The finite volume scheme for time evolution of System (1) discretized on a computational
cell i of volume Vi delimited by surfaces As of normal unit vector ns is classical:

Un+1
i = Un

i −
∆t

Vi

N∑
s=1

AsF
?

s · ns + ∆tSi, (2)

where F
?

s represents the flux-tensor solution of the Riemann problem between states on both
sides of cell surface As. First-order numerical scheme (2) is restricted by a CFL condition
on ∆t.

3.2. Time-stepping strategy

The efficiency of an AMR method requires the implementation of a specific time-stepping
strategy. Following the work of Khokhlov [20], the time-stepping strategy is based on two
key points:

• Cells at different levels evolve with different time steps according to their level of refine-
ment. In order to maintain the global time-step coherence for unsteady simulations, if
cells of level l evolve at a given time step, cells of level l + 1 will then evolve 2 times
with a time step 2 times smaller. It thus avoids to compute the smallest time step
of the entire computational domain, necessary for stability, for every cell but only for
the ones where it is necessary, i.e., the cells at the highest level. Then, it results in a
saving of CPU time.

11

• This time-stepping strategy allows interleaving between time integration and tree re-
finement. It results in a saving of memory as it limits excessive buffer layer of refinement
ahead a discontinuity [20].

The global time step is determined using the minimum tree level where there are leaf cells
(lmin) and the CFL condition:

∆t = ∆t (lmin) = cfl
L

2lminmax (| (u+ a)∗s |)
,

where cfl < 1 is a constant, L is the characteristic length of the coarser cells (at level l = 0)
and the maximum speed is determined going through each leaf face where u is the fluid
velocity in the corresponding face direction and a is the speed of sound waves. Time steps
at various levels are:

∆t (l) = 2lmin−l∆t.

The general integration procedure occurs at the different levels of the tree as an inter-
leaving of advancing and refinement procedures. It is expressed as a recursive procedure
I(lmin) with:

I (lmin) = A (lmin) I (lmin + 1)R (lmin) ,
I (l) = A (l) I (l + 1)A (l) I (l + 1)R (l) for l 6= (lmin, lmax) ,
I (lmax) = A (lmax)A (lmax)R (lmax) ,

(3)

where A(l) represents the advancing procedure of level l described in Section 3.3 and R(l)
is the refinement/unrefinement procedure of level l detailed in Section 3.4. All procedures
in (3) are performed from right to left, i.e., R (l) first, and A (l) last. An example of the
sequence generated by (3) could be, for lmin = 0 and lmax = 2:

[R (0) [R (1) [R (2)A (2)A (2)] A (1) [R (2)A (2)A (2)] A (1)] A (0)].

One can note that the generality of the new method in the present finite volume frame-
work simplifies the recursive integration procedure in comparison to [20] where directional
time-step splitting is computed. Indeed, the procedure of the lower level lmin is simplified,
i.e., only one advancing procedure is performed, and each advancing procedure is identical
(only the referred level changes). The last one has to be compared with [20] where two
advancing procedures have to be carried out, one for the sequence of XYZ one-dimensional
sweeps and one for its reversed.

Because of the recursive evolution algorithm, browsing of trees will lead to a significant
amount of tests to detect cell and face levels. A possible option to avoid going through all
the trees and then to accelerate the procedures is to add lists for cells and faces and for each
level of the simulation. Then, the loops over the cells or the faces become straightforward
and constantly efficient.

12

3.3. Advancing procedure

The advancing procedure A is called at each time step (∆t (l)) to advance the solution at
the time t+ ∆t (l) using the numerical scheme (2). This advancing procedure is decomposed
in 3 steps:

• The first step is solving the hyperbolic part of System 2. A loop is first performed on
leaf faces of level l where fluxes are estimated (using Riemann solvers) and stacked in
a flux buffer variable (initially set to 0) in each of “left” (L subscript) and “right” (R

subscript) neighboring cells. These flux buffers are denoted by F̃. It is important to
notice that possible contribution to these buffers comes from higher face level (during
preceding advancing procedures at higher level).
At the end of this face loop, buffers for cells of level l are complete. Indeed, whatever the
neighbor levels are, fluxes have been stacked either during this advancing procedure or
during those of higher level. Then, conservative variables for leaf cells of level l should
be evolved and corresponding flux buffers reset to 0 for next time step.

• The second step consists in upgrading leaf cells of level l through the source-term
integration.

• The third step is an averaging procedure consisting in updating split cells of level l.
This step is useful for the correct computation of the refinement procedure (presented
in details in Section 3.4).

The A (l) procedure is described in a form of the following pseudocode:

1. — Hyperbolic computation —

for (leaf faces f of level l) {
Compute the hyperbolic flux tensor F

?

f = F
?

f (Un
L,U

n
R);

F̃L = F̃L − ldiff,LLfF
?

f · nf ;
F̃R = F̃R + ldiff,RLfF

?

f · nf ;
}
for (leaf cells i of level l) {

U1
i = Un

i + ∆t
Vi

F̃i;

F̃i = 0;
}

2. — Source-term computation —

for (leaf cells i of level l) {
Un+1
i = U1

i + ∆tSi (U
1
i);

}

3. — Averaging of the child cells for each parent cells —

13

for (parent cells i of level l) {
for (child cells j of parent cell i) {

F̃i = F̃i + Un+1
j ;

}
Un+1
i = F̃i/ Number of child cells;

F̃i = 0;
}

The ldiff factor appearing in the stacking of the flux buffers takes into account potential level
differences between “left” and “right” cells on the considered face. It would take the value
ldiff = 1 if the two neighboring cells have the same level or if the flux is applied to the cell
with the higher level, and the value ldiff = 0.5 if the flux is applied to the cell with the lower
level. In the example of cells C2D and C1B in Figure 4, the one with the higher level (C2D)
will have 2 time-step integrations while the one with the lower level (C1B) will have just 1.
In that case, for the flux computation between these two cells, ldiff,L = 1 for cell C2D and
ldiff,L = 0.5 for cell C1B. In that way, it makes a time-averaged flux in the cell with the lower
level.

Extension of this advancing procedure will be done in Section 4.3 for non-conservative
system of multiphase flows.

3.4. Mesh-refinement procedure

If the data structure and integration algorithm represent key points to ensure efficiency
of an AMR simulation, the ability to refine or unrefine at required locations is another key
point that is obviously linked to the quality of numerical results. This is also the most
problem-dependent part and the choice of the refinement criteria is undeniably the most
difficult point for the user of an AMR method. This point will be discussed on a practical
test case in Section 5. The cell refinement is always linked to a refinement indicator 0 6 ξ 6 1
which is computed and stored for every computational cell. This indicator will be used to
detect which cells need to be refined or unrefined:

• If a leaf cell has ξ > ξsplit, it indicates that the corresponding cell must be refined,

• If a split cell has ξ < ξjoin, the corresponding cell can be unrefined,

where ξsplit and ξjoin are two predefined constant parameters controlling the cell refinement
dynamics forward and backward a discontinuity. An extra condition to control refinement is
also imposed: The difference of levels between two neighboring cells cannot be larger than
1.

3.4.1. Setup of ξ indicator

The approach we use to calculate the refinement ξ indicator is based on locations of
significant gradients [1, 8, 25] and it proceeds in two steps:

14

• For each computational cell, ξ is calculated by:

ξ = 1 if:
|(X)Nb(i,j) − (X)i|

min
(
(X)Nb(i,j), (X)i

) > ε,

ξ = 0 otherwise,

(4)

where X can be any pertinent physical variable (for example pressure p, velocity mag-
nitude ‖u‖, density ρ or volume fraction α). Nb(i, j) represents neighboring cells (j
accounts for a corresponding neighbor of cell i). The choice of the variable will dis-
criminate shocks, contact discontinuities, interfaces or any kind of gradients. ε is a
constant parameter that controls the limit in term of stiffness of the detected gradi-
ents. Attention should be paid to the velocity magnitude to avoid division by zero. A
combination of several gradients can also be used to improve detection.

• The second step consists in smoothing the refinement indicator. This operation is
very important for several reasons. First, it prevents cells from being falsely refined.
Secondly, smoothing allows cells forward a discontinuity to be refined before the dis-
continuity arrival and by this way prevents oscillations as well as a loss of precision.
To perform smoothing, we assume ξ can be modeled using a diffusion equation:

δξ

δt̃
= K∇2ξ, (5)

where t̃ is a fictive diffusion time only used to advance the solution for the diffusion
of ξ into the domain. So, this diffusion has no link or impact on the treated phys-
ical characteristic. K = 2−2lL2 is a constant diffusion coefficient. This equation is
solved with an explicit time advancement where the time step is chosen to preserve the
diffusion stability (dt = cfldiffK/2, where cfldiff corresponds to the CFL condition of
the diffusion equation). Note that when this equation is solved, the number of fictive
time iterations indirectly gives the number of cells where the indicator will be diffused.
Typically, 3 or 4 time iterations are enough.

The splitting and joining criteria are then used to determine if the cell has to be refined
or unrefined. The refinement around a density discontinuity is presented in Figure 5 as a
typical example.

3.4.2. Refinement and unrefinement of cells and faces

Due to the dual data structure, refinement (unrefinement) proceeds in two steps: First
the refinement (unrefinement) of the cells and second of the faces.

The refinement of a cell occurs if ξ > ξsplit once the ξ indicator of every cell of the current
level l is smoothed. The two steps are:

• First, the cell refinement: It does not involve special difficulties as it follows the scheme
in Figure 2. A refined cell will give birth to up to 8 child cells (in Cartesian 3D) of
level l + 1 and each child will be built with the same physical characteristics than its
parent cell.

15

(a)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(c)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: Result of the successive mesh refinement procedures around a density discontinuity. (a) The
density discontinuity, (b) the values of the indicator for each level and (c) the distribution of cell levels (the
pink-surrounded leaf cells are the cells where the integration occurs) are presented.

• Second, the face refinement: It is also performed in two steps for each split cell. The
first one is the creation of the internal child faces of level l+1 that belong to the parent
cell (it then creates up to 12 new face trees in Cartesian 3D). In the second step, the
creation of the external child faces of level l+ 1 for each of the faces of the parent cell
(level l) is achieved only if it was not already done by the corresponding neighboring
cell. The child faces belong to their parent face (see Figure 3).

The unrefinement occurs if ξ < ξjoin and is performed according the two steps:

• First, the cell unrefinement: The physical variables of the child cells are averaged and
overwrite the ones of the parent cell (see point 3 of the pseudocode of Section 3.3).
Then, child cells are removed.

16

• Second, the face unrefinement: It is performed in two steps. The first one is the
removal of the internal child faces that belong to the parent cell. In the second step,
the removal of the external child faces is done only if the corresponding neighboring
cell is not split.

All the pointers are obviously redirected to the corresponding cell or face if necessary.

3.4.3. Pseudocode of the mesh-refinement procedure

The R (l) refinement procedure is thus described as the following pseudocode:

1. — ξ setup —

for (cells i of level l) {
ξ = 0;
if (one of the gradient criteria is respected) { ξ = 1; }

}

2. — Smoothing of ξ —

for (x diffusion iterations) {
for (cells i of level l) {

Compute the diffusion equation for ξ (Eq. (5));
}

}

3. — Refinement —

if (l < lmax) {
for (non-split cells i of level l) {

if (ξ > ξsplit & level of each neighboring cell > l − 1) { Cell i is refined; }
}
}

4. — Unrefinement —

if (l < lmax) {
for (split cells i of level l) {

if (ξ < ξjoin & level of each neighboring cell 6 l + 1 & child cells are not split) {
Cell i is unrefined with children averaging (see point 3 of the pseudocode of
Section 3.3) to overwrite the values of cell i;
}

}
}

If the general AMR algorithm presented in this section is applied to compute the solution
of a simple conservative model (i.e. Euler equations) on a single core, one can expect only
little computational-time saving in comparison to Khokhlov’s algorithm [20], because of
the few neighbor-searching operations in the AMR procedure. On the other hand, if the

17

mathematical model considers multiphase compressible flows, embedding complex additional
physical effects (surface tension, viscosity, heat transfers, etc.) in a parallel architecture, the
need to search for neighboring cells to compute inter-cell fluxes, gradients and slopes for
second-order scheme are significantly increased. The computational time spent to access
this information will necessarily explode and the advantages of this new AMR method will
naturally appear. This is why the next section is devoted to the extension of the general
AMR algorithm to the multiphase flow model of Schmidmayer et al. [38] for diffuse-interface
problems including surface tension.

4. Extension to multiphase flow model of Schmidmayer et al. [38]

The AMR method presented in this paper is intended for diffuse-interface models for
multiphase compressible flow. The retained model to illustrate the use of the AMR method
is detailed in Schmidmayer et al. [38] in which surface-tension effects are taken into account.
Though, the AMR method can be easily adapted to treat extra physics as for example phase
transition [24, 35], cavitation [29], detonation in high-energetic materials [30], solid-fluid
interaction and compaction of granular media [11, 12], and low Mach number flows [27].

We recall here the main properties of the Schmidmayer et al. model [38].

4.1. Multiphase system of equations

The pressure-relaxation model with surface tension of [38] is:

∂α1

∂t
+ u · ∇α1 = µ (p1 − p2) ,

∂α1ρ1
∂t

+ ∇ · (α1ρ1u) = 0,
∂α2ρ2
∂t

+ ∇ · (α2ρ2u) = 0,
∂ρu
∂t

+ ∇ ·
(
ρu⊗ u + pI + Ω

)
= 0,

∂α1ρ1e1
∂t

+ ∇ · (α1ρ1e1u) + α1p1∇ · u = −µpI (p1 − p2) ,
∂α2ρ2e2

∂t
+ ∇ · (α2ρ2e2u) + α2p2∇ · u = µpI (p1 − p2) ,

∂c
∂t

+ u ·∇c = 0,

(6)

where αk, ρk, ek and pk are the volume fraction, the density, the internal energy and the
pressure of phase k, and each fluid is governed by its own equation of state (EOS) ek =
ek (ρk, pk). ρ, p and u are the mixture variables for density, pressure and velocity. Concerning

the surface-tension terms, σ is the surface-tension coefficient, c is a color function and Ω is
the capillary tensor given by:

Ω = −σ
(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
.

µ is the pressure relaxation coefficient, pI = z2p1+z1p2
z1+z2

(see [33] for details) and zk = ρkak is
the acoustic impedance of the phase k with ak being the speed of sound of the corresponding
phase. The mixture pressure is given by:

p = α1p1 + α2p2.

18

Due to the condition p1 6= p2 in this model, the total-energy equation of the mixture is
replaced by the internal-energy equation for each phase. Nevertheless, the mixture-total-
energy equation of the system can be written in usual form:

∂ρE + εσ
∂t

+ ∇ ·
(

(ρE + εσ + p) u + Ω · u
)

= 0, (7)

where E = e + 1
2
‖u‖2 and e are the mixture variables for total energy and internal energy.

And the capillary energy is equal to εσ = σ‖∇c‖.
The equation (7) is redundant when both phase internal-energy equations are solved,

but it will appear to be an important ingredient for numerical method to ensure the energy
conservation and to preserve a correct treatment of shock waves.

4.2. Numerical Method without AMR

Model (6) without the relaxation terms is split into two submodels. The first submodel
does not take into account the surface-tension terms which are included in the second one.
The numerical method is then presented as a 3-step method fully detailed in [38]. Each step
is successively performed in order to circumvent specific numerical problems.

• First, the hyperbolic non-equilibrium-pressure model — Model (6) without the surface-
tension and relaxation terms — is solved using a Godunov-type method. This system
describes the transport and the compression waves.

• Second, the hyperbolic surface-tension (capillary) model — Model (6) with the surface-
tension terms — is solved. A specific attention is paid to the choice of the flux terms
in order to ensure the momentum and energy conservation.

• Third, a relaxation procedure leads to the pressure equilibrium.

The unknown vector Un+1 is obtained from the initial condition Un by application of the
three successive operators according to the sequence:

Un+1 = LrelaxLcapLhyper (Un) ,

where the vector U contains the unknown quantities defined in the system:

U = [α1, α1ρ1, α2ρ2, ρu, ρv, ρw, α1ρ1e1, α2ρ2e2, c, ρE + εσ]T

This chain of operators must remain the basis of the numerical solution but required
some modification due to the AMR procedure.

4.3. Extension of the AMR algorithm for multiphase flow

The AMR algorithm presented in Section 3 is now extended to treat multiphase flow
model (6) that implies several modifications:

1. Model (6) is non-conservative. It is therefore necessary to take non-conservative terms
into account in the advancing procedure,

19

2. The global time-step of integration is slightly modified to add a cell-gradient procedure
G which computes the color-function gradients required in the surface-tension-effect
formulation. It is done before going to the higher tree level and the integration proce-
dure now reads:

I (lmin) = A (lmin) I (lmin + 1)G (lmin)R (lmin) ,
I (l) = A (l) I (l + 1)A (l) I (l + 1)G (l)R (l) for l 6= (lmin, lmax) ,
I (lmax) = A (lmax)A (lmax)R (lmax) .

(8)

Thus, the sequence generated by (8) for the same precedent example (lmin = 0 and
lmax = 2) now gives:

[R (0)G (0) [R (1)G (1) [R (2)A (2)A (2)]

A (1) [R (2)A (2)A (2)] A (1)] A (0)].

3. Model (6) also contains relaxation terms that implies modification in the algorithm.

In the following part, the modification of the advancing procedure as well as the cell-
gradient and relaxation procedures specific to multiphase compressible flows with surface
tension are detailed.

4.3.1. Cell-gradient procedure

The different cell gradients which could be required to treat a specific physic, e.g. the
surface tension, are compute via the cell-gradient procedure G. When the computation of
the surface-tension effects is done, the flux computation on a face uses the color-function
cell gradients of each neighboring cell of this face. To avoid unnecessary computations, the
G procedure is proceeded in a loop going through each cell, and not when the computation
of the fluxes are involved. Indeed, in the case where one of the two neighboring cells of
a face has a smaller level than this face, the cell gradient in this cell has to be computed
before the flux computation. But, in the recursive integration procedure (Equation (8)), if
the cell-gradient procedure G (lmin) is not done before going to the integration procedure of
the higher level I (l + 1), the needed cell gradient for the flux computation of the advancing
procedure of this higher level A (l + 1) would not have been computed. So, the procedure is
done at the level l before going to the recursive integration procedure I (l + 1) and it follows
the pseudocode:

if (l < lmax) {
for (leaf cells i of level l) {

Compute the color-function gradients Gi (U
n
i);

}
}

20

4.3.2. Advancing procedure

For the solution of Model (6), the advancing procedure has to take into account three
additional points: One is related to the additional physics, another for the relaxation step
and a last one for non-conservative terms. Source terms are not considered in the model.
If there were some, they would have been added in the following pseudocode between the
point 2 and 3, and under the same formulation than in the pseudocode of Section 3.3. The
pseudocode of the A (l) procedure is:

1. — Hyperbolic computation —

for (leaf faces f of level l) {
Compute the hyperbolic flux tensor F

?

f = F
?

f (Un
L,U

n
R) and its corresponding

contact-discontinuity velocity u?f ;

F̃L = F̃L − ldiff,LLf

(
F
?

f + Hnc,f (Un
L) u?f

)
· nf ;

F̃R = F̃R + ldiff,RLf

(
F
?

f + Hnc,f (Un
R) u?f

)
· nf ;

}
for (leaf cells i of level l) {

U1
i = Un

i + ∆t
Vi

F̃i;

F̃i = 0;
}

2. — Surface-tension computation —

for (leaf cells i of level l) {
Compute the color-function gradients Gi = Gi (U

1
i);

}
for (leaf faces f of level l) {

Compute the capillary flux tensor F
cap

f (U1
L,U

1
R,GL,GR);

F̃L = F̃L − ldiff,LLfF
cap

f · nf ;
F̃R = F̃R + ldiff,RLfF

cap

f · nf ;
}

for (leaf cells i of level l) {
U2
i = U1

i + ∆t
Vi

F̃i;

F̃i = 0;
}

3. — Relaxation computation —

for (leaf cells i of level l) {
Compute the relaxation procedure to obtain Un+1

i from U2
i ;

}

4. — Averaging of the child cells for each parent cells —

21

for (parent cells i of level l) {
for (child cells j of parent cell i) {

F̃i = F̃i + Un+1
j ;

}
F̃i = F̃i/ Number of child cells;

Compute the relaxation procedure to obtain Un+1
i from F̃i;

F̃i = 0;
}

where the hyperbolic flux tensor F
?

=
(
F?
x,F

?
y,F

?
z

)
, the non-conservative vector Hnc and the

capillary flux tensor F
cap

=
(
Fcap
x ,Fcap

y ,Fcap
z

)
are given in a Cartesian expression by:

F?
x (U) =

α1u
α1ρ1u
α2ρ2u
ρu2 + p
ρuv
ρuw

α1ρ1e1u
α2ρ2e2u
cu

(ρE + p)u

F?
y (U) =

α1v
α1ρ1v
α2ρ2v
ρuv

ρv2 + p
ρvw

α1ρ1e1v
α2ρ2e2v
cv

(ρE + p) v

F?
z (U) =

α1w
α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + p
α1ρ1e1w
α2ρ2e2w
cw

(ρE + p)w

Fcap
x (U) =

0
0
0

Ω11

Ω12

Ω13

0
0
0

εσu+ Ω11u+ Ω12v + Ω13w

Fcap
y (U) =

0
0
0

Ω21

Ω22

Ω23

0
0
0

εσu+ Ω21u+ Ω22v + Ω23w

22

Fcap
z (U) =

0
0
0

Ω31

Ω32

Ω33

0
0
0

εσu+ Ω31u+ Ω32v + Ω33w

Hnc =

−α1

0
0
0
0
0

α1p1

α2p2

−c
0

4.3.3. Relaxation procedure

The relaxation procedure is present in two locations of the multiphase AMR algorithm,
i.e., at the end of each time step (reference to the relaxation computation in point 3 of the
advancing procedure Section 4.3.2) and in the unrefinement procedure (see next paragraph).
This relaxation procedure is fully detailed in [36] and its aim is to take into account the
mechanical equilibrium via pressure relaxation and its respective impact on the volume frac-
tion and density of each phase. If pressure relaxation is activated, a mechanical-equilibrium
model is solved using the pressure-disequilibrium model (6) (see [38] for details).

When cells are joined during an unrefinement procedure, an averaging procedure has to
be performed before removing child cells (see point 4 of Section 3.4.3). When dealing with a
multiphase model as Model (6), a supplementary relaxation procedure also has to be added
to keep thermodynamical consistency in mixture regions. The point 4 of Section 3.4.3 is
then replaced by the pseudocode:

if (l < lmax) {
for (split cells i of level l) {

if (ξ < ξjoin & level of each neighboring cell 6 l + 1 & child cells are not split) {
Cell i is unrefined with children averaging and relaxation procedure to
overwrite the values of cell i;
}

}
}

5. Numerical results

The interests of the new AMR method to solve multiphase compressible flows are pre-
sented through 5 typical configurations involving compressible flows of water and air: Trans-
port, shock tube, surface-tension flow, cavitation and water-droplet atomization in 1D and

23

3D. Each test is performed with quantitative comparisons regarding exact solutions or re-
sults using non-AMR method and has been carefully chosen to highlight a particular aspect
of the method:

• 1D transport test: A very simple test of motion of a contact discontinuity between
two gases. This test proposes a deep discussion about the influence of the refinement
criteria on AMR results.

• 1D liquid/gas shock tube: This is a typical test showing that the method is efficient
and provides physically good results for multiphase compressible flows. Exact solutions
are available for such test that shows an interface between liquid and gas (large density
ratio), a shock wave and strong rarefaction waves.

• 3D surface-tension test: This is a typical example that uses the model of Schmidmayer
et al. [38] presented in Section 4.3.

• 3D cavitation test (parallel scaling test): The possibilities of the method and its effi-
ciency on parallel architecture are study in this test.

• 3D water-droplet atomization: This test shows the method possibilities to treat a real
application.

All computational results are obtained using the open-source code ECOGEN [37] where
this new AMR method is implemented. The flow solver is based on a MUSCL-like scheme
(second-order in space and time) and the Harten-Lax-van Leer Contact (HLLC) approximate
Riemann solver [17, 36]. Note that for the second-order in space, the scheme requires slopes
that are determined at faces. At the coarse/fine boundaries, the slopes of the child faces of
the same parent face are arithmetically averaged to obtain a unique slope used on the coarse
side. The equation of state (EOS) for the air obeys to the ideal-gas law:

pair = (γair − 1) ρaireair,

with γair = 1.4. The water obeys the stiffened-gas EOS:

pwater = (γwater − 1) ρwaterewater − γwaterp∞,water,

where the stiffened-gas-EOS parameters are γwater = 4.4 and p∞,water = 6.108 Pa. For details
about the thermodynamic closure and EOS-parameter determination, one can refer to [21].

5.1. 1D transport test

The goal of the first test is to show the influence of the different criteria of refinement in
comparison to a fully-refined, non-AMR mesh on a very simple 1D transport test case. To
avoid any potential complex interaction with a multiphase model, this first test is done for
a single-phase flow governed by Euler equations. Note that for equivalent comparisons, the
cell size for the non-AMR mesh is the same than for the cells at the highest level (lmax) of
the AMR method.

24

The initial condition consists in a segment of air at high density (ρdiscontinuity = 10 kg.m−3)
while the surrounding air is at lower density (ρenvironment = 1 kg.m−3). The flow velocity in
the whole domain is set to u = 50 m.s−1, the pressure is uniform and the Neumann boundary
condition is used. The center of the high-density segment is initially set at the coordinate
0.3 m and has a length of 0.2 m. The simulation time is t = 8 ms. Only the density profile
is presented since the pressure and the velocity remain uniforms.

Concerning the AMR method, 4 refinement levels (lmax = 4) are involved which means
there are 5 levels in total including the initial one. The mesh is initialized with N = 10
cells and then the corresponding number of cells for a full refinement is Nx2lmax = 160. The
choice of the refinement criteria is one of the most difficult part in an AMR method and it is
completely case-dependent. The gradient refinement criterion in this first test is obviously
based on the density variation, then, the analysis is restricted to other important parameters
involved in the refinement criterion (ε, ξsplit and ξjoin)

The information concerning the AMR data is given in Table 2 for 4 different sets of AMR
criterion values.

Test case Initial number lmax Equivalent mesh ε ξsplit ξjoin Max number of
of cells cells involved

Case 1 10 4 160 0.1 0.5 0.5 50
Case 2 10 4 160 0.1 0.5 0.1 61
Case 3 10 4 160 0.1 0.1 0.1 73
Case 4 10 4 160 1 0.1 0.1 56

Table 2: AMR data for the 1D transport test case using the Euler model.

Figure 6 shows the results obtained with the different criteria of Table 2. The initialization
using AMR method is shown and is identical for each test case. The non-AMR result is also
shown but is partially hidden by the AMR result of the third test (Case 3) since this last
gives as good result as the non-AMR case.

On the left image of Figure 6, results using three combinations of ξsplit and ξjoin are
compared:

• One can observe the difference concerning the shape of the results for the tests Case 1,
where ξsplit = ξjoin = 0.5, and Case 2, with ξsplit = 0.5 and ξjoin = 0.1. Note for the case
when ξsplit and ξjoin are equal, the diffusion of the variable ξ plays the role of a buffer
which indirectly avoids most of the effects of refinement-unrefinement of the cells at
very close times. The result with a lower ξjoin is closer to the non-AMR one at the
head of this heaviside function. At the rear, the results are similar between the two
AMR tests and they have a lower density than the non-AMR result. In the two cases,
the matching with the non-AMR result is better at the head of the discontinuity. One
can conclude that the refinement and unrefinement processes give better results in the
upwind direction and that having similar values of the criteria yield to better results
in regards to symmetrical aspect. In the following tests, to limit this non-symmetrical
aspect, the values of those two criteria are always taken equals. One can also note that

25

the maximum number of cells involved is higher in the second test case than in the
first one (see Table 2) because its joining criterion is lower.

• In the case where the two criteria are taken with a lower value (ξsplit = ξjoin = 0.1), the
result (Case 3) is in better agreement with the non-AMR result, not only at the head
of the discontinuity but also at the rear. Indeed, the values of these criteria indirectly
give the number of refined cells around a detected discontinuity (detected through the
gradient-criterion limited value ε). The lower the values of ξsplit and ξjoin, the greater
the number of refined cells around the discontinuity.

The results on the right image of Figure 6 shows the importance of the gradient-criterion
limited value ε with the comparison between Cases 3 and 4 where ε = 0.1 and ε = 1,
respectively. The smaller the criterion value, the closer the result is to the non-AMR method.
However, as shown in Table 2 with the maximum number of cells involved, it is important to
note that this value has to be well chosen, not only to be close to the equivalent non-AMR
solution, but also to not refine all the mesh and thus guarantee computational efficiency.
Furthermore, this criterion compares the normalized variation of the chosen physical variable,
here density, with the value of ε (Equation (4)). Because it is normalized with the minimum
density of the cell where the calculation is done or of its neighboring cells, plus because the
absolute numerical diffusion is the same on the two sides of the discontinuity, the normalized
variation is higher on the side of the lower density and then this side is more refined. Thus,
the head of the heaviside discontinuity propagates through a mesh containing more cells at
the highest level than at the rear of the discontinuity, and it explains the non-symmetrical
aspect that is clearly observable for high values of ε.

Figure 6: Density ρ along the x-direction for the 1D transport test case using the Euler model. Initialization
setup (t = 0) is shown using the AMR method and results are given for different test cases: One non-AMR
and four AMR with different sets of AMR criteria.

The variation of the initial number of cells and the number of levels for a constant
equivalent non-AMR mesh is not shown here because it leads to close results, even if the

26

total number of cells involved are different. Then, having the lowest initial number of cells
with the highest number of refinement levels seems the best option since the results are
similar and the computational time should be lower. “Should be” because of the balance
between the computational time lost in the recursive integration and refinement procedures
with a high number of levels and the gain between the computation of two different initial
meshes. Moreover, using high-order methods reduce the number of cells involved in the
computation due to the sharper discontinuities. This last point partially counterbalances
the additional computational time involved by these high-order methods.

In the following, the impact of the criteria is no longer shown but it is important to
keep in mind that this choice is crucial to obtain good results and simultaneously guarantee
computational efficiency.

5.2. Liquid/gas shock tube

The shock-tube test for multiphase flow is the flow generated by the initial contact of
a high and a low-pressure chamber. The high-pressure chamber is filled with water at the
pressure p = 1.109 Pa and with a density of ρ = 1, 000 kg.m−3. In the low-pressure chamber,
there is air with a pressure of p = 1.105 Pa and a density of ρ = 50 kg.m−3. In both
chambers, the initial fluid velocity is u = 0 m.s−1. The length of the tube is 1 m and the
initial discontinuity is located at 0.7 m with the high-pressure chamber on the left and the
low-pressure one on the right. The simulation time is tfinal = 241 µs.

In the shock-tube test, because of the physics involved, the mixture-density and mixture-
pressure variations are chosen to define the refinement criteria. The other information con-
cerning the AMR data is given in Table 3 where the equivalent mesh indicates the number
of cells of a fully-refined mesh (which also indicates the number of cells of the non-AMR
method).

Initial number lmax Equivalent ε ξsplit ξjoin Max number of
of cells mesh cells involved

10 8 2,560 0.1 0.1 0.1 210

Table 3: AMR data for the 1D shock-tube test case.

Figure 7 shows the exact solution and the simulation solution of the AMR method. A
shock is propagating from the left to the right, followed by the contact discontinuity while
the expansion waves propagate in the opposite direction. In that case, the AMR mesh
starts with 10 cells and the value of lmax is chosen equal to 8. The maximum number of
cells involved using the AMR method is equal to 210 instead of 2, 560 for the equivalent
non-AMR mesh (see Table 3).

Results analysis shows that:

• The shock wave and the contact discontinuity are in very good agreement with the
exact solution.

27

Figure 7: Density ρ along the x-direction for the 1D shock-tube test case. Exact solution and AMR result
are shown.

• Concerning the expansion waves: Even if the result is satisfactory, one can observe
that the number of cells at the head of the expansion waves (left part of the expansion
waves in the images) decreases. This point is clearly observable in Figure 8 where
the distribution of the refinement levels is shown for t = 0 and t = tfinal. The latter
corresponds to the result shown in Figure 7. Initially, the mesh is only fully refined
around the discontinuity (located at 0.7 m). At the end of the simulation, the mesh is
fully refined around the shock, the contact discontinuity and the tail of the expansion
waves (right part of the expansion waves in the images). In fact, due to the smooth
variation of the thermodynamic variables, it is difficult to find a good criterion to refine
the expansion waves without refining most of the domain.

Table 4 contains data to point out the ability of the AMR method to lead to a real gain
in comparison to the non-AMR method (not shown) concerning the computational time (a
CPU time ratio of 26 is reached) and the memory involved, even in 1D simulation. Note that
the recorded memory involved is only the highest memory used during the simulation for the
AMR method, this one evolves during the simulation in function of the mesh distribution.

Ratio between non-AMR and AMR
Mesh Computational Memory (highest Computational Memory

time involved for AMR) time factor factor
Non-AMR 26s 6.0Mo 26.0 2.61

AMR 1s 2.3Mo 1 1

Table 4: Performances for the different test cases of the 1D shock-tube test case.

28

Figure 8: Distribution of the refinement levels along the x-direction for the 1D shock-tube test case using
the AMR method. Initialization t = 0 and final result t = tfinal are shown. Each marker corresponds to a
cell where the physical computations occur.

5.3. 3D surface-tension test: Laplace jump

In the following 3D simulation test, a droplet of water is placed in an air environment. At
the steady state, the Laplace pressure jump must be recovered thanks to the surface tension.
The expression of the theoretical pressure jump for a sphere is:

[p] =
2σ

R
,

where [p] expresses the pressure jump between inside and outside the droplet, here pwater−pair.
For the simulation, the droplet of water is initially located at the center of a 3D domain

(0.75 m x 0.75 m x 0.75 m) filled with air (see Figure 9). To accentuate the impact of the
surface-tension force, the used stiffened-gas EOS parameters for water are γwater = 2.1 and
p∞,water = 1.106 Pa and the size of the droplet is emphasized (radius of 0.15 m) as well as
the surface-tension coefficient (σ = 800 N.m−1). The pressure initially is the same in each
fluid and is equal to p = 1.105 Pa, the velocity is null (u = 0 m.s−1), the densities are
ρair = 1 kg.m−3 in air and ρwater = 1, 000 kg.m−3 in water, and an outgoing pressure waves
boundary condition is used. The simulation time to obtain a converged result is t = 0.59 s.

The information concerning the AMR data is given in Table 5. To correctly treat surface
tension, only the thickness and the curvature of the interface are important. Thus, the
gradient refinement criterion is only based on the volume-fraction variation. Moreover, the
diffusion is accentuated when dealing with higher dimensions and it also directly impacts
the smoothing of the ξ variable. Thus, the ξ criteria are taking lower than in the 1D case,
i.e., ξsplit = 0.02 and ξjoin = 0.02.

29

Figure 9: 2D sketch of the initial conditions for the 3D simulation of a liquid droplet placed in air.

For this test, only the AMR method was computed due to the too long computation of a
non-AMR method in 3D. As shown in Table 5, the number of cells that involves a non-AMR
computation is of 4, 096, 000 cells while the AMR one only involves a maximum of 267, 224
cells, and this last one already took more than 16 days (on one core). Indeed, the time step
in compressible flows is governed by wave speeds and, here, it is around ∆t = 1.5x10−6 s. To
reach the steady state (t = 0.59 s), 3.93x105 time steps are therefore necessary. Moreover,
even if it is not shown here, waves induced by the computation of surface tension are coming
from the interface locations at the beginning of the simulation. These waves slowly decrease
and disappear while reaching the steady state. In the case of the AMR method, the waves
are smoothed inside and outside the droplet because of the coarser mesh and thus, less
oscillations occur than with the fully non-AMR mesh. It results that the AMR method
accelerates the convergence of the simulation to a steady state in comparison to non-AMR
method.

Initial number lmax Equivalent ε ξsplit ξjoin Max number of Computational
of cells mesh cells involved time

20x20x20 3 4,096,000 0.1 0.02 0.02 267,224 16d 21h 53m

Table 5: AMR data for the 3D surface-tension test case. The simulation was performed on one core.

The theoretical pressure jump of Laplace for this test case is [p] = 10720 Pa and it is well
recovered in the 3D simulation when using the AMR method as shown in Figures 10 and 11.

It is also interesting to compare the computational time spent to manipulate the tree
structures of the AMR method to the time spent to update the solution. In this simulation,
at the final time of computation, less than 5% of the computational time was devoted by
the algorithm to manage AMR. This computational time includes smoothing of refinement
indicator, refinement and unrefinement of the mesh.

30

Figure 10: Two different cut views of the the 3D surface-tension test case. Pressure p is shown for the
converged state.

Figure 11: Pressure p at the converged state for the 3D surface-tension test case. Theoretical and simulation
results are shown. The converged time is t = 0.59 s.

5.4. Parallel scaling on a 3D cavitation test case

The ability of the method on parallel scaling is presented in this section. Note that
adaptive parallel load balancing has not been implemented yet in the current version of the
code.

Collapses of three consecutive air bubbles induced by a shock wave in water is consid-
ered. The spherical air bubbles are initially at equilibrium in a water environment around
atmospheric state. The initial diameter of the bubbles is D = 1 mm and the bubbles are
separated by h = 1.5 mm. The collapses are initiated by a shock wave travelling from the

31

 Ambient water

 Air

 Shocked
 water

 0.5R mm=

 1.5h mm= h

Figure 12: Sketch of the initialization of the cavitation test.

left to the right (see Figure 12 for initialization sketch). The simulation time is tfinal = 10 µs
and the surface-tension effects are neglected. The initial densities, pressures and velocities
in the x-direction are:

• Shocked water: p = 500.105 Pa, ρ = 1, 018.3 kg.m−3 and u = 29.95 m.s−1,

• Ambient: p = 105 Pa, ρwater = 1, 000 kg.m−3, ρair = 1.2 kg.m−3, and u = 0 m.s−1.

The 3D computations are performed on a quarter of the whole domain with two symmetri-
cal boundary conditions. The initial AMR mesh contains 75x25x25 computational cells in
a physical domain of 12 mm x 4 mm x 4 mm. Parallel-scaling test cases are computed for
a maximum number of refinement levels of lmax = 2 and 3, and from 6 to 192 cores. Fur-
thermore, an additional test case with lmax = 4 has been computed on 96 cores to show the
capabilities of the algorithm. The complete information concerning the AMR data is given
in Table 6. The gradient refinement criterion is based on volume-fraction, mixture-pressure
and mixture-density variations in order to catch the dynamics of interfaces as well as waves
propagating into water and air.

Initial number lmax Equivalent ε ξsplit ξjoin

of cells mesh
75x25x25 2 3.00x106 0.08 0.02 0.02
75x25x25 3 2.40x107 0.08 0.02 0.02
75x25x25 4 1.92x108 0.08 0.02 0.02

Table 6: AMR data for the cavitation test.

Figure 13 shows the computational wall time of the total simulation T and the corre-
sponding speedup function of the number of cores. The speedup is expressed as:

Speedup =
T1

Tk
C1 ,

32

where subscripts 1 and k refer to the base simulation (the one done with 6 cores) and the
current simulation, respectively, while C corresponds to the number of cores (here C1 = 6).
One can note that even if adaptive parallel load balancing is not present in the code yet,
the algorithm is performing reasonably well and the trend seems to stay approximately
constant. The speedup gives slightly better results for the cases with lmax = 2 than the ones
with lmax = 3. On average, the speedup factor when increasing the number of cores by two
is 1.75 and 1.63 for lmax = 2 and 3, respectively, instead of an ideal factor of 2. This last is
obviously explained by the lack of the previously mentioned adaptive parallel load balancing.
An almost linear speedup is thus expecting in future versions of the code or for readers who
wish to implement this AMR algorithm on an adaptive-parallel-load-balancing structure.

Figure 13: Computational wall time (left) and speedup (right) function of the number of cores for the
cavitation test and for simulations with lmax = 2 and 3.

Few typical flow results are also presented in Figure 14 for the simulation with 4 levels
of refinement. The pressure (colors) at the boundaries of the computed 3D domain and
air-water-interface isosurfaces (cyan, α = 0.5) are shown for different times. An adaptive
pressure scale is used due to the significant pressure variation during the collapses of bubbles.
Indeed, when a bubble collapses under such gradients of pressure between the pressure
behind the initial shock wave in the water and the pressure inside the bubble, the implosion
of the bubble produces a strong induced shock wave when the bubble reaches its minimum
radius. This last shock wave can lead to a significantly higher pressure pick than the pressure
produced by the initial shock. Here, the emitted shock from the collapse of the first bubble
is then going to enhance the collapses of the successive bubbles. Multiple bubble collapses
and rebounds are thus observed along with the emitted shocks.

The computational wall time of this last and significant 3D test case has been reasonably
short (44 hours and 51 minutes on 96 cores). Furthermore, over these different cavitation
simulations, a maximum of 8.65% of total computational time has been recorded to be
devoted to AMR management.

33

Figure 14: Pressure (colors) at the boundaries of the computed 3D domain and air-water-interface isosurfaces
(cyan, α = 0.5) for the cavitation test case with lmax = 4. From left to right and from top to bottom, results
at times: t = 1.25 µs, 2.5 µs, 3.75 µs, 5 µs, 6.25 µs and 8.75 µs. Adaptive pressure scale is used due to the
significant pressure variation during the collapses of bubbles.

34

5.5. 3D water-droplet atomization

The ability of the method to solve complex flows is presented in this section. Atomization
of a 3D water droplet induced by a high-speed flow is considered. A spherical water droplet
is placed in an air environment already at a shocked state. The initial diameter of the droplet
is D = 6.4 mm and the shocked state is the corresponding one behind a shock wave of Mach
number 1.3 in atmospheric air (see Figure 15 for initialization sketch). The initial densities,

 3.2R mm=
 Water

 31000 .water kg mρ −=

 Air

 3 172.10 .N mσ − −=

 51.82897.10air shockedP aP P= =

 2
water airP P

R
σ

= +

 31.82511 .air shocked kg mρ ρ −= =

 1151.821 .air shockedu u m s−= =

 10 .wateru m s−=

 Shocked
 air

Figure 15: Sketch of the initialization of the droplet-atomization test.

pressures and velocities in the x-direction are:

• Air (shocked): ρ = 1.82511 kg.m−3, p = 1.82897.105 Pa and u = 151.821 m.s−1,

• Water: ρ = 1, 000 kg.m−3, p = pair + 2σ/R, and u = 0 m.s−1.

The 3D computation is performed on a quarter of the whole domain with two symmetri-
cal boundary conditions. Shocked air is entering at the left boundary and the Newmann
boundary conditions is used elsewhere. The initial AMR mesh contains 250x50x50 compu-
tational cells in a physical domain of 250 mm x 50 mm x 50 mm. The maximum number
of refinement levels is lmax = 4 and the maximum number of cells recorded is 14.68219x106

which is only 0.57% of the cells that would have been involved with an equivalent non-AMR
mesh (2.56x109 cells). The complete information concerning the AMR data is given in Ta-
ble 7. The gradient refinement criterion is based on volume-fraction, mixture-pressure and
mixture-velocity variations.

Initial number lmax Equivalent ε ξsplit ξjoin Max number of
of cells mesh cells involved

250x50x50 4 2.56x109 0.02 0.02 0.02 14.68219x106

Table 7: AMR data for the droplet-atomization test.

35

An example of the mesh distribution is given in Figure 16 at time t = 1, 000 µs. In the
background, the wireframe is represented for the computational domain with the colors of
the mixture-density gradients (strong gradients in dark red and zero gradients in dark blue).
The front image represents three quarters of the complete domain with apparent surfaces.
One of the two observable surfaces is shown with the mesh and the other without. The
refinement at the highest level occurs around the droplet and at its rear due to the vortices
that are involved.

Figure 16: Two images with the mesh and the mixture-density gradients apparent (strong gradients in dark
red and zero gradients in dark blue) for the droplet-atomization test at time t = 1, 000µs. Refinement of the
mesh is observable around the droplet and at its rear (vortices).

Time evolution of the droplet shape is shown in Figure 17. In this figure, water droplet
density isosurfaces are represented (αwater = 0.5). The wave propagating on the sides of
the droplet due to its compression and stretching is observable. This wave is slowly making
filaments all around the droplet and holes in these filaments are appearing at 1, 000 µs,
which later will produce the reduced-size droplets. Figure 18 shows different views of the
droplet isosurface at time 1, 000 µs. αwater = 0.001 is used for the isosurfaces to show all the
filaments and potential reduced-size droplets. Those last ones can also be interpreted as the
mist of micrometer water droplets around and at the rear of the initial droplet. The mixture
velocity norm is also shown to observe the speed of the smaller waves which occur on the
surface of the droplet, and the velocity of the filaments and of the smaller droplets that are
thrown away from the initial droplet (high mixture-velocity norms in dark red and low ones

36

in dark blue). One may also notice grid imprint at very long times. The latter has been
discussed in Meng [26] and is not related to AMR. None concrete solutions are yet known
even if one should expect less grid imprint for methods with higher order of accuracy.

Figure 17: Side views of the droplet isosurface for the atomization test. Results are shown using αwater = 0.5
for the isosurfaces and at times 200 µs, 400 µs, 500 µs, 600 µs, 700 µs, 800 µs, 900 µs and 1, 000 µs from left
to right and from top to bottom.

6. Conclusion

A new Adaptive Mesh Refinement (AMR) method using dual trees for cells and cell faces
has been presented. The addition of a second face-tree structure presents the advantages
to reduce the number of operations during the time-stepping integration (neighboring-cell
searching procedure is suppressed) and to simplify the general algorithm in comparison to
a fully-threaded-tree method. It has been proven that the memory overhead involved in the
method was reasonably controlled. Quantitative data regarding computational time as well
as memory have been provided and have demonstrated that the method is efficient on single-
phase compressible flows even if it is particularly devoted to multiphase, diffuse-interface,
compressible models. Its abilities have been particularly presented through test cases that
involve flows governed by the model of Schmidmayer et al. [38] for simulating compressible
multiphase flows including surface tension.

References

[1] M. Aftosmis, J. Melton, and M.J. Berger. Adaptation and surface modeling for Cartesian
mesh methods. In AIAA Paper, 12th Computational Fluid Dynamics Conference, page
1725, 1995.

[2] M. Anderson, E.W. Hirschmann, S.L. Liebling, and D. Neilsen. Relativistic MHD with
adaptive mesh refinement. Classical and Quantum Gravity, 23(22):6503, 2006.

37

Figure 18: Different views of droplet isosurface for the atomization test. Results are shown using αwater =
0.001 for the isosurfaces and at time 1, 000 µs. Colors represents mixture-velocity norm (dark red shows
strong mixture-velocity norms and dark blue shows small ones).

[3] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 82(1):64–84, 1989.

[4] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53(3):484–512, 1984.

[5] C. Burstedde, D. Calhoun, K. Mandli, and A. R. Terrel. ForestClaw: Hybrid forest-
of-octrees AMR for hyperbolic conservation laws. Parallel Computing: Accelerating
Computational Science and Engineering (CSE), 25:253–262, 2014.

[6] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing,
33(3):1103–1133, 2011.

[7] X. Chen and V. Yang. Thickness-based adaptive mesh refinement methods for multi-
phase flow simulations with thin regions. Journal of Computational Physics, 269:22–39,
2014.

[8] W.J. Coirier. An adaptively-refined, Cartesian, cell-based scheme for the Euler and
Navier-Stokes equations. Ph.D. thesis, University of Michigan, 1994.

38

[9] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini, and
B. Van Straalen. Chombo software package for AMR applications design document.
Available at the Chombo website: http://seesar. lbl. gov/ANAG/chombo/(September
2008), 2009.

[10] M. Dumbser, O. Zanotti, A. Hidalgo, and D.S. Balsara. ADER-WENO finite volume
schemes with space-time adaptive mesh refinement. Journal of Computational Physics,
248:257–286, 2013.

[11] N. Favrie and S.L. Gavrilyuk. Diffuse interface model for compressible fluid–
compressible elastic–plastic solid interaction. Journal of Computational Physics,
231(7):2695–2723, 2012.

[12] N. Favrie and S.L. Gavrilyuk. Dynamic compaction of granular materials. Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
469(2160):20130214, 2013.

[13] N. Favrie, S.L. Gavrilyuk, and S. Ndanou. A thermodynamically compatible splitting
procedure in hyperelasticity. Journal of Computational Physics, 270:300–324, 2014.

[14] B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice,
R. Rosner, J.W. Truran, and H. Tufo. FLASH: An adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement
Series, 131(1):273, 2000.

[15] E. Han, M. Hantke, and S. Müller. Efficient and robust relaxation procedures for multi-
component mixtures including phase transition. Journal of Computational Physics,
338:217–239, 2017.

[16] S. Hank, N. Favrie, and J. Massoni. Modeling hyperelasticity in non-equilibrium mul-
tiphase flows. Journal of Computational Physics, 330:65–91, 2017.

[17] A. Harten, P.D. Lax, and B. van Leer. On upstream differencing and Godunov type
schemes for hyperbolic conservation laws. SIAM Rev., 25:33–61, 1983.

[18] R. D. Hornung and S. R. Kohn. Managing application complexity in the SAMRAI
object-oriented framework. Concurrency and computation: practice and experience,
14(5):347–368, 2002.

[19] A. Hosangadi, V. Ahuja, and S. Arunajatesan. Simulations of cavitating flows using
hybrid unstructured meshes. ASME J. Fluids Eng, 123:331–340, 2001.

[20] A.M. Khokhlov. Fully threaded tree algorithms for adaptive refinement fluid dynamics
simulations. Journal of Computational Physics, 143(2):519–543, 1998.

[21] O. Le Metayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid
and its vapor for two-phase flow models. Int. J. of Thermal Sciences, 43:265–276, 2004.

39

[22] O. Le Métayer, J. Massoni, and R. Saurel. Dynamic relaxation processes in compress-
ible multiphase flows. application to evaporation phenomena. In Esaim: Proceedings,
volume 40, pages 103–123. EDP Sciences, 2013.

[23] P. MacNeice, K. M. Olson, C. Mobarry, R. De Fainchtein, and C. Packer. PARAMESH:
A parallel adaptive mesh refinement community toolkit. Computer physics communi-
cations, 126(3):330–354, 2000.

[24] J. Massoni, R. Saurel, B. Nkonga, and R. Abgrall. Proposition de methodes et modeles
Euleriens pour les problemes a interfaces entre fluides compressibles en presence de
transfert de chaleur. Int. J. Heat and Mass Transfer, 45:1287–1307, 2002.

[25] J. Melton, M.J. Berger, M. Aftosmis, and M. Wong. 3D applications of a Cartesian grid
Euler method. In AIAA Paper, 33rd Aerospace Sciences Meeting and Exhibit, page 853,
1995.

[26] J.C. Meng. Numerical Simulations of Droplet Aerobreakup. PhD thesis, California
Institute of Technology, 2016.

[27] A. Murrone and H. Guillard. Behavior of upwind scheme in the low mach number limit:
Iii. preconditioned dissipation for a five equation two phase model. Computers & Fluids,
37(10):1209–1224, 2008.

[28] G.S.H. Pau, J.B. Bell, A.S. Almgren, K.M. Fagnan, and M.J. Lijewski. An adaptive
mesh refinement algorithm for compressible two-phase flow in porous media. Computa-
tional Geosciences, 16(3):577–592, 2012.

[29] F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier. Diffuse interface models
for high speed cavitating underwater systems. International Journal of Multiphase
Flows, 35(8):747–759, 2009.

[30] F. Petitpas, R. Saurel, E. Franquet, and A. Chinnayya. Modelling detonation waves in
condensed energetic materials: Multiphase CJ conditions and multidimensional com-
putations. Shock waves, 19(5):377–401, 2009.

[31] S. Popinet. Gerris: A tree-based adaptive solver for the incompressible Euler equations
in complex geometries. Journal of Computational Physics, 190(2):572–600, 2003.

[32] S. Popinet and G. Rickard. A tree-based solver for adaptive ocean modelling. Ocean
Modelling, 16(3):224–249, 2007.

[33] R. Saurel, S.L. Gavrilyuk, and F. Renaud. A multiphase model with internal degrees of
freedom: Application to shock-bubble interaction. Journal of Fluid Mechanics, 495:283–
321, 2003.

40

[34] R. Saurel and F. Petitpas. Introduction to diffuse interfaces and transformation fronts
modelling in compressible media. In ESAIM: Proceedings, volume 40, pages 124–143.
EDP Sciences, 2013.

[35] R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in metastable liquids:
application to cavitating and flashing flows. Journal of Fluid Mechanics, 607:313–350,
2008.

[36] R. Saurel, F. Petitpas, and R.A. Berry. Simple and efficient relaxation methods for inter-
faces separating compressible fluids, cavitating flows and shocks in multiphase mixtures.
Journal of Computational Physics, 228(5):1678–1712, 2009.

[37] K. Schmidmayer, A. Marty, F. Petitpas, and E. Daniel. ECOGEN, an open-source tool
dedicated to multiphase compressible multiphysics flows. In 53rd 3AF International
Conference on Applied Aerodynamics, 2018.

[38] K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S.L. Gavrilyuk. A model and nu-
merical method for compressible flows with capillary effects. Journal of Computational
Physics, 334:468–496, 2017.

[39] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement - A new high
resolution code called RAMSES. Astronomy & Astrophysics, 385(1):337–364, 2002.

[40] A. Tiwari, J.B. Freund, and C. Pantano. A diffuse interface model with immiscibility
preservation. Journal of Computational Physics, 252:290–309, 2013.

[41] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, and J.E. Bus-
soletti. A locally refined rectangular grid finite element method: application to compu-
tational fluid dynamics and computational physics. Journal of Computational Physics,
92(1):1–66, 1991.

[42] U. Ziegler. The NIRVANA code: Parallel computational MHD with adaptive mesh
refinement. Computer Physics Communications, 179(4):227–244, 2008.

[43] M. Zingale, A.S. Almgren, M.G. Barrios Sazo, V.E. Beckner, J.B. Bell, B. Friesen, A.M.
Jacobs, M.P. Katz, C.M. Malone, A.J. Nonaka, D.E. Willcox, and A. Zhang. Meeting
the Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro, Maestro,
and the AMReX Astrophysics Suite. In Journal of Physics: Conference Series, volume
1031, page 012024. IOP Publishing, 2018.

41

