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Abstract

Let Y be a real random variable and X be a Poisson point process. We
investigate rates of convergence of a nonparametric estimate r̂(x) of the re-
gression function r(x) = E(Y |X = x), based on n independent copies of the
pair (X ,Y ). The estimator r̂ is constructed using a Wiener-Itô decomposition
of r(X). In this infinite-dimensional setting, we first obtain a finite sample
bound on the expected squared difference E(r̂(X)− r(X))2. Then, under a
condition ensuring that the model is genuinely infinite-dimensional, we ob-
tain the exact rate of convergence of lnE(r̂(X)− r(X))2.
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1 Introduction

1.1 Functional regression estimation
Let S be a measurable space, and let the data (X1,Y1), · · · ,(Xn,Yn) be independent
S ×R-valued random variables with the same distribution as a generic pair (X ,Y )
such that E|Y | < ∞. In the regression estimation problem, the goal is to estimate
the regression function r(X) = E(Y |X) using the data.

In the classical setting, each covariate Xi is supposed to be a collection of
numerical experiments represented by a finite-dimensional vector. Thus, to date,
most of the results pertaining to regression estimation have been reported in the
finite-dimensional case where S =Rd . We refer the reader to the book by Gyor̈fi
et al [5] for a comprehensive introduction to the subject and an overview of most
standard methods in Rd .

However, in an increasing number of practical applications, input data items
take more complicated forms. In the functional data analysis, S is a set of curves
and, in this context, regression estimation has many applications in a wide class of
problems, among with speech recording, analysis of patients visits in a hospital,
price of an option... Last few years have witnessed important developments in
both the theory and practise of functional data analysis, and many traditional sta-
tistical tools have been adapted to handle functional inputs. The book by Ramsay
and Silverman [11] provides a presentation of this area.

In the infinite-dimensional setting, the regression problem is faced with new
challenges which requires changing methodology. Curiously, despite a huge re-
search activity in the area of infinite-dimensional data analysis, few attempts have
been made to connect it with the rich theory of stochastic processes that both pro-
vides a wide class of models and powerful tools. This approach, based on a use
of stochastic process theory for the benefit of nonparametric estimation, has been
studied in the fairly closed problem of supervised classification; in this direction,
we refer the reader to the recent papers by Baı̀llo et al [3], Biau et al [2], Cadre
[4].

Among the classical models from the theory of time-dependent stochastic pro-
cesses, the case of Poisson processes is of great interest. Here, S is the set of
counting paths on a subset of R+. In epidemiology for example, the observed
curve Xi represent the dates of the patient visits to the doctor and the variable
response Yi provide quantitative information on the health status of the patient.

More generally, we consider in this paper the case of a Poisson point process
covariate, which corresponds to the situation where each measurement report the
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locations of every individual event. In this setting, the state space S is identified
to the so-called Poisson space over some measurable space X, i.e.

S =
{ n

∑
i=1

δxi, n ∈ N and xi ∈ X
}
,

where δx stands for the Dirac measure on x.

1.2 Poisson point process regression estimation
In the sequel, the covariate X is a Poisson point process (see [7]) on a domain
X⊂Rd with mean measure µ , where µ is a σ -finite measure on the Borel σ -field
X of X. As seen before, this means X belongs to the space of integer-valued
σ -finite measures on X and satisfies:

• for any A ∈ X , the number XA of points of X lying in A has a Poisson
distribution with parameter µ(A);

• for any family of disjoint sets A1, · · · ,A` ∈X , XA1, · · · ,XA`
are independent

random variables.

In the case X = R, Itô’s famous chaos expansion (see [6], [13]) says that every
square integrable and σ(X)-measurable random variable can be decomposed as a
sum of multiple stochastic integrals, called chaos. This result has been generalized
by Nualart and Vives [10], and more recently by Last and Penrose [8].

Now recall some basic facts about chaotic decomposition in the Poisson space.
Fix k ≥ 1. Provided g ∈ L2(µ⊗k), we can define the k-th chaos Ik(g) associated
with g, namely

Ik(g) =
∫

∆k

gd(X−µ)⊗k, (1.1)

where ∆k = {x ∈ Xk : xi 6= x j for all i 6= j}. Interestingly, if g ∈ L2(µ⊗k) and
h ∈ L2(µ⊗`) for k, `≥ 1, we have

EIk(g)I`(h) = k!
∫
Xk

ḡ h̄dµ
⊗k1{k=`} and EIk(g) = 0, (1.2)

where ḡ and h̄ are the symmetrizations of g and h, that is, for all (x1, · · · ,xk) ∈Xk:

ḡ(x1, · · · ,xk) =
1
k! ∑

σ

g(xσ(1), · · · ,xσ(k)),

3



the sum being taken over all permutations σ = (σ(1), · · · ,σ(k)) of {1, · · · ,k},
and similarly for h̄. In particular, note that Ik(g) is a square integrable random
variable. In Nualart and Vives ([10], p. 160), it is proved that every square inte-
grable σ(X)-measurable random variable can be decomposed as an infinite sum
of chaos. Applied to our regression problem, this statement writes as

r(X) = EY + ∑
k≥1

1
k!

Ik( fk), (1.3)

where equality holds in L2, provided EY 2 < ∞. In the above formula, each fk is
an element of L2

sym(µ
⊗k) –the subset of symmetric functions in L2(µ⊗k)–, and

the decomposition is defined in an unique way. Last and Penrose [8] proved that
each fk can be expressed as a difference operator of order k.

Based on independent copies of (X ,Y ), we shall construct a nonparametric
estimate r̂ of r with the help of decomposition (1.3). Next section is devoted to
the model, and to the construction and statistical properties of r̂. In particular, we
obtain a finite sample bound on the mean squared error E(r̂(X)− r(X))2. More-
over, we prove that if the model is genuinely infinite-dimensional in the sense that
infk≥1 ‖ fk‖L2(µ⊗k) > 0 then, under some regularity conditions:

lim
n→∞

lnE
(
r̂(X)− r(X)

)2

√
lnn ln2 n

=−
√

α

2d
,

for some α ∈]0,1[. Last two sections contains proofs.

2 Regression estimate

2.1 Model and heuristic of the estimate
Basic assumptions on the model. We assume throughout that X is a compact set,
say X ⊂ [−M,M]d , and the mean measure µ has a density ϕ with respect to the
Lebesgue measure λ on X that is, ϕ : X→R+ is such that for all Borel set A⊂X:

EXA =
∫

A
ϕdλ .

Heuristics. In view of a short presentation of the heuristic of the estimate of r,
we assume for simplicity that ϕ is a known positive function. Suppose also that
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the intensity ϕ and the fk’s defined by (1.3) are bounded functions. Let W be a
bounded density on X, h = h(n)> 0 and for all x ∈ X :

Wh(x) =
1
hd W

(x
h

)
. (2.1)

For a real-valued function g defined on X, the notation g⊗k denotes the real-valued
function on Xk such that

g⊗k(x) =
k

∏
i=1

g(xi), x = (x1, · · · ,xk) ∈ Xk.

By relations (1.2) and (1.3), we have for all x ∈ Xk and k ≥ 1:

EY Ik
(
W⊗k

h (x−·)
)

= Er(X)Ik
(
W⊗k

h (x−·)
)

= ∑
`≥1

1
`!
EI`( f`)Ik

(
W⊗k

h (x−·)
)

=
∫
Xk

fkW̄⊗k
h (x−·)ϕ⊗kdλ

⊗k,

where W̄⊗k
h (x−·) is the symmetrization of the function W⊗k

h (x−·). Since fk is a
symmetric function, we can write

EY Ik
(
W⊗k

h (x−·)
)
=
∫
Xk

fkW⊗k
h (x−·)ϕ⊗kdλ

⊗k.

Thus, under smoothness assumptions on ϕ and fk, the right-hand side converges
to fk(x)ϕ⊗k(x), provided h→ 0. From the left-hand side, we thus deduce that a
kernel-type estimator of fk(x) based on independent copies (X1,Y1), · · · ,(Xn,Yn)
of (X ,Y ) is

f̃k(x) =
1
n

n

∑
i=1

Yi

∫
∆k

W⊗k
h (x−·)
ϕ⊗k(x)

d(Xi−µ)⊗k.

By (1.1), the k-th chaos Ik( fk) is thus estimated by

Ĩk =
∫

∆k

f̃k(x)d(X−µ)⊗k, (2.2)

which, by (1.3), gives the estimator r̃ of r defined by

r̃(X) = Ȳn +
N

∑
k=1

1
k!

Ĩk, (2.3)
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where N = N(n) tends to infinity and, as usual,

Ȳn =
1
n

n

∑
i=1

Yi.

However, this construction requires the unrealistic assumption that ϕ is known.
Thus we shall first present a nonparametric estimator of ϕ , then we shall adapt the
previous idea to this context.

2.2 Construction of the estimator
Estimation of ϕ . Construction of the nonparametric estimate of ϕ is based on
Mecke’s Formula (see [9]), which states in particular that

E
∫

X
γ dX =

∫
X

γ dµ =
∫
X

γ ϕdλ ,

provided γ : X→ R is in L1(µ). With this respect, we define the nonparametric
estimator ϕ̂ of ϕ by

ϕ̂(x) =
1
n

n

∑
j=1

∫
X

Kb(x,y)X j(dy), x ∈ X,

where, for all x = (x1, · · · ,xd) and u = (u1, · · · ,ud) ∈ X,

Kb(x,u) =
d

∏
j=1

(
Jb(x j−u j)+ Jb(2M+ x j +u j)+ Jb(2M− x j−u j)

)
. (2.4)

In the above formula, J is a continuous and symmetric density on [−1,1] and, for
the bandwidth b = b(n)> 0 such that b→ 0 as n→ ∞:

Jb(y) =
1
b

J
(y

b

)
, y ∈ [−b,b].

This particular construction is classical in order to avoid bias on the boundary of
X (see p. 30 in the book by Silverman [12]). Then, we define for all i = 1, · · · ,n
the leave-one-out nonparametric estimator ϕ̂i of ϕ by

ϕ̂i(x) = ϕ̂(x)− 1
n

∫
X

Kb(x,y)Xi(dy)

=
1
n

n

∑
j=1, j 6=i

∫
X

Kb(x,y)X j(dy),
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for x ∈ X. Leave-one-out procedure is only considered here for technical matters.

Chaos estimate. Now consider the vanishing sequences ρ = ρ(n) > 0 and h =
h(n) > 0. Following (2.2), the leave-one-out estimator of the k-th chaos Ik( fk) is
Îk, such that

Îk =
1
n

n

∑
i=1

Yi

∫
∆k

[∫
∆k

W⊗k
h (x−·)

(ϕ̂i +ρ)⊗k(x)
(dXi− ϕ̂idλ )⊗k

](
dX− ϕ̂idλ

)⊗k
(x),

where Wh is defined by (2.1). In the sequel, we assume for simplicity that W has
a compact support.

Regression estimate. Finally, following the idea drawn by (2.3), the estimator r̂ of
r is

r̂(X) = Ȳn +
N

∑
k=1

1
k!

Îk,

where N = N(n) tends to infinity.

2.3 Result
In the sequel, ‖.‖ is the euclidean norm on any Rp. We assume that (X ,Y ) is in-
dependent from the sample (X1,Y1), · · · ,(Xn,Yn). Now introduce the assumptions
on the model.

H1. Y is a bounded random variable.

H2. infXϕ > 0 and there exists L1 > 0 such that for all x,y ∈ X :

|ϕ(x)−ϕ(y)| ≤ L1‖x− y‖.

H3. There exists a constant L2 > 0 such that for all k ≥ 1 and x,y ∈ Xk:

| fk(x)− fk(y)| ≤ Lk
2‖x− y‖.

H4. There exist two constants C1,C2 > 0 such that nbd+2, nhdN+1 and nbdρ3/N
are bounded below by C1, and b2 +ρ ≤C2hdN+1.

Assumptions H1-H3 are classical in nonparametric estimation. Moreover, it is
easily seen that H4 holds for b = n−γ , ρ = n−β and h,N defined by formulas (2.6)

7



below, under the additional constraints that 0 < γ < 1/(d + 2), 0 < 3β < 1− dγ

and α < min(1,β ,2γ). Note that last constraint is sufficient for b2+ρ ≤C2hdN+1

to hold because, under the condition uN/(N lnN)→ 0 as n→ ∞:

lnhdN+1 =−α lnn+◦(lnn).

Moreover, since
lnnhdN+1 = (1−α) lnn+◦(lnn),

we see that α < 1 is a sufficient condition for nhdN+1 ≥C1 to hold.

For notational simplicity, we set ln2 n = ln(lnn).

Theorem 2.1. Assume that H1-H4 hold. Then, there exists C ≥ 1 such that

E
(
r̂(X)− r(X)

)2 ≤CN
(

h+
1

N!

)
. (2.5)

In particular, for the following choices:

N =
[√2α lnn

d ln2 n

]
, h = e−N lnN−uN , (2.6)

where α > 0 and uN ≥ 0 is such that uN/(N lnN)→ 0 as n→ ∞, we have:

limsup
n→∞

lnE
(
r̂(X)− r(X)

)2

√
lnn ln2 n

≤−
√

α

2d
.

Roughly, Theorem 2.1 entails that the rate of convergence of the mean squared
error between r̂(X) and r(X) is at least

exp
(
−
√

α

2d
lnn ln2 n

)
.

Note that this rate is obtained for that bandwidths h that satisfy, as n→ ∞:

lnh∼−
√

α

2d
lnn ln2 n.

Hence, the general finding here is that the rate of convergence of the mean squared
error is much slower than the traditional finite-dimensional rate (see [5]), but faster
than the rates obtained by Biau et al [1] in the infinite-dimensional setting. This,
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of course, is explained by the fact that we fully exploit the particular nature of the
covariate via the chaotic decomposition of square integrable σ(X)-measurable
random variables whereas Biau et al [1] utilize a k-nearest neighbor estimator
whose construction does not depend on the law of X .

Our task is now to prove that the rate of Theorem 2.1 is optimal in a gen-
uine infinite-dimensional setting. With this goal, we see that it is necessary to
strengthen the conditions on the model. Indeed, if all the fk’s for k ≥ k0 have a
null L2

sym(µ
⊗k)-norm, then r can be decomposed into a finite sum of chaos (see

1.3), and hence we are faced with a finite-dimensional estimation problem, for
which the rate of theorem 2.1 may not be optimal. To avoid this situation, we
assume that all the fk’s have a L2(µ⊗k)-norm greater than a positive constant.

Theorem 2.2. Assume that H1-H4 hold, and infk≥1 ‖ fk‖L2(µ⊗k) > 0. If N and h
are given by (2.6) with the additional assumption on uN that uN/N→ ∞, we have

lim
n→∞

lnE
(
r̂(X)− r(X)

)2

√
lnn ln2 n

=−
√

α

2d
.

To the best of our knowledge, this is the first exact rate in the regression es-
timation problem with a Poisson point process covariate. However, it is an open
problem to know whether this rate is optimal over the whole class of regression
estimates.

3 Proof of Theorems 2.1 and 2.2
In the sequel, κ > 0 is such that supXϕ supR2d K ≤ κ and we assume for simplicity
that constants C1,C2 of assumption H4 are equal to 1. Moreover, we assume that
ρ,b and h are smaller than 1 (recall that they vanish as n tends to infinity). Finally,
we let for all k ≥ 1:

βk = ρ
−k exp

(
− nbdρ2

4κ

)
.

We start the section with the following result, whose proof is presented later in
this section.

Lemma 3.1. Assume that assumptions H1-H3 hold and nbd+2 ≥ 1. Then, there
exists C ≥ 1 such that for all k ≥ 1:

E
(
Îk− Ik( fk)

)2 ≤Ck
(
(k!)2 b2 +β2k

hdk +h+
k!

nhdk

)
.
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Proof of Theorem 2.1. In the sequel, C ≥ 1 denotes a constant whose value may
change from line to line. According to Jensen Inequality and Lemma 3.1:

E
( N

∑
k=1

1
k!
(
Îk− Ik( fk)

))2
≤ CN

N

∑
k=1

(b2 +β2k

hdk +
h

(k!)2 +
1

k!nhdk

)
≤ CN

(b2 +β2N

hdN +h+
1

nhdN

)
. (3.1)

Moreover, according to Theorem 4.2 in Last and Penrose [8],

E
(

∑
k≥N+1

Ik( fk)

k!

)2
≤ 1

N!
E
∫
XN+2

[
DN+2

x r(X)
]2

ϕ
⊗(N+2)(x)λ⊗(N+2)(dx), (3.2)

where for all x ∈ XN+2, DN+2
x denotes the difference operator of order N +2, that

is, if δz is the Dirac mass on z:

DN+2
x r(X) = ∑

S⊂{1,··· ,N+2}
(−1)N+2−|S|r

(
X +∑

s∈S
δxs

)
.

In the formula above, |S| is the number of elements of S. But |r| is bounded since
Y is bounded under H1. Hence, |DN+2

x r(X)| ≤C2N+2 and, by (3.2):

E
(

∑
k≥N+1

Ik( fk)

k!

)2
≤ CN

N!
.

Putting all pieces together, we deduce from (3.1) and above that

E
(
r̂(X)− r(X)

)2 ≤CN
(1

n
+

b2 +β2N

hdN +h+
1

nhdN +
1

N!

)
,

because E(EY − Ȳn)
2 ≤ 1/n. Now, under condition H4 which in particular states

that nbdρ3/N ≥ 1, we have for n large enough:

β2N ≤ ρ
−2Ne3N lnρ ≤ ρ. (3.3)

Moreover, since nhdN+1 ≥ 1 and b2 +ρ ≤ hdN+1:

E
(
r̂(X)− r(X)

)2 ≤CN
(

h+
1

N!

)
, (3.4)

hence the first part of the theorem.
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Now consider the case where N and h are given by (2.6). We have

CNh = eN lnC−N lnN−uN ≤ e−N lnN+N lnC. (3.5)

Furthemore, according to the Stirling Formula,

CN

N!
≤ eN lnC+N−N lnN .

Hence by (3.4), we have for all ε > 0:

lnE
(
r̂(X)− r(X)

)2 ≤ ln
(
e−N lnN+N lnC + e−N lnN+N(1+lnC)

)
≤ −N lnN + ln

(
eN lnC + eN(1+lnC)

)
.

Moreover, by the very definition of N given in (2.6):

N lnN =
[√2α lnn

d ln2 n

]
ln
[√2α lnn

d ln2 n

]
=

√
α

2d
lnn ln2 n (1+◦(1)). (3.6)

Putting all pieces together yield

limsup
n→∞

lnE
(
r̂(X)− r(X)

)2

√
lnn ln2 n

≤−
√

α

2d
,

which is the desired result. �

Proof of Theorem 2.2. For simplicity, we assume that infk≥1 ‖ fk‖L2(µ⊗k) ≥ 1.
Then, by the triangle inequality and (1.2):

√
E
(
r̂(X)− r(X)

)2
=

√√√√E
[ N

∑
k=1

1
k!
(
Îk− Ik( fk)

)
− ∑

k≥N+1

1
k!

Ik( fk)
]2

≥
√
E
(

∑
k≥N+1

1
k!

Ik( fk)
)2
−

√√√√E
( N

∑
k=1

1
k!
(
Îk− Ik( fk)

))2

≥ 1√
(N +1)!

−

√√√√E
( N

∑
k=1

1
k!
(
Îk− Ik( fk)

))2
.
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Applying successively (3.1), (3.3) and H4, we first deduce that

E
( N

∑
k=1

1
k!
(
Îk− Ik( fk)

))2
≤CNh = e−N lnN+N lnC−uN .

Moreover, by the Stirling Formula:

1
(N +1)!

≥ e−(N+3/2) ln(N+1)+N .

Consequently, E(r̂(X)− r(X)
)2 is greater than(

e−(N/2+3/4) ln(N+1)+N/2− e−(N/2) lnN+(N/2) lnC−uN/2
)2

.

Then, using the condition uN/N→ ∞, we get with easy calculations that

lnE
(
r̂(X)− r(X)

)2 ≥−N lnN + cN,

for some constant c > 0. By (3.6), we deduce that

liminf
n→∞

lnE
(
r̂(X)− r(X)

)2

√
lnn ln2 n

≥−
√

α

2d
,

which, combined with Theorem 2.1, gives the result. �

Fix k ≥ 1 and denote for all x,y ∈ Xk:

ĝk,i(x,y) =
W⊗k

h (x− y)
(ϕ̂i +ρ)⊗k(x)

. (3.7)

We also let for all i = 1, · · · ,n:

dX̂i = dXi− ϕ̂idλ , dX̄i = dX− ϕ̂idλ , (3.8)
dX̃i = dXi−ϕdλ and dX̃ = dX−ϕdλ . (3.9)

With this respect, we have:

Îk =
1
n

n

∑
i=1

Yi

∫
∆ 2

k

ĝk,i(x,y)X̂⊗k
i (dy)X̄⊗k

i (dx).
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Proof of Lemma 3.1. For simplicity, we shall assume in this proof that |Y | ≤ 1.
Moreover, C ≥ 1 denotes a constant whose value may change from line to line.
With the help of notations (3.7)-(3.9), we let:

Ĵ1 =
1
n

n

∑
i=1

Yi

∫
∆ 2

k

ĝk,i(x,y)X̃⊗k
i (dy)X̃⊗k(dx)

Ĵ2 =
1
n

n

∑
i=1

Yi

∫
∆ 2

k

gk(x,y)X̃⊗k
i (dy)X̃⊗k(dx),

where, for x,y ∈ Xk:

gk(x,y) =
W⊗k

h (x− y)
ϕ⊗k(x)

.

Then, since |Y | ≤ 1, we get by Jensen’s Inequality:

E
(
Îk− Ĵ1

)2 ≤ E
(∫

∆ 2
k

ĝk,1(x,y)
[
X̂⊗k

1 (dy)X̄⊗k
1 (dx)− X̃⊗k

1 (dy)X̃⊗k(dx)
])2

≤ 2(R1k +R2k),

where R1k and R2k are defined in Lemma 4.4. Hence,

E
(
Îk− Ĵ1

)2 ≤Ck(k!)2(1+β2k)
b2

hdk . (3.10)

Moreover, conditioning first by X1, · · · ,Xn then by X2, · · · ,Xn, we find with two
successive applications of the isometry formula (1.2), that

E
(
Ĵ1− Ĵ2

)2 ≤ E
(∫

∆ 2
k

(
ĝk,1(x,y)−gk(x,y)

)
X̃⊗k

1 (dy)X̃⊗k(dx)
)2

≤ (k!)2
∫
X2k

E
(
ĝk,1(x,y)−gk(x,y)

)2
ϕ
⊗k(x)ϕ⊗k(y)dxdy.

Thus, using the notation of Lemma 4.3, we get:

E
(
Ĵ1− Ĵ2

)2 ≤ Ck(k!)2Nk

∫
X2k

(
W⊗k

h (x− y)
)2dxdy

≤ Ck(k!)2 b2 +ρ2 +β2k

hdk (3.11)
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Finally, formula (1.2) gives

E
(
Ĵ2− Ik( fk)

)2
=

∫
Xk

E
(1

n

n

∑
i=1

Zi(x)− fk(x)
)2

ϕ
⊗k(x)dx

=
∫
Xk

(1
n

var
(
Z1(x)

)
+
(
EZ1(x)− fk(x)

)2
)

ϕ
⊗k(x)dx,(3.12)

where for all x ∈ Xk and i = 1, · · · ,n:

Zi(x) = Yi

∫
∆k

gk(x,y)X̃⊗k
i (dy).

By (1.3) and (1.2):

EZ1(x) = Er(X)
∫

∆k

gk(x,y)X̃⊗k(dy) =
∫
Xk

fk(y)gk(x,y)ϕ⊗k(y)dy

=
1

ϕ⊗k(x)

∫
Xk

fk(y)W⊗k
h (x− y)ϕ⊗k(y)dy.

Then, easy calculations prove that, since W has a compact support:∫
Xk

(
EZ1(x)− fk(x)

)2
ϕ
⊗k(x)dx≤Ckh. (3.13)

Moreover, by (1.2):

var
(
Z1(x)

)
≤ E

(∫
∆k

gk(x,y)X⊗k(dy)
)2

≤ k!
∫
Xk

g2
k(x,y)ϕ

⊗k(y)dy

≤ k!
[ϕ⊗k(x)]2

∫
Xk

[
W⊗k

h (x− y)
]2

ϕ
⊗k(y)dy.

Hence, ∫
Xk

var
(
Z1(x)

)
ϕ
⊗k(x)dx≤ k!

Ck

hdk . (3.14)

We can conclude with (3.12)-(3.14) that

E
(
Ĵ2− Ik( fk)

)2 ≤Ck
(

h+
k!

nhdk

)
.

Finally, the lemma is then a consequence of (3.10), (3.11) and above, since b and
ρ vanish. �
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4 Auxiliary results

4.1 Intensity estimation
Recall that

βk = ρ
−k exp

(
− nbdρ2

4κ

)
.

where κ > 0 is such that supXϕ supR2d K ≤ κ .

Lemma 4.1. Assume H2 holds and nbd+2 ≥ 1. Then, there exists C ≥ 1 such that
for all k ≥ 1 and x ∈ X:

(i) E|ϕ̂1(x)−ϕ(x)|k ≤Ckbk

(ii) E
∣∣ 1
ϕ̂1(x)+ρ

− 1
ϕ(x)

∣∣k ≤Ck(bk +ρ
k +βk

)
.

Proof. First we compute the bias of ϕ̂1(x). For simplicity, we assume d = 1 only
for the computation of the biais. By the very definition of ϕ̂1(x) (see 2.4 and
below), we have

Eϕ̂1(x) =
∫ M

−M
Kb(x,y)ϕ(y)dy

=
∫ (x+M)/b

(x−M)/b
J(z)ϕ(x−bz)dz+

∫ (3M+x)/b

(M+x)/b
J(z)ϕ(bz−2M− x)dz

+
∫ (3M−x)/b

(M−x)/b
J(z)ϕ(2M− x−bz)dz.

Distinguishing the cases x ∈ [−M,−M + b], x ∈ [−M + b,M− b] and x ∈ [M−
b,M], it is an easy exercise to prove that under the Lipschitz condition H2 on ϕ ,
we have

|Eϕ̂1(x)−ϕ(x)| ≤ 3bL1

∫ 1

−1
(‖y|+2)J(y)dy≤Cb, (4.1)

where, here and in the following, C ≥ 1 is a constant that does not depend on x, k
and n, and may change from line to line.

Our second task is to give an exponential inequality for the deviation proba-
bility of ϕ̂1(x). Fix α > 0 and, for simplicity, write Fx(y) = Kb(x,y) for y ∈X. We
have by independence, for all s > 0:

P
(
ϕ̂1(x)−Eϕ̂1(x)≥ α

)
= P

(
exp
(

s
n

∑
i=2

∫
X

Fx(dXi−ϕdλ )
)
≥ eαsn

)
≤ e−αsn

(
Eexp

(
s
∫
X

Fx(dX1−ϕdλ )
))n−1

,
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using Markov Inequality. By Campbell Inequality (see [7]), we thus have

P
(
ϕ̂1(x)−Eϕ̂1(x)≥ α

)
≤ exp

(
−αsn+(n−1)

∫
X

(
esFx− sFx−1

)
ϕdλ

)
. (4.2)

But, if K+,ϕ+ > 0 are constants such that K(x,y) ≤ K+ and ϕ(x) ≤ ϕ+ for all
x,y ∈ X, we have:∫

X

∣∣esFx− sFx−1
∣∣ϕdλ ≤ ∑

j≥2

s j

j!

∫
X

F j
x ϕdλ

≤ ∑
j≥2

s j

j!
K j−1
+ ϕ+

bd( j−1)

≤ ϕ+bd

K+

(
exp
(sK+

bd

)
− sK+

bd −1
)
.

Letting δ the function defined for all t ≥ 0 by δ (t) = t − (1+ t) ln(1+ t) and
choosing s so that

s =
bd

K+
ln
(
1+

α

ϕ+

)
,

we have by (4.2) and above:

P
(
ϕ̂1(x)−Eϕ̂1(x)≥ α

)
≤ exp

(nbdϕ+

K+
δ
( α

ϕ+

)
− α

ϕ+
+

bdϕ+

K+
ln
(
1+

α

ϕ+

))
≤

(
1+

α

ϕ+

)
exp
(nbdϕ+

K+
δ
( α

ϕ+

))
,

for n large enough, since b vanishes. Considering −Fx instead of Fx, we can
conclude that

P
(∣∣ϕ̂1(x)−Eϕ̂1(x)

∣∣≥ α
)
≤ 2
(
1+

α

ϕ+

)
exp
(nbdϕ+

K+
δ
( α

ϕ+

))
. (4.3)

We are now in a position to establish (i) and (ii). Regarding (i), we have by
(4.1):

E
∣∣ϕ̂1(x)−ϕ(x)

∣∣k ≤ 2k(Ckbk +E
∣∣ϕ̂1(x)−Eϕ̂1(x)

∣∣k).
Moreover, writing

E
∣∣ϕ̂1(x)−Eϕ̂1(x)

∣∣k = ∫ ∞

0
P
(∣∣ϕ̂1(x)−Eϕ̂1(x)

∣∣≥ u1/k)du
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and observing that, since δ (t) is smaller than −t2/4 or −t/4, depending on t ≤ 1
or not, we deduce from (4.3) and an obvious decomposition of the above integral
that :

E
∣∣ϕ̂1(x)−Eϕ̂1(x)

∣∣k ≤ ( C√
nbd

)k
.

Putting all pieces together gives (i), since nbd+2 ≥ 1.
Next we prove (ii). Note that, according to (4.1):∣∣∣ 1

Eϕ̂1(x)
− 1

ϕ(x)

∣∣∣≤ Cb
ϕ−(ϕ−−Cb)

.

Since b vanishes as n tends to infinity, we thus have∣∣∣ 1
Eϕ̂1(x)

− 1
ϕ(x)

∣∣∣≤Cb. (4.4)

Let now A = {|ϕ̂1(x)−Eϕ̂1(x)| ≥ ρ}. Since infXϕ > 0 by assumption, we have
according to (4.1):

E
∣∣∣ 1
ϕ̂1(x)+ρ

− 1
Eϕ̂(x)

∣∣∣k ≤ E
∣∣∣ 1
ϕ̂1(x)+ρ

− 1
Eϕ̂(x)

∣∣∣k1Ac

+E
∣∣∣ 1
ϕ̂1(x)+ρ

− 1
Eϕ̂(x)

∣∣∣k1A

≤ Ck(
ρ

k +ρ
−kP(A)

)
≤ Ck

(
ρ

k +ρ
−k exp

(
− nbdρ2

4κ

))
.

Last inequality is a consequence of (4.3), ρ→ 0 as n→∞ and the fact that δ (t)≤
−t2/4 provided t > 0 is small enough. We can now conclude with the above
inequality and (4.4). �

4.2 Perturbated chaos
Lemma 4.2. Let g ∈ L2(µ⊗k) and ψ ∈ L2(λ ). If dν = ψdλ , we have

E
(∫

∆k

gd
[
(X−ν)⊗k− (X−µ)⊗k])2

≤
k−1

∑
i=0

i!
(

k
i

)2

‖ϕ−ψ‖2(k−i)
2

∫
Xk

g(x)2
i

∏
j=1

ϕ(x j)λ
⊗k(dx).
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Proof. For simplicity of the proof, we assume that g is a symmetric function.
Otherwise, one only needs to consider its symmetrized version. First observe that
by symmetry of g:∫

∆k

gd(X−ν)⊗k =
k

∑
i=0

(
k
i

)∫
∆k

gd(X−µ)⊗id(µ−ν)⊗k−i.

Consequently,

D =
∫

∆k

gd(X−ν)⊗k−
∫

∆k

gd(X−µ)⊗k

=
k−1

∑
i=0

(
k
i

)∫
∆k

gd(µ−ν)⊗k−id(X−µ)⊗i.

Hence, letting for i = 1, · · · ,k and x ∈ Xi,

Γ (x1, · · · ,xi) =
{

y ∈ ∆k−i : y` /∈ {x1, · · · ,xi} for all `= 1, · · · ,k− i
}
,

we have:

D =
∫
Xk

g(ϕ−ψ)⊗kdλ
⊗k +

k−1

∑
i=1

(
k
i

)∫
∆i

gid(X−µ)⊗i,

where for (x1, · · · ,xi) ∈ ∆i,

gi(x1, · · · ,xi) =
∫

Γ (x1,··· ,xi)
g(x1, · · · ,xk)

k

∏
j=i+1

(ϕ−ψ)(x j)λ (dx j).

Observe that by Cauchy-Schwarz,

gi(x1, · · · ,xi)
2 ≤ ‖ϕ−ψ‖2(k−i)

2

∫
Xk−i

g(x1, · · · ,xk)λ (dxi+1) · · ·λ (dxk).

Then, since each gi is symmetric, we deduce from equations (1.1) and (1.2) that

ED2 =
(∫

Xk
g(ϕ−ψ)⊗kdλ

⊗k
)2

+
k−1

∑
i=1

i!
(

k
i

)2 ∫
Xi

g2
i dµ

⊗i

≤
k−1

∑
i=0

i!
(

k
i

)2

‖ϕ−ψ‖2(k−i)
2

∫
Xk

g(x)2
i

∏
j=1

ϕ(x j)λ
⊗k(dx),

hence the lemma. �
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4.3 Technical inequalities
Lemma 4.3. Assume H2 holds and nbd+2 ≥ 1. There exists C ≥ 1 such that for
all k, `,n≥ 1:

(i) Mk,` = sup
x∈Xk

E
( ‖ϕ̂1−ϕ‖`2
(ϕ̂1 +ρ)⊗k(x)

)2
≤Ck(1+β2k)b2`;

(ii) Nk = sup
x∈Xk

E
∣∣∣ 1
(ϕ̂1 +ρ)⊗k(x)

− 1
ϕ⊗k(x)

∣∣∣2 ≤Ck(b2 +ρ
2 +β2k

)
.

Proof. We only prove (i). First observe that by Cauchy-Schwarz and since X is
bounded:

M2
k,` ≤ E‖ϕ̂1−ϕ‖4`

2 sup
x∈Xk

E
(
(ϕ̂1 +ρ)⊗k(x)

)−4

≤ Ck sup
x∈X

E|ϕ̂1(x)−ϕ(x)|4` sup
x∈Xk

E
(
(ϕ̂1 +ρ)⊗k(x)

)−4
,

where, here and in the following, C is a positive constant that does not depend on
k, ` and n and may change from line to line. Hence by Lemma 4.1:

M2
k,` ≤Ckb4` sup

x∈X
E
(
(ϕ̂1 +ρ)⊗k(x)

)−4
. (4.5)

Thus, we only need to consider the rightmost term. Fix x ∈ Xk, and note that

E
(
(ϕ̂1 +ρ)⊗k(x)

)−4 ≤ 8
(ϕ⊗k(x))4 +8E

∣∣∣ 1
(ϕ̂1 +ρ)⊗k(x)

− 1
ϕ⊗k(x)

∣∣∣4. (4.6)

The task is to bound the term

A = E
∣∣∣ 1
(ϕ̂1 +ρ)⊗k(x)

− 1
ϕ⊗k(x)

∣∣∣4.
We shall make use of the following inequality:

∣∣ k

∏
i=1

ai−
k

∏
i=1

bi
∣∣4 ≤ 16k

∑
/0 6=I⊂{1,··· ,k}

∏
i∈I
|ai−bi|4 ∏

i/∈I
b4

i ,
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where the ai’s and the bi’s are positive real numbers. Since ϕ is bounded below
by a positive constant:

A ≤ Ck
∑

/0 6=I⊂{1,··· ,k}
E∏

i∈I

∣∣∣ 1
ϕ̂1(xi)+ρ

− 1
ϕ(xi)

∣∣∣4
≤ Ck

∑
/0 6=I⊂{1,··· ,k}

∏
i∈I

(
E
∣∣∣ 1
ϕ̂1(xi)+ρ

− 1
ϕ(xi)

∣∣∣4|I|)1/|I|
,

according to Hölder Inequality, and where |I| is the cardinality of the set I. Thus,
by Lemma 4.1:

A ≤ Ck
k

∑
j=1

(
k
j

)
sup
x∈X

E
∣∣∣ 1
ϕ̂1(x)+ρ

− 1
ϕ(x)

∣∣∣4 j

≤ Ck
k

∑
j=1

(
k
j

)(
b4 j +ρ

4 j +ρ
−4 j exp

(
− nbdρ2

4κ

))
≤ Ck

(
1+ρ

−4k exp
(
− nbdρ2

4κ

))
.

because b and ρ vanishes as n→∞. Assertion (i) is then a straightforward conse-
quence of inequalities (4.5) and (4.6). �

Before statement of next lemma, we recall the notations (3.7)-(3.9).

Lemma 4.4. Assume H2 and H3 hold, and nbd+2 ≥ 1. Then, there exists a con-
stant C ≥ 1 such that for all k,n≥ 1, both quantities above:

R1k = E
(∫

∆ 2
k

ĝk,1(x,y)X̂⊗k
1 (dy)

(
X̄⊗k

1 (dx)− X̃⊗k(dx)
))2

R2k = E
(∫

∆ 2
k

ĝk,1(x,y)
(
X̂⊗k

1 (dy)− X̃⊗k
1 (dy)

)
X̃⊗k(dx)

)2

are bounded by

Ck(k!)2(1+β2k)
b2

hdk .

Proof. We only prove the bound for R1k, other proof being similar. In the sequel,
C ≥ 1 is a constant that does not depend on n and k, and may change from line to
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line. Writing (see notations (3.7)-(3.9)):

R1k = EE
[{∫

∆k

(∫
∆k

ĝk,1(x,y)X̂⊗k
1 (dy)

)(
X̄⊗k

1 (dx)− X̃⊗k(dx)
)}2∣∣∣X1, · · · ,Xn

]
,

we obtain with Lemma 4.2, using the independence of X and X1, · · · ,Xn and the
fact that ϕ is a bounded function:

R1k ≤Ck
k−1

∑
i=0

i!
(

k
i

)2

E
[
V k−i

∫
Xk

(∫
∆k

ĝk,1(x,y)X̂⊗k
1 (dy)

)2
λ
⊗k(dx)

]
, (4.7)

where V = ‖ϕ̂1−ϕ‖2
2. Now fix x ∈ Xk and i = 0, · · · ,k−1. We have

EV k−i
(∫

∆k

ĝk,1(x,y)X̂⊗k
1 (dy)

)2
≤ 2(A1 +A2), (4.8)

where

A1 = EV k−i
(∫

∆k

ĝk,1(x,y)X̃⊗k
1 (dy)

)2
,

and A2 = EV k−i
(∫

∆k

ĝk,1(x,y)
(
X̂⊗k

1 (dy)− X̃⊗k
1 (dy)

))2
.

We proceed to bound A2. As before, we apply Lemma 4.2, but conditionally on
X2, · · · ,Xn. Hence, since ϕ , X and W are bounded:

A2 ≤ Ck
k−1

∑
j=0

j!
(

k
j

)2

EV 2k−i− j
∫
Xk

ĝ2
k,1(x,y)λ

⊗k(dy)

≤ Ck

hdk

k−1

∑
j=0

j!
(

k
j

)2

E
V 2k−i− j[

(ϕ̂1 +ρ)⊗k(x)
]2 .

Consequently, by Lemma 4.3:

A2 ≤
Ck

hdk (1+β2k)
k−1

∑
j=0

j!
(

k
j

)2

b2(k−i− j). (4.9)

In a similar fashion, we get by conditioning and (1.2):

A1 ≤
Ck

hdk k!EV k−i
∫
Xk

ĝ2
k,1(x,y)λ

⊗k(dy)

≤ Ckk!(1+β2k)b2(k−i).
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Thus, by (4.7)-(4.9) and above:

R1k ≤
Ck

hdk (1+β2k)
k−1

∑
i=0

i!
(

k
i

)2(
k!b2(k−i)+

k−1

∑
j=0

j!
(

k
j

)2

b2(2k−i− j)
)

≤ Ck(k!)2(1+β2k)
b2

hdk ,

hence the lemma. �
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cess based on the Fock space, Séminaire de Probabilités XXIV, Lectures Notes in
Mathematics, pp. 154-165.
[11] Ramsay, J.O. and Silverman, B.W. (1997). Functional Data Analysis, Springer-
Verlag, New-York.
[12] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis,
Springer-Verlag, New-York.
[13] Wiener, N. (1938). The homogeneous chaos, AM. J. Math., pp. 897-936.

22


