
HAL Id: hal-01715696
https://hal.science/hal-01715696v1

Preprint submitted on 22 Feb 2018 (v1), last revised 3 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified adaptive mesh refinement algorithm based on
dual cell-boundary trees for multiphase compressible

flows
Kevin Schmidmayer, Fabien Petitpas, Eric Daniel

To cite this version:
Kevin Schmidmayer, Fabien Petitpas, Eric Daniel. Simplified adaptive mesh refinement algorithm
based on dual cell-boundary trees for multiphase compressible flows. 2018. �hal-01715696v1�

https://hal.science/hal-01715696v1
https://hal.archives-ouvertes.fr

Simplified Adaptive Mesh Refinement algorithm based on dual

cell-boundary trees for multiphase compressible flows

Kevin Schmidmayera,∗, Fabien Petitpasa, Eric Daniela

aAix Marseille Univ, CNRS, IUSTI, Marseille, France

Abstract

An adaptive mesh refinement method is proposed for finite volume framework. The novelty
of the method resides in using a dual data structure with two trees: a classical one for the
computational cells and an extra one dedicated to computational cells boundaries. This new
dual structure makes easier the method to implement as it simplifies algorithm. It results
in an efficient adaptive mesh refinement method that improves computational efficiency
while preserving an acceptable memory cost. This new AMR method is then applied on
compressible multiphase flows in the framework of diffuse interface methods. Efficiency
of the method is demonstrated thanks to computational results for different applications:
transport, shock tube, capillary flows and shock/droplet interaction, in 1D, 2D and 3D.
The test cases are performed with quantitative comparisons regarding non-AMR methods
to analyze benefits.

Keywords: adaptive mesh refinement, diffuse interface, multiphase flow, shock wave

1. Introduction

In computational fluids dynamics, the accuracy of results is conditioned by the refine-
ment level of the computational grid. Nevertheless, the finer is the grid, the more expensive
is the computational cost regarding CPU time as well as memory. For the computations of
steady flows, the use of unstructured grid and mesh refinement technics at well-defined loca-
tions can lead to very accurate results (see for example simulations around hydrofoils [12]).
For the computations of strongly unsteady flows with shock waves or traveling interfaces,
achievement of accurate results is conditioned by the use of a very small cell size. Thus, a
large amount of computational time is wasted to compute solutions in cells where almost
nothing occurs (example in Figure 1).

When dealing with multiphase flows, especially in the framework of diffuse interface
methods [23], the previous remark is amplified by the complexity of the model:

∗Corresponding author
Email addresses: kevin.schmidmayer@gmail.com (Kevin Schmidmayer),

fabien.petitpas@univ-amu.fr (Fabien Petitpas), eric.daniel@univ-amu.fr (Eric Daniel)

Preprint submitted to Elsevier February 22, 2018

Figure 1: Sketch of a choc-droplet interaction where two parts are distinguished: one where the mesh has to
be refined and one where it does not.

• an important number of evolution equations may be solved (Hank et al. [11], Petitpas
et al. [20]),

• iterative solvers for relaxation procedure may also be required (Saurel et al. [25], Han
et al. [10]),

• expensive Riemann solvers are sometimes needed to account for real material effects
(Le Métayer et al. [14]).

On the strength of these observations, the use of Adaptive Mesh Refinement (AMR) technics
represents an interesting option to reduce the CPU time cost when dealing with complex
multiphase compressible flows. This is the aim of this study.

When AMR is embedded in a computational fluid dynamics code, the computational
grid is dynamically adapted in order to be refined where it is necessary and to maintain
a coarse grid elsewhere. These AMR methods are suitable and already massively used for
many applications:

• magnetohydrodynamics (Anderson et al. [2], Dumbser et al. [7]),

• uncompressible multiphase flows as for the droplet motions in a microchannel and the
atomization of liquid impinging jets (Chen and Yang [5], Popinet and Rickard [21]),

• compressible flows in porous media as for the leakage of gas from a liquefied petroleum
gas storage cavern (Pau et al.[18]).

2

The analysis of literature shows that there are mainly two existing approaches in the
context of finite volume scheme:

• The first one is an approach where cells are organized in Cartesian grids (Berger and
Oliger [4], Berger and Colella [3]). The entire computational domain is represented by
a coarse base grid and when more resolution is required, finer and nested grids are laid
over coarser grids. This defines a grid hierarchy from the coarsest to the most refined
grid that may be organized as a “grid tree”. The grid generation or destruction occurs
when the local relative error between calculations done on the current grid and a finer
or a coarser grid, respectively, passes a given criterion. The main advantage of this
approach is that the flow solver is independent of the grid, thus the same flow solver can
be applied whatever the grid considered. That also means that any single-grid fluid
flow solver can be used without important modifications for AMR. The drawbacks
is due to the rigid structure of the grid. It induces that the simulation of complex
flows requires the covering with an important number of grids and several grids of the
same level of refinement may then overlap. A duplication of cells is inherit from this
overlapping and also a substantial number of new computational cells can be wasted
in smooth flow regions. Besides, the periodic rebuilding of the entire grid hierarchy is
required when the flow evolves with time.

• In the second approach, the refinement occurs on an individual cell and this directly
defines a tree of cells (cells tree method) (Young et al. [27]). Each cell can be refined
or unrefined independently of others. Moreover, the mesh refinement occurs locally
where it is necessary, then at every level of the tree, the mesh may have a non-uniform
shape. The main advantage of the cells tree approach is the flexibility in refinement
and unrefinement. This flexibility is paid by the fact that standard grid-based solvers
cannot be used directly on a tree. Fluxes calculation and time stepping strategy on a
tree is different from that on a grid, that means that the flow solver is slightly dependent
on the level computed. In addition, an access to neighboring cells is more difficult in a
tree than in an array and scanning the tree to access the nearest neighbors is a difficult
procedure to vectorize and parallelize. Moreover, the memory cost oscillates between
an additional or a lesser cost than the first approach because there are fewer cells to
be stored but a tree generates an additional cost to be maintained.

In Khokhlov [13], the use of a different structure of data allowed to circumvent these
two last problems. The structure of Khokhlov involves a fully threaded tree where
cells have not only knowledge of their child cells but also of their parent cells and
neighboring cells. This thread provides an efficient parallel access to information on a
tree. Khokhlov also improves the memory cost for maintaining the tree by regrouping
cells in a so-called ”oct” structure. Besides, the refinement criterion is based on physical
variations between neighboring cells. This dynamical refinement is generally ensured
by tracking discontinuities (as shock waves or contact discontinuities). The refinement
evolves with the flow features which makes it more suitable for resolution of highly
dynamical flows.

3

In this work, we retain the second approach for its ability to easily adapt the mesh
for unsteady flows. Thus, a modified version of Khokhlov’s method is presented. It is
important to mention that the original method was developed in the late nineties and the
goal was to compute single phase compressible flows using AMR method with the best
performance concerning the efficiency and the memory. Even if the development of an
efficient algorithm is still a key problem nowadays, the constraints on memory are not as
crucial as they were. Today’s problems are linked to multiphysics complex flows (including
several phases, solids, phase transition, chemical reactions, viscosity, capillarity...) that are
well described by complex mathematical models for which the computational cost represents
the limitation, much more than memory. That is why two specificities of Khokhlov method
have to be pointed out:

• The first one is that, the fully threaded tree involves a lot a operations to find the neigh-
boring cells. This becomes a critical point when the algorithm is used to solve complex
model coupled with high-order method where the procedure to find the neighbors oc-
curs many times (flux calculations at each step of the high-order method, gradient
calculations for numerical purpose or physical description, etc.).

• The second one is that if the AMR method is implemented in a code where the mesh
can be either Cartesian or not, finding the neighbors could involve many complex op-
erations.

The new method we propose has two advantages: the general AMR algorithm is first
simple and also cell neighboring searching is improved. The key point is the role plays by cells
boundaries (geometrical contour): obviously for the flux calculations and also because these
boundaries naturally define neighbors between two cells. This new method extends Khovhlov
approach on two points: the cell tree structure is slightly modified and a second tree is used
to store some cell boundaries information. Addition of this second tree boundaries structure
presents the advantages to reduce the number of operations during the time step integration
and to simplify the algorithm. The drawback is to reasonably increase the memory involved.
Reasonably because the number of additional information stored for each cell boundary is
relatively small in comparison to what is needed in a cell.

The paper is then organized as follows: First, the extended AMR data structure is de-
scribed. Second, the general AMR algorithm in the context of finite volume scheme (coupled
with Riemann solvers for fluxes calculations) is presented. The time-stepping strategy, the
advancing and the mesh refinement procedures are detailed. Third, the extension of the
AMR method to the multiphase flow model of Schmidmayer et al. [26] is presented. Its
application on different tests - transport, shock tube, capillary flow and water droplet at-
omization in 1D, 2D and 3D - is performed with quantitative comparisons regarding exact
solutions or non-AMR method results in order to analyze the benefit of this new method.

4

2. Description of AMR data structure

Let us first recall the data structure of AMR method based on cells trees. A computa-
tional cell is represented by a node at a given level in a tree. Each node of a tree is linked
thanks to edges to:

• A parent node representing a computational cell at lower level. The root of a tree is a
particular node with no parent.

• A given number of child nodes representing computational cells at higher level. The
number of child nodes depends on the geometry and the dimension of the problem. A
leaf of a tree is a particular node with no child and the calculation of physical quantities
(not linked to AMR) only occur on a node that is a leaf.

Each cell in AMR method may be split in a given number of child cells. An example of
possible splitting in 1D/2D/3D Cartesian grid is shown on the right part of Figure 2 and an
example of a tree representing data for a 1D AMR method is shown in on its left part.

Figure 2: Figure split in two parts. On the left, an example of a tree representing the data structure for a
1D AMR method. “l” accounts for the level in the tree. On the right, possible cell splitting. A 1D, 2D and
3D cell will give birth in a Cartesian grid to 2, 4 and 8 child cells, respectively.

2.1. Recall of Khokhlov method [13]: FTT

The tree structure is the most obvious structure to define and optimize the cells data
storage in an AMR method. Its flexibility allows refinement and unrefinement via destruction
and reconstruction of chosen nodes in the tree. The cornerstone of such method resides in
the chosen way to browse cells in the tree that can be a complex and expensive operation

5

depending on the links between cells. In its simplest version, a node can only be accessed
from browsing the tree from its root. One can easily understand that the simple operation
that consists in locating neighbors of a given cell (for example to calculate inter-cell fluxes)
rapidly becomes a source of computational waste. An alternative solution is the use of a
so called Fully Threaded Tree (FTT) where each nodes has the knowledge of its parent
node, child nodes and neighbors nodes. This improvement renders easy the browsing of the
tree in every direction (from parent to child, child to parent and even between neighbors).
This ability to browse the tree in all directions has nevertheless the drawback to increase
considerably the amount of memory (by addition of multiple pointers acting as threads).
It also renders maintenance operations on the tree more complicated when refinement and
unrefinement occur.

Khokhlov proposes to group cells into octs in order to limit extra storage due to links
between nodes and to limit maintenance operations costs. Each oct contains 8 organized
cells (in 3D), a pointer to its parent cell at lower level and 6 pointers to parents cells of
neighboring octs. Each cell contains physical flow variables and a pointer to a child oct
at higher level. Most of the pointers, as well as the geometrical properties (level, position,
size, etc.), are thus grouped to be stored into octs rather than in cells. Consequently, the
memory costs is significantly reduced (especially in 3D) in comparison to a FTT simple
version without oct structure.

The memory cost saving is undeniable when dealing with Euler equations, it is more
disputable when dealing with complex models traducing multiphysics problems. In such ap-
plications of AMR, the ratio between physical flow variables and geometrical/AMR variables
increases drastically. Khokhlov explains that the cost of his oct-FTT AMR version is 2 words
of memory per cell instead of 17 words/cell for a non oct version of FTT. These additional
memory costs have to be compared with physical flow variables that are necessary to store
(5 words/cell for Euler equations but 6N words/cell for a general N-phase flow without extra
physics).

In addition to the ratio of memory cost saving that decreases when the model, and then
the physic, becomes complicated, another drawback of oct-trees is that the computational
time associated with computing cell pointers from oct pointers and oct pointers from cell
pointers, or in other words extra time needed to look for neighbors cells, is estimated to about
20% when computing single phase flow with a first order scheme. Here again, when complex
models coupled with high-order numerical solvers are of interest (involves neighborhood
seeking for each flux calculation of the high order scheme, for each gradient calculation,
etc.), this extra computational time involved by the structure may be no longer negligible.

2.2. Basic idea of the new AMR data structure: The extra cells boundaries trees

An efficient way to avoid increasing CPU time and difficulty in searching neighbors in
parallel computations is to take benefit of information related to cells boundaries. In the
finite volume framework, a cell boundary may be defined as a geometrical contour between
two computational cells that is the seat of fluxes calculations. A boundary may be defined
as an object that stores two pointers, one for a “left” cell and another one for a “right” cell.
Availability of such objects prevents from neighbors seeking when solving inter-cell fluxes in

6

a computational CFD code. In a more general context of unstructured grids, it also prevents
from using a connectivity table. It implies that finite volume algorithms using such data
structure can be easily used whatever the grid structure is.

In addition to cells trees, we thus propose to define boundaries trees. In these boundaries
trees, cells boundaries are represented by nodes that are linked to other boundary nodes by
edges. The duality of cells tree and boundaries trees represents a complex data structure
that greatly simplifies the algorithm and reduces computational costs. Up to this remark,
the new data structure is composed of:

• cells that are organized in tree structures (oct tree or not). They may also be linked
to boundaries.

• boundaries that are also organized in trees structures. They can also be grouped in
quad tree to mimic Khokhlov’s oct cell trees structures (a boundary will be split in up
to 4 child boundaries in 3D).

Boundaries trees in the AMR method implies additional memory costs. Nevertheless, with
this new data structure, calculations at boundaries (fluxes, gradients, etc.) are naturally
accessed without seeking for neighbors. This important point renders the method easily
extensible to unstructured meshes. Moreover, the oct structure used in Khokhlov’s work can
be kept to regroup information regarding geometrical properties in the Cartesian framework.

2.3. Detailed description of trees

For convenience in presentation, data structure is presented for non-oct trees. The alert
reader will easily extend the method to oct-trees if needed.

The main tree of the method is quite similar to those of a FTT classical method. The
computational cells constitute the nodes of the cells tree. In particular they contain the
physical flow properties (depending on the flow model under interest) as well as geometrical
data. These cells nodes also includes additional data specific to the AMR method:

* an integer for its level (0 for the root, > 0 otherwise),

* a pointer for each of its child cells nodes (up to 8 in Cartesian 3D),

* an additional pointer for each of its boundary (up to 6 in Cartesian 3D),

* a pointer for root of each new internal boundary tree (up to 12 in Cartesian 3D). The
particular case of the internal boundaries is presented in the following.

Compared to a classical FTT method, the novelty resides in the pointers to boundaries that
represent an additive memory cost of maximum 11 pointers/cell in 3D (12 new pointers for
internal boundaries, 1 less because pointer to parent cell is no longer needed in the method).
Up to this point, a given cell can be either split or not (if its pointers to child cells nodes are
null).

The second novel data structure is represented by new boundaries trees. A cell boundary
is a new object that includes two cell pointers (one for the left cell and one for the right

7

cell). The interest of the presence of such objects in a finite volume method resides in a
better access to fluxes calculation between two computational cells. In the present AMR
method, cells boundaries constitute nodes of new boundaries trees. These boundaries nodes
then includes additional data specific to the AMR method:

* an integer for its level,

* a pointer to each of its child boundaries nodes (up to 4 in 3D).

This new data structure possesses some particular specificity. Indeed, let us consider the
example of a 2D Cartesian cell represented in Figure 3. This cell is surrounded by 4 bound-
aries (blue edges). Refinement of this cell will give birth to 4 new computational cells and
12 new boundaries. Among these 12 boundaries, 8 of them are originated from parent cell’s
boundaries splitting (dashed red edges) and appear naturally as children of parent bound-
aries. Also, 4 new boundaries appear inside the parent cell as the result of cell’s splitting and
are considered as root of new boundaries trees (dashed point green edges). Consequently,
splitting of a given cell will act on boundaries trees in two ways:

• It will increase the depth of already existing trees. “External” boundaries of the parent
cell, that were leaves before splitting, will become parent of new boundaries (up to 4
in 3D), the last ones are thus leaves.

• In the same time, it will also generate new “internal” boundaries that are roots (and
leaves) of new boundaries trees.

Figure 3: 2D example of cells tree and boundaries trees duality.

8

A 2D example of the links between cells and boundaries trees is illustrated in Figure 4.
In this example, 3 levels are present. The figure is decomposed in three parts:

• The top part shows 2 successive refinements occurring from a given level-0 cell. The
following cells and boundaries trees correspond to this particular splitting.

• The middle part shows the corresponding cells tree represented by square nodes and
composed with 4 level-1 cells and 4 level-2 cells.

• The bottom part shows the corresponding boundaries trees represented by circles
nodes. 4 level-0 boundaries trees, 12 level-1 boundaries (including 4 new level-1 bound-
aries trees) and 12 level-2 boundaries (including 4 new level-2 boundaries trees) are
generated.

The adopted numeration is ‘XYZ’ with X being C (for cell) or B (for boundary), Y corre-
sponds to level number (here from 0 to 2) and Z is the letter corresponding to the entity (A
to N in the present case). Pointers between cells in cell tree are shown with black lines as well
as pointers between boundaries in boundaries trees. In order to facilitate comprehension, the
pointers between cells and boundaries are non exhaustively presented but only some typical
examples:

• In yellow lines, cell C0A will point to the 4 boundaries B0A, B0B, B0C and B0D of
level 0. Such pointers are present for each cell and are needed for gradient calculations.

• In dashed point green lines, are represented pointers from a boundary of level 1 (B1N)
to two level-1 cells (C1C and C1D).

• In point blue lines, an example of a boundary (B2J) linked to two cells from different
levels (C1C and C2D).

• The last example in dashed red lines shows a boundary (B1A) linked to a level-1 cell
(C1A) and another cell neighbor (level-0) of cell C0A or one of her child (level-1 cell)
not shown in the figure.

This last 3 kind of links are used for fluxes calculation (only if the boundary is a leaf).
One can note that the number of boundaries may be important. Nevertheless, the bound-

aries trees reasonably increase the memory involved since they only need a few additional
pointers for each boundary. Comparison with a classical FTT structure of the required
memory is presented in Table 1. The table shows the detailed number of words for each
cell and each boundary. The total number of words reported to a cell is also given. For
a given 3D hexahedron cell, the new method requires 11 additional words. Noticing that
a boundary is common to 2 neighboring cells, a cell requires approximately 3 boundaries
(instead of 6), each of them requiring 7 words. The global over-cost of the new method is
thus 32 words/cell. This has to be compared to the memory cost for storage of geometrical
and physical variables that may represent the larger part of memory costs in a multiphase
and multiphysic computation.

9

Figure 4: 2D example of links between cells and boundaries trees. Here, some details are given for a cell and
its 2 levels of refinement. The top represents the cells appearing from the two successive refinement form
a level-0 parent cell. The middle and bottom sketches are representing the cell tree and boundaries trees,
respectively. Connections between both cells and boundaries trees are presented in some typical situations.

Saving may be done regarding memory costs by using Khokhlov-like oct tree method
for particular Cartesian grids. Indeed, it is possible to group cells in oct ([13]) as well as
boundaries, where grouping is also possible: “external” boundaries are grouped in quad and
“internal” boundaries are grouped in dodeca. This improvement in term of memory cost is
possible but complicates the AMR algorithm. We present in Table 2 these possible savings in
memory costs and the global over-cost of the new method is thus reduced to 3.75 words/cell.

10

Table 1: Memory costs comparison between classical AMR FTT method and new AMR method using
boundaries trees. For a given 3D hexahedron cell, the new method requires 11 additional words. Noticing
that a boundary is common to 2 neighboring cells, a cell requires approximately 3 boundaries (instead of 6),
each of them requiring 7 words. The global over-cost of the new method is thus 32 words/cell.

Table 2: Possible savings using oct tree for cells and quad/dodeca trees for boundaries.

However, as mentioned in 2.1, these AMR structure memory savings are balanced by
the memory needed for physical quantities as well as extra quantities stored for compu-
tational conveniences. For these reasons we decide to highlight algorithm simplicity and
computational efficiency and thus not retain the oct tree structure.

3. General AMR algorithm

3.1. Finite volume scheme for conservation laws

We consider a system of conservation laws under the following form:

∂U

∂t
+ ∇ · F (U) = S (1)

with U the conservative variable vector, F the fluxes tensor and S the source terms vector.
Integration of system 1 on a computational cell of volume Vi delimited by surfaces A of

11

normal unit vector n (a two-dimensional example is presented in Figure 5) reads:

∂

∂t

∫
Vi

UdV +

∫
A

F (U) · ndA =

∫
Vi

SdV, (2)

Figure 5: Scheme example for a 2D computational cell

The first and last terms of Eq. (2) are interpreted as the time-rate of change of the
conservative variable and source terms vectors volume average:

∂

∂t

∫
Vi

UdV = Vi
∂U

∂t
,∫

Vi

SdV = ViS.

As boundary A of Vi is the union of N straight segments [As, As+1], where AN+1 = A1

and the normal unit vector is expressed by ns, the second term of (2) becomes:∫
A

F · ndA =
N∑
s=1

∫ As+1

As

F · nsdA,

Assuming that the fluxes are constant along each segment, it becomes:∫
A

F · ndA =
N∑
s=1

LsF s · ns,

where Ls is the length of segment [As, As+1] (a surface in 3D).
After time integration, the evolution of the conservative part of system (2) is given for

cell i by the scheme:

Un+1
i = Un

i −
∆t

Vi

N∑
s=1

LsF
?

s · ns + ∆tSi, (3)

where F
?

s represents the fluxes tensor solution of the Riemann problem between left (L) and
right (R) states separated by the segment [As, As+1] with respect to normal ns.

12

3.2. Time-stepping strategy

The efficiency of an AMR method necessitates the implementation of a specific time-
stepping strategy. Following the works of Khokhlov [13], this time-stepping strategy is
based on two key points:

• Cells at different levels evolve with different time-steps according to their level of refine-
ment. In order to maintain the global time-step coherence for unsteady simulations, if
cells of level l evolve at a given time-step, cells of level l + 1 will then evolve 2 times
with a time-step 2 times smaller. It results in CPU time saving.

• This time-stepping strategy permits interleaving between time integration and tree
refinement. It results in memory save as it limit excessive buffer layer of refinement
ahead of a discontinuity [13].

The global time-step is determined using the minimum tree level where there are leaf cells
(lmin) and the CFL condition:

∆t = ∆t (lmin) = cfl
L

2lminmax (| (u + a)∗s |)

where cfl < 1 is a constant, L is the characteristic length of the coarser cells (at level l = 0)
and the maximum speed is determined going through each leaf cell boundary where u is the
fluid velocity in the corresponding face direction and a is the sound waves speed. Time-steps
at various levels are:

∆t (l) = 2lmin−l∆t.

The general integration procedure occurs at the different levels of the tree as an inter-
leaving of advances and refinements. It is expressed as a recursive procedure I(lmin) with:

I (lmin) = A (lmin) I (lmin + 1)R (lmin)
I (l) = A (l) I (l + 1)A (l) I (l + 1)R (l) , for l 6= lmin, lmax
I (lmax) = A (lmax)A (lmax)R (lmax)

(4)

where A(l) represent the advancement procedure of level l described in Section 3.3 and R(l)
is the refinement/unrefinement procedure of level l detailed in Section 3.4. All procedures
in (4) are performed from right to left, i.e., R (l) first, and A (l) last. An example of the
sequence generated by (4) could be, for lmin = 0 and lmax = 2:

[R (0) [R (1) [R (2)A (2)A (2)] A (1) [R (2)A (2)A (2)] A (1)] A (0)].

One can note that the generality of the new method in the present finite volume frame-
work simplifies the recursive integration procedure in comparaison to [13] where directional
time-step splitting is computed. Indeed, the procedure of the lower level lmin is simplified,
i.e., only one advancing procedure is undertaken, and each advancing procedure is identical
(only the referred level changes). The last one has to be compared with [13] where two

13

advancing procedures have to be undertaken, one for the sequence of XYZ one-dimensional
sweeps and one for its reversed.

Because of the recursive evolution algorithm, trees browsing will be traduce by an impor-
tant amount of test to detect cells and boundaries levels. A possibility to avoid going through
all the trees and then accelerate the procedures is to add lists for cells and boundaries and
for each level of the simulation. Then loops on cells or boundaries become straightforward
and constantly efficient.

3.3. Advancing procedure

The advancing procedure A is called at each time-step (∆t (l)) to advance the solution
at the time t + ∆t (l) using the numerical scheme (3). This advancement procedure is
decomposed in 3 steps:

• The first step is solving the hyperbolic part of System 3. A loop is first performed
on leaves boundaries of level l where fluxes are estimated (using Riemann solvers)
and stack in a buffer flux variable (initially set to 0) in each of “left” (L subscript)

and “right” (R subscript) neighboring cells. This fluxes buffer is denoted by F̃. It
is important to notice that possible contribution to these buffers comes from higher
boundaries level (during preceding advancement procedures at higher levels).
At the end of this boundary loop, buffers for cells of level l are complete. Indeed
whatever the neighbors level are, fluxes have been stacked either in these advancement
procedure or in those of higher levels. Then, conservative variable for leaves cells of
level l should be evolved and corresponding buffers fluxes reset to 0 for next time step.

• The second step consists in upgrading leaves cells of level l using source terms integra-
tion.

• The third step is an averaging procedure consisting in updating split cells of level l.
This step is useful for the correct computation of the refinement procedure (presented
in details in Section 3.4).

The A (l) procedure is described in a form of the following pseudocode:

1. — Hyperbolic resolution —

for (leaf boundaries s of level l) {
Compute the hyperbolic fluxes tensor F

?

s = F
?

s (Un
L,U

n
R);

F̃L = F̃L − ldiff,LLsF
?

s · ns;
F̃R = F̃R + ldiff,RLsF

?

s · ns;
}
for (leaf cells i of level l) {

U1
i = Un

i + ∆t
Vi

F̃i;

F̃i = 0;
}

14

2. — Source terms resolution —

for (leaf cells i of level l) {
Un+1
i = U1

i + ∆tSi (U
1
i);

}

3. — Averaging of the children for the parent cells —

for (parent cells i of level l) {
for (child cells j of parent cell i) {

F̃i = F̃i + Un+1
j ;

}
Un+1
i = F̃i/ Number of child cells;

F̃i = 0;
}

The ldiff factor appearing in fluxes buffer stacking takes into account potential level differ-
ences between “left” and “right” cells on the considered boundary. It would take the value
ldiff = 1 if the two neighboring cells have the same level or if the flux is applied to the cell
with the higher level, and the value ldiff = 0.5 if the flux is applied to the cell with the lower
level. In the example of cells C2D and C1B in Figure 4, the one with the higher level (C2D)
will have 2 time-step integrations while the one with the lower level (C1B) will have just 1.
In that case, for the fluxes calculation between these two cells, ldiff,L = 1 for cell C2D and
ldiff,L = 0.5 for cell C1B. In that way, it makes a time average flux in the cell with the lower
level.

Extension of this advancement procedure will be done in Section 4.4 for non conservative
system of multiphase flows.

3.4. Mesh refinement procedure

If the data structure and integration algorithm represents key points to ensure AMR
simulations efficiency, the ability to refine or unrefine at required locations is an other key
point obviously linked to the quality of numerical results. This is also the most problem-
dependent part and the choice for the refinement criteria is undeniably the most difficult
point for the user of an AMR method. This point will be discussed in the results part. The
cells refinement is always linked to a refinement indicator 0 6 ξ 6 1 which is computed and
stored for every computational cell. This indicator will be used to detect which are the cells
that needs to be refined or unrefined:

• If a leaf cell has ξ > ξsplit, it indicates that the corresponding cell must be refined.

• If a split cell has ξ < ξjoin, the corresponding cell can be unrefined.

where ξsplit and ξjoin are two predefined constant parameters controlling the cell refinement
dynamics forward and backward a discontinuity. We also impose an extra condition to
control refinement: two neighboring cells cannot possess more than one level difference.

15

3.4.1. ξ indicator setup

The approach we use to calculate the refinement ξ indicator is based on locations of
significant gradients (Coirier [6], Aftosmis et al. [1], Melton et al. [16]) and it acts in two
steps:

• For each computational cell, ξ is calculated by:

ξ = 1 if :
|(X)Nb(i,j) − (X)i|

min
(
(X)Nb(i,j), (X)i

) > ε,

ξ = 0 otherwise

(5)

where X can be pertinent physical variable (for example p, ‖u‖, ρ, α). Nb(i, j) repre-
sents neighboring cells (j accounts for a corresponding neighbor of cell i). The choice
of the variable will discriminate shocks, contact discontinuities, interfaces or any kind
of gradients. ε is a constant parameter that controls the limit in term of stiffness of the
detected gradients. Attention should be paid with velocity to avoid division by zero.
A combination of several gradients may also been used to improve detection.

• The second step consists in smoothing the refinement indicator. This operation is very
important for several reasons. First it prevents cells from being falsely refined (mesh
trashing). Secondly, smoothing will allow cells forward a discontinuity to be refined
before the discontinuity arrival and by this way prevent oscillations as well as a loss
of precision. To perform smoothing, we consider the ξ indicator obeys to a diffusion
equation:

δξ

δt̃
= K∇2ξ, (6)

where t̃ is a fictive diffusion time only used to advance the solution for the diffusion
of ξ into the domain. So, this diffusion has no link or impact on the treated physical
characteristic. K = 2−2lL2 is a constant diffusion coefficient. This equation is solved
with an explicit time advancement where the time step is chosen to preserve the diffu-
sion stability (dt = CFLdiffK/2, where CFLdiff corresponds to the CFL condition pf
the diffusion equation). Note that when this equation is solved, the number of fictive
time iterations indirectly gives the number of cells where the indicator will be diffused.
Typically, 3 or 4 time iterations are enough.

The splitting and joining criteria (explained previously) are then used to determine if
the cell has to be refine or unrefine. The refinement around the contact discontinuity is
presented in Figure 6 as a typical example.

3.4.2. Refinement and unrefinement of cells and boundaries

Due to the dual data structure, refinement (unrefinement) acts in two steps: first the
refinement (unrefinement) of the cells and second of the boundaries.

Once the ξ indicator of every cell of the current level l is smoothed, the refinement of a
cell occurs if ξ > ξsplit and then the two steps are:

16

Figure 6: Result of the successive mesh refinement procedures around a density discontinuity. The top
plot shows the density discontinuity, the center plot shows the values of the indicator for each level and
the bottom plot shows the cells levels distribution (the red surrounded leaf cells are the cells where the
integration occurs).

17

• First, the cell refinement. It does not involve special difficulties as it follows the scheme
of Figure 2. A refined cell will give birth to up to 8 child cells (in Cartesian 3D) of
level l + 1 and each child will be built with the same physical characteristics than its
parent cell.

• Second, the boundaries refinement. It is also performed in two steps for each splitting
cell. The first one is the creation of the internal child boundaries of level l + 1 that
belong to the parent cell and then creates new boundaries trees (up to 12 in Cartesian
3D). In the second step, the creation of the external child boundaries of level l + 1
for each of the boundaries of the parent cell (level l) is executed only if it was not
already done by the corresponding neighboring cell. The child boundaries belong to
their parent boundary (see Figure 3).

For the unrefinement, it occurs if ξ < ξjoin and then the corresponding two steps are:

• First, the cell unrefinement. The physical characteristics of the child cells are conser-
vatively averaged to overwrite the ones of the parent cell (see point 3 of Section 3.3).
Then, child cells are removed.

• Second, the boundaries unrefinement. Again it is performed in two steps for each
joining cell. The first one is the removal of the internal child boundaries that belong
to the parent cell. In the second step, the removal of the external child boundaries is
done only if the corresponding neighboring cell is not split.

All the pointers are obviously redirected to the corresponding cell or boundary if necessary.

3.4.3. Mesh refinement procedure pseudocode

The R (l) refinement procedure is thus described as the following pseudocode:

1. — ξ setup —

for (cells i of level l) {
ξ = 0;
if (one of the gradient criteria is respected) { ξ = 1; }

}

2. — Smoothing of ξ —

for (x diffusion iterations) {
for (cells i of level l) {

Compute the diffusion equation for ξ (Eq. (6));
}

}

18

3. — Refinement —

if (l < lmax) {
for (non-split cells i of level l) {

if (ξ > ξsplit & level of each neighboring cells > l − 1) { Cell i is refined; }
}
}

4. — Unrefinement —

if (l < lmax) {
for (split cells i of level l) {

if (ξ < ξjoin & level of each neighboring cells 6 l + 1 & children cells non-split) {
Cell i is unrefined with children averaging (see point 3 of Section 3.3) to
overwrite the values of cell i;
}

}
}

4. Extension to multiphase flow model of Schmidmayer et al. [26]

The AMR method presented in this paper is devoted to applications to multiphase com-
pressible flows and particularly to diffuse interface models. The model retained is the one
presented in Schmidmayer et al.[26] for capillary flows. However, the presented AMR method
can be easily adapted to treat extra physics as for example phase transition (Massoni et al.
[15], Saurel et al. [24], cavitation (Petitpas et al. [19]), detonation in high energetic materials
(Petitpas et al. [20]), solid-fluid interaction and compaction of granular media (Favrie and
Gavrilyuk [9, 8]) and low Mach number flows (Murrone and Guillard [17]).

We recall here the main properties of the Schmidmayer et al. model [26] and a brief
overview of the basic numerical scheme in the context of non AMR methods.

4.1. Multiphase system of equations

The pressure relaxation model with capillary effects of [26] is:

∂α1

∂t
+ u · ∇α1 = µ (P1 − P2) ,

∂α1ρ1
∂t

+ ∇ · (α1ρ1u) = 0,
∂α2ρ2
∂t

+ ∇ · (α2ρ2u) = 0,
∂ρu
∂t

+ ∇ ·
(
ρu⊗ u + PI + Ω

)
= 0,

∂α1ρ1e1
∂t

+ ∇ · (α1ρ1e1u) + α1P1∇ · u = −µPI (P1 − P2) ,
∂α2ρ2e2

∂t
+ ∇ · (α2ρ2e2u) + α2P2∇ · u = µPI (P1 − P2) ,

∂c
∂t

+ u ·∇c = 0,

(7)

where αk, ρk, ek and Pk are the volume fraction, the density, the internal energy and the pres-
sure of phase k, and each fluid is governed by its own equation of state (EOS) ek = ek (ρk, Pk).

19

ρ, P and u are the mixture variables for density, pressure and velocity. Concerning the cap-

illary effects terms, σ is the surface tension coefficient, c is a color function and Ω is the
capillary tensor given by:

Ω = −σ
(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
.

µ is the pressure relaxation coefficient, PI = Z2P1+Z1P2

Z1+Z2
(see [22] for details) and Zk = ρkak is

the acoustic impedance of the phase k with ak being the speed of sound of the corresponding
phase. The mixture pressure is given by:

P = α1P1 + α2P2.

Due to the condition P1 6= P2 in this model, the total energy equation of the mixture is
replaced by the internal energy equation for each phase. Nevertheless, the mixture total
energy equation of the system can be written in usual form:

∂ρE + εσ
∂t

+ ∇ ·
(

(ρE + εσ + P) u + Ω · u
)

= 0. (8)

where E = e + 1
2
‖u‖2 and e are the mixture variables for total energy and internal energy.

And the capillary energy is equal to εσ = σ‖∇c‖.
The equation (8) is redundant when both phasic internal energy equations are solved,

but it will appear to be an important ingredient for numerical method to ensure the energy
conservation and to preserve a correct treatment of shock waves.

One can note that the surface tension effects are missing in the phasic energy equations
since it is only a mixture characteristic.

A special splitting procedure will be done for the numerical resolution of model (7).

4.2. Splitting procedure

Model (7) without the relaxation terms is split in two submodels. The first submodel
does not take into account the surface tension terms and the second one contains the only
capillary terms. The submodels are presented below only in the x-direction.

20

Hyperbolic submodel 1

The first submodel is similar to that presented in [25] with additional decoupled equations
for the gradient of the color function:

∂α1

∂t
+ u

∂α1

∂x
= 0,

∂α1ρ1

∂t
+
∂α1ρ1u

∂x
= 0,

∂α2ρ2

∂t
+
∂α2ρ2u

∂x
= 0,

∂ρu

∂t
+
∂ρu2 + α1P1 + α2P2

∂x
= 0,

∂ρv

∂t
+
∂ρuv

∂x
= 0,

∂ρw

∂t
+
∂ρuw

∂x
= 0,

∂α1ρ1e1

∂t
+
∂α1ρ1e1u

∂x
+ α1P1

∂u

∂x
= 0,

∂α2ρ2e2

∂t
+
∂α2ρ2e2u

∂x
+ α2P2

∂u

∂x
= 0,

∂w1

∂t
+
∂w1u

∂x
= 0,

∂w2

∂t
+ u

∂w2

∂x
= 0,

∂w3

∂t
+ u

∂w3

∂x
= 0,

(9)

where w1, w2 and w3 are the components in the three directions of the gradient w of the
color function c.

This system describes only the transport and the compression waves. The equation for
w1 is taken in conservative form to let the possibility to consider weak solutions. The other
terms in this equation will be treated in the second submodel.

The eigenvalues of the system are:

λ1,2,3,4,5,6,7,8,9 = u,

λ10 = u− af ,

λ11 = u+ af ,

where af is the frozen mixture sound speed:

a2
f = Y1a

2
1 + Y2a

2
2.

The hyperbolicity of this first submodel is proven in [25].

21

Weakly hyperbolic submodel 2

The second submodel is:

∂α1

∂t
= 0,

∂α1ρ1
∂t

= 0,
∂α2ρ2
∂t

= 0,
∂ρu
∂t

+
(
∂Ω11

∂w1

∂w1

∂x
+ ∂Ω11

∂w2

∂w2

∂x
+ ∂Ω11

∂w3

∂w3

∂x

)
= 0,

∂ρv
∂t

+
(
∂Ω12

∂w1

∂w1

∂x
+ ∂Ω12

∂w2

∂w2

∂x
+ ∂Ω12

∂w3

∂w3

∂x

)
= 0,

∂ρw
∂t

+
(
∂Ω13

∂w1

∂w1

∂x
+ ∂Ω13

∂w2

∂w2

∂x
+ ∂Ω13

∂w3

∂w3

∂x

)
= 0,

∂α1ρ1e1
∂t

= 0,
∂α2ρ2e2

∂t
= 0,

∂w1

∂t
+ w2

∂v
∂x

+ w3
∂w
∂x

= 0,
∂w2

∂t
= 0,

∂w3

∂t
= 0.

(10)

This second system describes the capillary effects. Also, the non-conservative product in the
equation for w1 is well defined because w2 and w3 are continuous through the shock.

4.3. Numerical Method without AMR
The numerical method is presented as a 3-step method. Each step is successively per-

formed in order to circumvent specific numerical problems:

• First, the hyperbolic non-equilibrium pressure model (9) is solved using a Godunov-
type method [26].

• Second, model (10) is solved. A specific attention is paid to the choice for the flux
terms in order to ensure the momentum and energy conservation.

• Third, a relaxation procedure leads to the pressure equilibrium.

The unknown vector Un+1 is obtained from the initial condition Un by application of the
three successive operators according to the sequence:

Un+1 = LrelaxLcapLhyper (Un) ,

where the vector U contains the unknown quantities defined in the system:

U = [α1, α1ρ1, α2ρ2, ρu, ρv, ρw, α1ρ1e1, α2ρ2e2, c, ρE + εσ]T

Each step of the numerical method is fully detailed in Schmidmayer et al. [26]. It is important
to note that, for the different capillary terms, the vector w is computed via derivatives of the
color function which are computed by using second-order finite difference approximations.
Plus, to go through the operators chain, the solution at time n+ 1 is obtained by a pressure
relaxation algorithm and corrects the components of Ucap:

Un+1 = Lrelax (Ucap) .

The details about the pressure relaxation algorithm as well as the correction procedure used
to guarantee total energy conservation can be found in Saurel et al. [25].

22

4.4. Extension of the AMR algorithm for multiphase flow

The extension of the AMR algorithm to treat multiphase flow model (7) implies several
modification to the method:

1. Model (7) is non-conservative. It is thus necessary to take into account for non con-
servative terms in the advancement procedure,

2. The global time-step of integration is slightly modified to add a cell gradient procedure
G that computes the color function gradients required in the capillary effects formu-
lation. It is done before going to the higher tree level and integration procedure now
reads:

I (lmin) = A (lmin) I (lmin + 1)G (lmin)R (lmin) ,
I (l) = A (l) I (l + 1)A (l) I (l + 1)G (l)R (l) , for l 6= lmin, lmax,
I (lmax) = A (lmax)A (lmax)R (lmax)

(11)

The same precedent example thus implies now a a sequence generated by (11) for
lmin = 0 and lmax = 2 gives:

[R (0)G (0) [R (1)G (1) [R (2)A (2)A (2)]

A (1) [R (2)A (2)A (2)] A (1)] A (0)].

3. Model (7) also contains relaxation terms that implies modification in the algorithm.

In the following part, the modification of advancing procedure as well as the cell gradient
and relaxation procedures specific to multiphase capillary flows are detailed.

4.4.1. Cell gradient procedure

The cell gradient procedure G is the procedure to compute the different cell gradients
which could be needed to treat a specific physic, here the capillary effects. Indeed, when
the computation of the capillary effects is done, the fluxes calculation on a boundary uses
the color function cell gradient of each neighboring cell of this boundary. And to avoid the
cell gradient calculation multiple times for each cell, it is computed in a loop going through
each cell, and not when the calculation of the fluxes are involved. Thus, in the case where
one of the two neighboring cell of a boundary has a smaller level than this boundary, the
cell gradient in this cell has to be computed before doing the fluxes calculation. But, in the
recursive integration procedure (Equation (11)), if the cell gradient procedure G (lmin) is not
done before going to the integration procedure of the higher level I (l + 1), the needed cell
gradient for the fluxes calculation of the advancing procedure of this higher level A (l + 1)
would not have been computed. It thus explains why this procedure is necessary. So, the
procedure is done at the level l before going to the recursive integration procedure I (l + 1)
and it follows the pseudocode:

if (l < lmax) {
for (leaf cells i of level l) {

Compute the color function gradients Gi (U
n
i);

}
}

23

One should note that using cell gradients involves a particularity when coupling with
AMR method. Indeed, the cell gradients calculation is always done at a particular time
in a given cell and thus it does not take into account that neighboring cells with other
levels could be at other times due to the recursive integration procedure. Nevertheless, this
particularity should not be problematic because it happens in zones where the gradients are
small. An example could be the computation of a droplet: the color function gradients in
cells are significant at the interface position and when the refinement criteria are well chosen,
the zones at and around the interface are fully refined and then this particularity does not
appear.

4.4.2. Advancing procedure

For the resolution of model (7), the advancing procedure have to take into account three
additional points: one is related to the additional physics (here the capillary effects), another
for the relaxation step and a last one for non conservative terms. Source terms are absent
in the model, thus the corresponding point is avoided. If there were some, they would have
been added in the following pseudocode between the point 2 and 3, and under the same
formulation than in the pseudocode of Section 3.3. Consequently, the pseudocode of the
A (l) procedure is:

1. — Hyperbolic resolution —

for (leaf boundaries s of level l) {
Compute the hyperbolic fluxes tensor F

?

s = F
?

s (Un
L,U

n
R) and its corresponding

contact discontinuity velocity u?s;

F̃L = F̃L − ldiff,LLs
(
F
?

s + Hnc,s (Un
L) u?s

)
· ns;

F̃R = F̃R + ldiff,RLs

(
F
?

s + Hnc,s (Un
R) u?s

)
· ns;

}
for (leaf cells i of level l) {

U1
i = Un

i + ∆t
Vi

F̃i;

F̃i = 0;
}

2. — Capillary effects resolution —

for (leaf cells i of level l) {
Compute the color function gradients Gi = Gi (U

1
i);

}
for (leaf boundaries s of level l) {

Compute the capillary fluxes tensor F
cap

s (U1
L,U

1
R,GL,GR);

F̃L = F̃L − ldiff,LLsF
cap

s · ns;
F̃R = F̃R + ldiff,RLsF

cap

s · ns;
}

24

for (leaf cells i of level l) {
U2
i = U1

i + ∆t
Vi

F̃i;

F̃i = 0;
}

3. — Relaxations resolution —

for (leaf cells i of level l) {
Compute the relaxation procedure to obtain Un+1

i from U2
i ;

}

4. — Averaging of the children for the parent cells —

for (parent cells i of level l) {
for (child cells j of parent cell i) {

F̃i = F̃i + Un+1
j ;

}
F̃i = F̃i/ Number of child cells;

Compute the relaxations procedure to obtain Un+1
i from F̃i;

F̃i = 0;
}

where the hyperbolic fluxes tensor F
?

=
(
F?
x,F

?
y,F

?
z

)
, the non-conservative vector Hnc and

the capillary fluxes tensor F
cap

=
(
Fcap
x ,Fcap

y ,Fcap
z

)
are given in a Cartesian expression by:

F?
x (U) =

α1u
α1ρ1u
α2ρ2u
ρu2 + P
ρuv
ρuw

α1ρ1e1u
α2ρ2e2u
cu

(ρE + P)u

F?
y (U) =

α1v
α1ρ1v
α2ρ2v
ρuv

ρv2 + P
ρvw

α1ρ1e1v
α2ρ2e2v
cv

(ρE + P) v

F?
z (U) =

α1w
α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + P
α1ρ1e1w
α2ρ2e2w
cw

(ρE + P)w

25

Fcap
x (U) =

0
0
0

Ω11

Ω12

Ω13

0
0
0

εσu+ Ω11u+ Ω12v + Ω13w

Fcap
y (U) =

0
0
0

Ω21

Ω22

Ω23

0
0
0

εσu+ Ω21u+ Ω22v + Ω23w

Fcap
z (U) =

0
0
0

Ω31

Ω32

Ω33

0
0
0

εσu+ Ω31u+ Ω32v + Ω33w

Hnc =

−α1

0
0
0
0
0

α1P1

α2P2

−c
0

4.4.3. Relaxation procedure

The relaxation procedure is present in two locations of the multiphase AMR algorithm,
i.e., at the end of each time step (reference to the relaxations resolution in point 3 of the
advancing procedure Section 4.4.2) and in the unrefinement procedure (see next paragraph).
This relaxation procedure is fully detailed in [25] and its aim is to take into account the
mechanical equilibrium via pressure relaxation and its respective impact on the volume frac-
tion and density of each phase. If pressure relaxation is activated, a mechanical equilibrium
model is solved using the pressure desequilibrium model (7) (see [26] for details).

26

When cells are joined (during a refinement) an operation of averaging has to be performed
before removing children cells (see point 4 of Section 3.4.3). When dealing with a multiphase
model as model 7, a supplementary relaxation procedure has to be also added. The point 4
of Section 3.4.3 is then replaced by the pseudocode:

if (l < lmax) {
for (split cells i of level l) {

if (ξ < ξjoin & level of each neighboring cells 6 l + 1 & children cells non-split) {
Cell i is unrefined with children averaging and relaxations procedure to
overwrite the values of cell i;
}

}
}

5. Numerical results

The ability of the new AMR method to solve different multiphase flow applications is
proven in 1D, 2D and 3D configrations. Comparisons with theoretical results and non-
AMR method are also shown. The results are obtained thanks to an high-order scheme
with a MUSCL-Hancock procedure and using the Harten-Lax-van Leer Contact (HLLC)
approximate Riemann solver.

In each presented cases, the equation of state (EOS) for the air obeys to the ideal gas
law:

Pair = (γair − 1) ρaireair,

with γair = 1.4.
The water obeys the stiffened gas EOS:

Pwater = (γwater − 1) ρwaterewater − γwaterP∞,water,

where the stiffened gas EOS parameters are γwater = 4.4 and P∞,water = 6.108Pa.

5.1. 1D transport test

The goal of the first test is to show the influence of the different criteria of refinement
in comparison to a fully refined non-AMR mesh on a 1D transport test case. To avoid any
potential complex interaction with a multiphase model, this first test is done for only one
phase and then the Euler model is computed. Note that for comparison equivalence, the
size of the cells for the non-AMR mesh and for the cells at the highest level (lmax) using the
AMR method are identical.

Thus, a simple transport of a different density along the axis is done. The fluid is
air with a density discontinuity of ρdiscontinuity = 10kg.m−3 in a density environment of
ρenvironment = 1kg.m−3. The velocity of the whole domain is set to u = 50m.s−1, the
pressure is uniform and the Neumann boundary condition is used. At the initialization the
center of the density discontinuity is set at the coordinate 0.3m and has a length of 0.2m.

27

The simulation time is t = 8ms. Only the density is shown since all the other variables
remain uniform.

Concerning the AMR method, 4 refinement levels (lmax = 4) are involved which means
that there are 5 levels in total with the initial one. The mesh is initialized with N = 10 cells
and then the corresponding number of cells with a the full refinement is Nx2lmax = 160. The
choice of the refinement criteria is one of the most difficult part in an AMR method and it
is completely case-dependent. However, the gradient refinement criterion in this first test
is obvious and is based on density variation, thus the rest of the different criteria (ε, ξsplit
and ξjoin) are tested to observe their impact on the results. The information concerning the
AMR data is given in Table 3 for 4 different test cases.

Table 3: AMR data for the 1D transport test case using the Euler model.

Figure 7 shows the results comparison with the different criteria of Table 3. The initial-
ization using AMR method is shown in blue and it is identical for each test as the different
criteria only has an influence during the evolution of the discontinuity transport. The non-
AMR result is also shown in red but it is partially hidden by the AMR result of the third
test (in purple) because this third AMR test gives as good result as the non-AMR one.

On the top image of Figure 7, results using three combinations of ξsplit and ξjoin are
compared:

• First, one can observe the difference concerning the shape of the results for the test
AMR 1 (yellow), where the previously cited criteria are taken equal to ξsplit = ξjoin =
0.5, and AMR 2 (black), where they have different values ξsplit = 0.5 and ξjoin = 0.1.
The result with a lower ξjoin is closer to the non-AMR one at the head of this heaviside
function but at the rear, the results are similar between the two AMR tests and they
have a lower density than the non-AMR result. In the two cases the matching with
the non-AMR result is better at the head of the discontinuity. One can conclude that
the refinement and unrefinement process gives better results in the upwind direction
and that having the same value of the criteria yield to better results concerning the
symmetrical aspect. In the following tests, to avoid a maximum this non-symmetrical
aspect the values of those two criteria are always taken equal. One can also note that
the maximum number of cells involved is higher in the second test case than in the
first one (see Table 3) because the joining criteria is smaller in the second test and
then the joining occurs less often.

28

• Second, in the case where the two criteria are taken with a lower value (ξsplit =
ξjoin = 0.1), the result (AMR 3 test case in purple) is in better agreement with
the one of the non-AMR method, not only at the head of the discontinuity but also
at the rear. In fact, the values of these criteria indirectly give the number of refined
cells around a detected discontinuity (detected through the gradient criterion limited
value ε). More the values of ξsplit and ξjoin are small, more the number of refined cells
around the discontinuity is important. Note that the number of fictive time iteration
for the diffusion equation (6) of ξ also indirectly control the number of refined cells
around the discontinuity. 4 iterations are involved in the presented tests.

The results on the bottom image of Figure 7 shows the importance of the gradient
criterion limited value ε with the comparison between tests AMR 3 (purple) and 4 (green)
where ε = 0.1 and ε = 1, respectively. Lower is the value of the criterion, closer to the
non-AMR method is the result. However, as shown in Table 3 with the maximum number
of cells involved, it is important to notice that this value has to be well chosen, not only to
be close to the equivalent solution, but also not to be a value where all the mesh is refined,
or in that case the AMR principal advantage is lost. Furthermore, this criterion compares
the normalized variation of the chosen physical variable, here density, with the value of ε
(Equation (5)). And because it is normalized with the minimum density of the cell where the
calculation is done or of its neighboring cells, plus because the absolute numerical diffusion
is the same on the two sides of the discontinuity, the normalized variation is higher on the
side of the smaller density and then this side is more refined. Thus, the head of the heaviside
discontinuity moves in a refined mesh containing more cells at the highest level than in its
rear and it explains the non-symmetrical aspect that is clearly observable for high values of
ε.

The variation of the initial number of cells and number of levels for a constant equiv-
alent non-AMR mesh is not shown here because it yields to close results, even if the total
number of cells involved are different. Then, having the lower initial number of cells with
the higher number of refinement levels seems the best option since the results are similar
but the computational time should be lower. “Should be” because of the balance between
the computational time lost in the recursive integration and refinement procedures with a
high number of levels and the gain between the computation of two different initial meshes.
Moreover, using high order methods reduce the number of cells involved in the calculation
due to the stiffer discontinuities. This last point partially counterbalances the additional
computational time involved by these high order methods.

In the following, the impact of the criteria is no more shown but it is important to keep
in mind that the choice of those ones is crucial to obtain as good results as expected and to
not involved to much cells in the computation. Thus, a set of chosen criteria that is one good
balanced possible solution between computational time involved and quality of the results is
proposed for each test.

29

Figure 7: Density ρ along the x-direction for the 1D transport test case using the Euler model. Initialization
setup (blue) is shown using the AMR method and results are given for different tests: non-AMR (red) and
four AMR (yellow, black, purple and green) with different AMR criteria.

30

5.2. Liquid/gas shock tube

The shock tube test for multiphase flow is the flow creates by the initial contact of a high
and a low pressurization chamber. The high pressure chamber is filled with water at the
pressure P = 1.109Pa and with a density of ρ = 1, 000kg.m−3. In the low pressure chamber,
there is air with a pressure of P = 1.105Pa and a density of ρ = 50kg.m−3. In both chambers
the fluid velocity is u = 0m.s−1. The length of the tube is 1m and the initial discontinuity
is located at 0.7m with high pressure chamber on the left and low pressure one on the right.
The simulation time is tfinal = 241µs.

As previously explained, there is no predefined obvious refinement criteria to use, it is
case-dependent. Specially, which thermodynamic variables variations to look at to compute
the gradient refinement criterion. In the shock tube test, because of the physics involved,
the mixture density and mixture pressure variations are chosen. The other information
concerning the AMR data is given in Table 4 where the equivalent mesh indicates the number
of cells of a fully refined mesh and thus indicates the number of cells of the non-AMR method
it is compared with.

Table 4: AMR data for the 1D shock tube test case.

Figure 9 shows the exact solution (black line) and the simulation solutions for the non-
AMR mesh (top image, red line) and for the AMR mesh (bottom image, blue crosses and
line). A shock is propagated from the left to the right, following by the contact discontinuity
and the expansion waves are propagated in the opposite direction. In that case, the non-
AMR mesh has 2, 560 cells while the AMR mesh starts with 10 cells and has lmax = 8. The
maximum number of cells involved using the AMR method is indicated in Table 4 and it
is of 210 cells which is significantly different from the non-AMR number of cells. This high
number of points for the non-AMR method explains why its result is only shown with a line
while for the AMR method, each point corresponds to each cell where calculations occur.

Globally the simulation results between the two methods are very close but there are still
few things to notice:

• First, with the AMR method, the shock wave and the contact discontinuity are always
as well reproduced as the non-AMR one. In fact, the gradient criteria are easily
respected at these locations and then the mesh is fully refined.

• Second, concerning the expansion waves. Even if the result is still satisfactory, one
can observe that the number of cells at the head of the expansion waves (left part
of the expansion waves in the images) decreases. This point is clearly observable in
Figure 8 where the levels of refinement distribution is shown, in purple is the initial
distribution and in blue is the distribution for the end of the simulation corresponding
to the results shown in Figure 9. Initially, the mesh is only fully refined around the

31

discontinuity (located at 0.7m) and at the end of the simulation, the mesh is fully
refined around the shock, the contact discontinuity and the tail of the expansion waves
(right part of the expansion waves in the images). In fact, due to the smooth variation
of the thermodynamics variables, it is difficult to find a good criterion to refined the
expansion waves without refining most of the domain. Here is only fully refined the
tail of the expansion waves because of the normalized variations which is sufficient at
this location but not for the rest of the expansion waves.

A supplementary table (Table 5) is presented to point out the ability of the AMR method
to bring a real gain in comparison to the non-AMR method concerning the computational
time (a CPU time ratio of 26 is reached) and the memory involved, even in 1D simulation.
Note that the recorded memory involved is only the highest memory used during the simu-
lation for the AMR method, this one evolves during the simulation in function of the mesh
distribution.

Table 5: Performances for the different tests for the 1D shock tube test case.

Figure 8: Levels of refinement distribution along the x-direction for the 1D shock tube test case using the
AMR method. Initialization (purple crosses) and final result (blue diagonal crosses) are shown. Each cross
correspond to a cell where the physical calculations occur.

32

Figure 9: Density ρ along the x-direction for the 1D shock tube test case. Exact solution (black line) is
shown and results are given for different tests: non-AMR (top image, red line) and AMR (bottom image,
blue crosses and line).

33

5.3. 2D transport test

A 2D transport test is done here by solving the advection problem of a square of water
(ρwater = 1, 000kg.m−3) in air (ρair = 1kg.m−3). The dimension of the domain is 1m x 1m
and at the initialization the center of the square of water is set at the coordinates 0.3m on x
and y, and its side length is 0.2m. The velocity of the whole domain is set to u = 50m.s−1

in the x-direction and v = 50m.s−1 in the y-direction, the pressure P is uniform and the
Neumann boundary condition is used at each boundary. The simulation time is t = 8ms.
The left image in Figure 10 shows the initial state with the AMR mesh (in blue the water
and white the air).

Concerning the AMR data, the gradient refinement criterion ε can be based on two
variables variations: the mixture density and the volume fraction. But, only one is useful
since they have a similar shape, then arbitrarily the volume fraction is chosen. The initial
mesh is of N2 = 10x10 cells and the maximum number of refinement level is lmax = 4,

then the equivalent fully refined mesh for this test case is of
(
N lmax

)2
= 25, 600 cells. lmax

is not taken as high as in the 1D case (lmax = 8) due to the induced computational time,
specially for the comparison with the non-AMR method (it would have been 6, 553, 600 cells).
As previously said, the values of the different criteria are case-dependent and due to the 2D
accentuate diffusion, the criteria are chosen lower than the ones of the 1D tests, i.e., ε = 0.08,
ξsplit = 0.05 and ξjoin = 0.05. All the information for the AMR data are summarize in Table
6.

Table 6: AMR data for the 2D transport test case.

On the right of Figure 10 is shown the 2D result of the simulation with the AMR mesh.
One can observe that the square of water is well transported: the centre of gravity is at the
correct position and the shape is well preserved. Figure 11 shows the mixture density ρ along
the diagonal direction (x = y) for the initialization state (purple crosses) using the AMR
method and for the simulation results using the non-AMR method (red diagonal crosses)
and the AMR one (blue stars). It then shows that the AMR method gives almost identical
results than the non-AMR one for the 2D transport test case. Note that only the mixture
density is shown since all the other variables remain uniform and because the volume fraction
has a similar shape than the mixture density.

Even if the number of levels are lower that in the 1D shock tube test case, the perfor-
mances concerning the computational time and the memory involved are always good for
the AMR method in comparison to the non-AMR one (Figure 7). A gain of almost 14 times
is obtain for the computational time, which is a bit lower than the previous test case, but
the memory factor is higher and it is about 5. The conclusion is that, even if the presented
AMR method is not optimized concerning the memory involved, a good factor compared to
non-AMR method is obtained. Moreover, if the number of refinement levels is increased, the

34

computational time and the memory involved drastically increase for the non-AMR method
while it is not the case for the AMR one. Indeed, the ratio of computational cells between
the AMR and non-AMR methods decreases. Specially adding the fact that the interface is
sharper than in the presented case and then a smaller domain of cells at the highest level is
computed. In conclusion, even higher performances are expected for the AMR method.

Figure 10: Volume fraction of water αwater for the 2D transport test case. In blue the water and white the
air. On the left, initialization state, and on the right, the correctly transported result.

Table 7: Performances for the different meshes for the 2D transport test case.

5.4. 3D capillary effects test: Laplace jump

In the following 3D simulation test, a droplet of water is placed in an air environment.
When the droplet is at the steady state, the Laplace pressure jump must be recovered thanks
to the capillary effects. The expression of the theoretical pressure jump for a sphere is:

[P] =
2σ

R
,

where [P] expresses the pressure jump between inside the droplet and the air, here Pwater −
Pair.

35

Figure 11: Mixture density ρ along the diagonal direction (x = y) for the 2D transport test case. Initialization
(purple crosses) and simulation results for the thin mesh (red diagonal crosses) and the AMR mesh (blue
stars) are shown.

For the simulation, initially the droplet of water is on a 3D domain filled with air. To
accentuate the impact of the surface tension force, the stiffened gas EOS for the water
with parameters γwater = 2.1 and P∞,water = 1.106Pa is used, the size of the droplet is
emphasized (radius of 0.15m) as the surface tension coefficient σ = 800N.m−1. At the
initialization the pressure is the same in each fluid and is equal to P = 1.105Pa, the velocity
is null (u = 0m.s−1), the densities are ρair = 1kg.m−3 in the air and ρwater = 1, 000kg.m−3

in the water, and the outgoing pressure waves boundary condition is used. The volume of
the whole domain is 0.75m x 0.75m x 0.75m and at the initialization the droplet is set at
the center (see Figure 12). The simulation time to obtain a converged result is t = 0.59s.

The information concerning the AMR data is given in Table 8. To correctly treat the
capillary effects, only the thickness and the curvature of the interface are important. Thus,
the gradient refinement criterion is only based on volume fraction variation. Moremover, as
explained for the previous test case, the diffusion is accentuated when dealing with higher
dimensions and it directly impact the smoothing of the ξ variable. Thus, the ξ criteria are
taking lower than the 2D case, i.e., ξsplit = 0.02 and ξjoin = 0.02.

For this test, only the AMR method was computed due to the too long computation of a
non-AMR method in 3D. As shown in Table 8, the number of cells that involves a non-AMR
calculation is of 4, 096, 000 cells while the AMR one only involves a maximum of 267, 224
cells, and this last one already took more than 16 days (on one CPU: Intel R© Xeon R© CPU
E7-4850 v2). Moreover, even if it is not shown here, waves induced by the computation of the
capillary effects are coming from the interface locations at the beginning of the simulation.
Those ones slowly decrease and disappear while reaching the steady state. In the case of

36

Figure 12: 2D sketch of the initial conditions for the 3D simulation of a liquid droplet placed in air.

the AMR method, the waves are smooth in- and out-side the droplet because of the coarser
mesh and thus less oscillations occur than with the fully non-AMR mesh. It results that the
AMR method accelerate the convergence of the simulation to a steady state in comparison
to non-AMR method.

Table 8: AMR data for the 3D capillary effects test case.

The theoretical pressure jump of Laplace for this test case is [P] = 10720Pa and it is
well recovered in the 3D simulation when using the AMR method as shown in Figures 13
and 14.

37

Figure 13: Two different cut views of the the 3D capillary effects test case. Pressure P is shown for the
converged state.

Figure 14: Pressure P at the converged state for the 3D capillary effects test case. Theoretical (black line)
and simulation results (purple points) are shown. The converged time is t = 0.59s.

38

5.5. Water droplet atomization

Figure 15: Sketch of the initialization for the droplet atomization test.

The ability of the method on complex flows is presented in this section. Atomization of
a 3D water droplet induced by a high speed flow is considered. A spherical water droplet is
placed in an air environment already at a shocked state. The initial diameter of the droplet
is D = 6.4mm and the shocked state is the corresponding one behind a shock wave of Mach
number 1.3 in atmospheric air (see Figure 15 for initialization sketch). The initial densities,
pressures and velocities in the x-direction are:

• ρair = ρshocked = 1.82511kg.m−3, Pair = Pshocked = 1.82897.105Pa and uair = ushocked =
151.821m.s−1,

• ρwater = 1, 000kg.m−3, Pwater = Pair + 2σ/R, and uwater = 0m.s−1.

The 3D computations are performed on a quarter of the whole domain with two symmetry
boundary conditions. Shocked air is entering at the left boundary and the Newmann bound-
ary conditions is used elsewhere. The initial AMR mesh contains 250x50x50 computational
cells in a physical domain of 250mm x 50mm x 50mm. The maximum number of refinement
levels is lmax = 4, corresponding to an equivalent non-AMR mesh of 2, 560, 000, 000 cells. The
complete information concerning the AMR data is given in Table 9. The gradient refinement
criterion is based on volume fraction, mixture pressure and mixture velocity variations.

An example of the mesh distribution is given in Figure 16 at time t = 1, 000µs. In the
top image, the wireframe is represented for the performed domain with the mixture density
gradients colors (dark red for strong gradients and dark blue for null ones). The bottom
image represents three quarter of the complete domain with apparent surfaces. One of the

39

Table 9: AMR data for the droplet atomization test.

two observable surfaces is shown with the mesh and the other without. The refinement at the
highest level occurs around the droplet and at its rear due to the vortices that are involved.

Time evolution of the droplet shape is shown in Figure 17. In this figure, water droplet
density contour are represented (αwater = 0.5). The wave propagating on the sides of the
droplet due to its compression and stretching is visible. This wave is slowly making filaments
all around the droplet. Holes in these filaments are appearing at 1, 000µs and are responsible
for finer droplets formation. Fine droplets are visible on Figure 18 at time 1, 000µs with a
volume fraction contour of αwater = 0.001 and colored by the mixture velocity norm. One
can observe the speed of the smaller waves which occur on the surface of the droplet, and the
velocity of the filaments and of the smaller droplets that are thrown away from the initial
droplet (dark red shows strong mixture velocity norms and dark blue shows small ones).

6. Conclusion

A new adaptive mesh refinement (AMR) method using cells boundaries trees has been
presented with an extension for multiphase flows. The addition of this second tree boundaries
structure presents the advantages to reduce the number of operations during the time step
integration (cell neighboring searching is improved) and to simplify the general algorithm in
comparison to a fully threaded tree method. The drawback is that the memory involved is
not optimized. It is reasonably increased since the number of additional information stored
for each cell boundary is relatively small in comparison to what is needed in a cell for the
AMR structure as well as for the physical quantities.

The application of the new AMR method on different tests - transport, shock tube, capil-
lary flow and water droplet atomization in 1D, 2D and 3D - was performed with quantitative
comparisons regarding exact solutions or non-AMR method results in order to analyze the
benefit of this new method. Computational time efficiency and reasonably memory cost have
been shown.

40

Figure 16: Two images with the mesh and the mixture density gradients apparent (strong gradients in dark
red and nulls in dark blue) for the droplet atomization test at time t = 1, 000µs. Refinement of the mesh is
observable around the droplet and at its rear (vortices).

41

Figure 17: Side views of the droplet contour for the atomization test. Results are shown using αwater = 0.5
for the contours and at times 200µs, 300µs, 400µs, 500µs, 600µs, 700µs, 800µs, 900µs and 1, 000µs from
the left to the right and from the top to the bottom.

Figure 18: Different views of droplet contour for the atomization test. Results are shown using αwater = 0.001
for the contours and at time 1, 000µs. Colors represents mixture velocity norm (dark red shows strong mixture
velocity norms and dark blue shows small ones).

42

References

[1] M. Aftosmis, J. Melton, and M.J. Berger. Adaptation and surface modeling for cartesian
mesh methods. In AIAA Paper, 12th Computational Fluid Dynamics Conference, page
1725, 1995.

[2] M. Anderson, E.W. Hirschmann, S.L. Liebling, and D. Neilsen. Relativistic mhd with
adaptive mesh refinement. Classical and Quantum Gravity, 23(22):6503, 2006.

[3] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of computational Physics, 82(1):64–84, 1989.

[4] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

[5] X. Chen and V. Yang. Thickness-based adaptive mesh refinement methods for multi-
phase flow simulations with thin regions. Journal of Computational Physics, 269:22–39,
2014.

[6] W.J. Coirier. An adaptively-refined, cartesian, cell-based scheme for the euler and
navier-stokes equations. Ph.D. thesis, University of Michigan, 1994.

[7] M. Dumbser, O. Zanotti, A. Hidalgo, and D.S. Balsara. Ader-weno finite volume schemes
with space–time adaptive mesh refinement. Journal of Computational Physics, 248:257–
286, 2013.

[8] N. Favrie and S.L. Gavrilyuk. Diffuse interface model for compressible fluid–
compressible elastic–plastic solid interaction. Journal of Computational Physics,
231(7):2695–2723, 2012.

[9] N. Favrie and S.L. Gavrilyuk. Dynamic compaction of granular materials. Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
469(2160):20130214, 2013.

[10] E. Han, M. Hantke, and S. Müller. Efficient and robust relaxation procedures for multi-
component mixtures including phase transition. Journal of Computational Physics,
338:217–239, 2017.

[11] S. Hank, N. Favrie, and J. Massoni. Modeling hyperelasticity in non-equilibrium mul-
tiphase flows. Journal of Computational Physics, 330:65–91, 2017.

[12] A. Hosangadi, V. Ahuja, and S. Arunajatesan. Simulations of cavitating flows using
hybrid unstructured meshes. ASME J. Fluids Eng, 123:331–340, 2001.

[13] A.M. Khokhlov. Fully threaded tree algorithms for adaptive refinement fluid dynamics
simulations. Journal of Computational Physics, 143(2):519–543, 1998.

43

[14] O. Le Métayer, J. Massoni, and R. Saurel. Dynamic relaxation processes in compress-
ible multiphase flows. application to evaporation phenomena. In Esaim: Proceedings,
volume 40, pages 103–123. EDP Sciences, 2013.

[15] J. Massoni, R. Saurel, B. Nkonga, and R. Abgrall. Proposition de methodes et modeles
Euleriens pour les problemes a interfaces entre fluides compressibles en presence de
transfert de chaleur. Int. J. Heat and Mass Transfer, 45:1287–1307, 2002.

[16] J. Melton, M.J. Berger, M. Aftosmis, and M. Wong. 3d applications of a cartesian grid
euler method. In AIAA Paper, 33rd Aerospace Sciences Meeting and Exhibit, page 853,
1995.

[17] A. Murrone and H. Guillard. Behavior of upwind scheme in the low mach number limit:
Iii. preconditioned dissipation for a five equation two phase model. Computers & Fluids,
37(10):1209–1224, 2008.

[18] G.S.H. Pau, J.B. Bell, A.S. Almgren, K.M. Fagnan, and M.J. Lijewski. An adaptive
mesh refinement algorithm for compressible two-phase flow in porous media. Computa-
tional Geosciences, 16(3):577–592, 2012.

[19] F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier. Diffuse interface models
for high speed cavitating underwater systems. Int. J. of Multiphase Flows, 35(8):747–
759, 2009.

[20] F. Petitpas, R. Saurel, E. Franquet, and A. Chinnayya. Modelling detonation waves in
condensed energetic materials: Multiphase CJ conditions and multidimensional com-
putations. Shock waves, 19(5):377–401, 2009.

[21] S. Popinet and G. Rickard. A tree-based solver for adaptive ocean modelling. Ocean
Modelling, 16(3):224–249, 2007.

[22] R. Saurel, S.L. Gavrilyuk, and F. Renaud. A multiphase model with internal degrees of
freedom: Application to shock-bubble interaction. Journal of Fluid Mechanics, 495:283–
321, 2003.

[23] R. Saurel and F. Petitpas. Introduction to diffuse interfaces and transformation fronts
modelling in compressible media. In ESAIM: Proceedings, volume 40, pages 124–143.
EDP Sciences, 2013.

[24] R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in metastable liquids:
application to cavitating and flashing flows. Journal of Fluid Mechanics, 607:313–350,
2008.

[25] R. Saurel, F. Petitpas, and R.A. Berry. Simple and efficient relaxation methods for inter-
faces separating compressible fluids, cavitating flows and shocks in multiphase mixtures.
Journal of Computational Physics, 228(5):1678–1712, 2009.

44

[26] K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S.L. Gavrilyuk. A model and nu-
merical method for compressible flows with capillary effects. Journal of Computational
Physics, 334:468–496, 2017.

[27] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, and J.E. Bus-
soletti. A locally refined rectangular grid finite element method: application to compu-
tational fluid dynamics and computational physics. Journal of Computational Physics,
92(1):1–66, 1991.

45

