
HAL Id: hal-01715564
https://hal.science/hal-01715564v2

Submitted on 6 Mar 2018 (v2), last revised 16 Jan 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Parametric Identification for STL
Alexey Bakhirkin, Thomas Ferrère, Oded Maler

To cite this version:
Alexey Bakhirkin, Thomas Ferrère, Oded Maler. Efficient Parametric Identification for STL. 21st
International Conference on Hybrid Systems: Computation and Control (HSCC’18), Apr 2018, Porto,
Portugal. �10.1145/3178126.3178132�. �hal-01715564v2�

https://hal.science/hal-01715564v2
https://hal.archives-ouvertes.fr

Efficient Parametric Identification for STL
Alexey Bakhirkin

Université Grenoble Alpes, VERIMAG

F-38000 Grenoble, France

CNRS, VERIMAG

F-38000 Grenoble, France

Thomas Ferrère

IST Austria

A-3400 Klosterneuburg, Austria

Oded Maler

Université Grenoble Alpes, VERIMAG

F-38000 Grenoble, France

CNRS, VERIMAG

F-38000 Grenoble, France

ABSTRACT
We describe a new algorithm for the parametric identification prob-

lem for signal temporal logic (STL), stated as follows. Given a dense-

time real-valued signalw and a parameterized temporal logic for-

mula φ, compute the subset of the parameter space that renders the

formula satisfied by the signal. Unlike previous solutions, which

were based on search in the parameter space or quantifier elimi-

nation, our procedure works recursively on φ and computes the

evolution over time of the set of valid parameter assignments. This

procedure is similar to that of monitoring or computing the ro-

bustness of φ relative tow . Our implementation and experiments

demonstrate that this approach can work well in practice.

CCS CONCEPTS
•Computingmethodologies→ Simulation evaluation; •Theory
of computation → Modal and temporal logics;

ACM Reference Format:
Alexey Bakhirkin, Thomas Ferrère, and Oded Maler. 2018. Efficient Para-

metric Identification for STL. In HSCC ’18: 21st International Conference
on Hybrid Systems: Computation and Control (part of CPS Week), April
11–13, 2018, Porto, Portugal. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3178126.3178132

ACKNOWLEDGMENTS
This work was partially supported by the European Research Coun-

cil under the European Union’s Seventh Framework Programme

(FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”, and

by the Austrian Science Fund (FWF) under grant S11402-N23 “RiSE

/ SHiNE”.

1 INTRODUCTION
Signal temporal logic (STL) [33, 35] is an extension of temporal logic

designed to handle real-valued dense-time signals which gained a

lot of popularity in recent years as a rigorous and expressive for-

malism to describe behaviors of continuous and hybrid systems in

various domains such as analog circuits [28], systems and synthetic

biology [8, 17, 40], biomedical systems [13, 14] and cyber-physical

control systems [15, 19, 30, 36, 37]. The reader is referred to [9] for

an introduction and a survey of applications.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HSCC ’18, April 11–13, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5642-8/18/04. . . $15.00

https://doi.org/10.1145/3178126.3178132

The major use of STL is in monitoring: a signal w , which is

the output of a simulator or a sequence of measurements from a

real system, is observed, and a monitoring procedure then checks

whether it satisfies an STL formula φ, a fact denoted asw |= φ. The
procedure for checking satisfaction works along two dimensions,

one is related to the parse tree of the formula and one to time. For

each sub-formula φ ′ a satisfaction signal is computed whose value

at t indicates whether w satisfies φ ′ from t . The computation of

satisfaction of a formula like ♢[a,b] φ (eventually φ within r ∈ [a,b]
time) at t is propagated backwards from the satisfaction of φ at the

interval [t + a, t + b].
The inverse problem of parametric identification for STL has

been introduced in [6]. It uses PSTL, a parametric version of STL,

admitting formulas where some of the constants in the numerical

predicates and quantitative timing operators are replaced by param-

eters taken from P = {p1, . . . ,pk } ranging over some parameter

spaceV ⊆ Rk . Each selection of parameter valuesv ∈ V transforms

a PSTL formula φ into an STL formula φ[v] that might be satisfied

or not by a given signalw . The problem solved in [6] is to compute

the validity domain of φ relative tow , that is, the set of parameter

valuations v such thatw |= φ[v]. This result provides an enabling

technology for applying learning and data-mining techniques to

observed behaviors of cyber-physical systems [10, 23, 25–27, 39, 41].

The major result of [6] states that when signals, presented as

a sequence of time-stamped values, are interpreted as piecewise-

linear, the validity domains are semi-linear sets. Two approaches

were proposed to compute them. The first was based on quantifier

elimination in linear arithmetic, for a formula whose size is linear

in the number of sampling points of the signal. The other approach

was approximate, based on conducting search over the parameter

space. Under certain reasonable assumptions of monotonicity in pa-

rameter influence, the latter problem is equivalent to approximating

the Pareto front in multi-criteria optimization, e.g. [31].

In this paper we propose an alternative approach which resem-

bles the way monitoring is done for qualitative (satisfaction) and

quantitative (robustness) semantics. Robustness was defined and

computed for STL in [18, 20] following [21, 22] and [38] and its

relation to parametric identification is worth discussing. The ro-

bustness ρ(φ,w) is a real number which is positive if and only ifw
satisfies φ. Moreover, all signals whose pointwise distance fromw
is less than ρ(φ,w) have the same satisfaction status asw .

Consider the constraint x ≥ 0 satisfied by some signal w in

which variable x has value c . The robustness of this satisfaction is

defined as ρ(x ≥ 0,w) = c . On the other hand, the validity domain

of the PSTL formula x ≥ p is D(x ≥ p,w) = {v : v ≤ c}. Consider
now the formula x ≥ 0 ∨ y ≥ 0 which depends on two variables.

According to the common definition of robustness we will have

ρ(x ≥ 0 ∨ y ≥ 0,w) = max{ρ(x ≥ 0,w), ρ(y ≥ 0,w)}

https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1145/3178126.3178132
http://erc.europa.eu/
http://erc.europa.eu/
http://stator.imag.fr
https://doi.org/10.1145/3178126.3178132

HSCC ’18, April 11–13, 2018, Porto, Portugal Alexey Bakhirkin, Thomas Ferrère, and Oded Maler

a one-dimensional object that mixes the tolerances associated with

the two variables. On the other hand, the validity domain for the

PSTL formula x ≥ p ∨ y ≥ q is a two-dimensional object providing

more refined information concerning the possible deformations of

the signal that do not change satisfiability status.

In signal temporal logic, the above quantities are not constants

but signals themselves. The major contribution of the paper is a new

procedure to compute validity domains that follows the computa-

tion of satisfaction [33] and robustness [18] signals by propagating

them as function of time, from sub-formulas to formulas. With each

formula φ and a signalw we associate a parametric validity signal

whose value at t indicates the set of parameter valuations v such

that (w, t) |= φ[v]. The crucial component is to compute the validity

domain of ♢[a,b] φ from that of φ. Like the robustness computation

in [18], this involves aggregating values of a signal over a shift-

ing window. However, we are dealing with a multi-dimensional

partially-ordered parameter space, and the validity domains are

typically Pareto-like sets.

Technically, we consider PSTL formulas with space parameters

and signals which are interpreted using a piecewise-constant inter-

polation. In this special case, we show that time can be partitioned

into finitely many intervals and the validity domain in each interval

is a finite union of rectangles. We implemented the procedure for

computing validity signals and demonstrate its performance on

rather long signals. Potential extension to piecewise-linear signals

and to timing parameters is discussed at the end of the paper.

2 PARAMETRIC SIGNAL TEMPORAL LOGIC
Parametric Signal Temporal Logic (PSTL) [6] extends the logic STL

[33] with parameters. Itself, STL allows specifying properties of

Boolean and real-valued signals, using atomic formulas of the form

x ≥ c , and temporal formulas of the form ♢[a,b] φ. Additionally,
the logic provides Boolean connectives, and the temporal until
operator. For the sake of simplicity we omit Boolean variables from

the syntax. This is without loss of generality, Boolean variables

can be seen as special real-valued variables taking their values in

{0, 1}. We also only consider the case of closed timing intervals,

other form of intervals do not pose additional difficulty.

Formula x ≥ c is satisfied at time instants where x is above c ,
while formula ♢[a,b] φ is satisfied at time instants where subfor-

mula φ holds within a to b time units in the future. Here a,b, c are
constant timing and space values. The parametrization considered

in PSTL enables these to be undetermined, real-valued parameters.

In this work, we only consider space parameters, i.e. values a,b are

constants. Let us adapt the definitions from [6] to our setting.

A signalw is a function T→ Rn where T = [0,d] is a subset of
R≥0 which we call time domain. The value d is the duration of the

signal, and we denote it by |w |. The value of signalw at time t ∈ T
is denotedw[t] ∈ Rn . Signal values are accessed by variables from

the set X = {x1, . . . ,xn }. The projection ofw onto some variable

x ∈ X is denotedwx . Using these conventions,wx [t] denotes the
value of variable x at time t given in signalw .

Let P = {p1, . . . ,pk } be the set of parameters. A parameter val-
uation is a vector v that assigns a value to every parameter. We

assume that parameter valuations range over a parameter space
V ⊆ Rk . The value of parameter a p ∈ P in a valuation v ∈ V is

denoted vp ∈ R. We often use logical notation to describe sets of

parameter valuations. For example, we write p1 ≥ 1 ∧ p2 ≤ 2 to

denote the set of parameter valuations {v ∈ V | vp1 ≥ 1∧vp2 ≤ 2}.

Definition 2.1 (PSTL Syntax). Formulas φ of PSTL are described

by the following grammar:

φ ::= true | x ≤ c | x ≥ c | x ≤ p | x ≥ p |

¬φ | φ1 ∨ φ2 | ♢[a,b] φ | φ1U φ2

where x ∈ X is a signal variable, c ∈ R is a constant, p ∈ P is a

parameter, and 0 ≤ a ≤ b ∈ R are positive constants.

We also make use of standard abbreviations x < c ≡ ¬(x ≥ c),
φ ∧ψ ≡ ¬(¬φ ∨¬ψ), and common temporal eventually and (timed)
always defined as follows: ♢φ ≡ trueU φ, □φ ≡ ¬ ♢¬φ, and
□[a,b] φ ≡ ¬ ♢[a,b] ¬φ.

The timed until operatorsU[a,b] andU[a,∞) are often consid-

ered primitive, but can also be derived from the untimed until and
bounded eventually as follows [35]:

φU[a,∞)ψ ≡ □[0,a](φUψ)

φU[a,b]ψ ≡ (♢[a,b]ψ) ∧ (φU[a,∞)ψ)

Finally, we introduce the release operator R, as the dual of until:

φ Rψ ≡ ¬(¬φU¬ψ)

STL can be defined as the subset of PSTL formulas free of param-

eters. A parameter valuation v ∈ V transforms a PSTL formula φ
into the STL formula denoted φ[v] obtained by replacing in φ every

parameter p with its value vp ∈ R.
We now recall the semantics of STL from [33].

Definition 2.2 (STL Semantics). The satisfaction of STL formula

φ by signal w at time t ∈ T, denoted by (w, t) |= φ, is defined
inductively as follows:

(w, t) |= true

(w, t) |= x ≥ c iff wx [t] ≥ c

(w, t) |= x ≤ c iff wx [t] ≤ c

(w, t) |= ¬φ iff (w, t) ̸|= φ

(w, t) |= φ1 ∨ φ2 iff (w, t) |= φ1 or (w, t) |= φ2

(w, t) |= ♢[a,b] φ iff ∃t ′ ∈ t ⊕ [a,b], (w, t ′) |= φ
(w, t) |= φ1U φ2 iff ∃t ′ ∈ [t ,∞), (w, t ′) |= φ2 and

∀t ′′ ∈ [t , t ′], (w, t ′′) |= φ1
We say thatw satisfies φ, writtenw |= φ, when (w, 0) |= φ.

For simplicity, we use non-strict matching until semantics, meaning

that there exists a future instant, possibly now, where ψ and φ
hold together, and φ holds from now to that instant. See [24] for a

discussion of until semantical variants.

The introduction of parameters enables to consider several vari-

ants of the same formula, with different constants. This is captured

in the notion of validity domain.

Definition 2.3 (Validity Domain). The validity domain of a PSTL

formula φ relative to some signal trace w , denoted by D(φ,w), is
the set of parameter valuations for which the formula is satisfied:

D(φ,w) = {v ∈ V : w |= φ[v]}

Efficient Parametric Identification for STL HSCC ’18, April 11–13, 2018, Porto, Portugal

Our method explicitly computes the validity domain of the formula

in a bottom-up style of computation. Starting from the validity

domains of atomic formulas, which derive directly from the input

signals, the validity domain of non-atomic formulas is assembled

by Boolean and temporal combinations of validity domains of its

subformulas. In the case of temporal operators, we require the

validity domain of the subformulas at future time points.

Definition 2.4 (Parametric Validity Signal). Given a PSTL formula

φ, a signalw , the parametric validity signal denoted d(φ,w) : T→
℘(V) is defined as follows:

d(φ,w)[t] = {v ∈ V : (w, t) |= φ[v]}

The value of the validity signal at time 0 gives the validity domain:

D(φ,w) = d(φ,w)[0].

Lemma 2.5 (Inductive Characterization). For a PSTL formula,
a signalw , and a time point t ∈ T we have

d(x ≤ c,w)[t] = ifwx [t] ≤ c then V else �

d(x ≥ c,w)[t] = ifwx [t] ≥ c then V else �

d(x ≤ p,w)[t] = {v ∈ V : wx [t] ≤ vp }

d(x ≥ p,w)[t] = {v ∈ V : wx [t] ≥ vp }

d(¬φ,w)[t] = V \ d(φ,w)[t]

d(φ ∨ψ ,w)[t] = d(φ,w)[t] ∪ d(ψ ,w)[t]

d(♢[a,b] φ,w)[t] =
⋃

t ′∈t ⊕[a,b]

d(φ,w)[t ′]

d(φUψ ,w)[t] =
⋃
t ′≥t

©­«d(ψ ,w)[t ′] ∩
⋂

t ′′∈[t,t ′]

d(φ,w)[t ′′]
ª®¬

where x ∈ X , c ∈ R, and p ∈ P .

When the satisfaction of the formula is monotonic in each of

its parameters, one may equivalently talk about the set of tightest

parameter valuations such that the formula is satisfied by the signal.

We now introduce the notion of polarity of a parameter p ∈ P in

φ, intending to assign positive polarity to p if φ is easier to satisfy

as the value of p increases, and negative polarity if φ is harder to

satisfy as p increases. In general, formula satisfaction may not be

monotonic in p, and p may not have a defined polarity.

Definition 2.6. The polarity set π (φ,p) ⊆ {−1, 1} of a parameter

p ∈ P in a formula φ is defined by induction as follows:

π (true,p) = π (x ≤ c,p) = π (x ≥ c,p) = {−1, 1}

π (x ≤ p′,p) = {1} if p′ = p, otherwise {−1, 1}

π (x ≥ p′,p) = {−1} if p′ = p, otherwise {−1, 1}

π (¬φ,p) = {−i : i ∈ π (φ,p)}

π (φ ∨ψ ,p) = π (φ,p) ∩ π (ψ ,p)

π (♢[a,b] φ,p) = π (φ,p)

π (φUψ ,p) = π (φ,p) ∩ π (ψ ,p)

Intuitively, 1 and −1 denote positive and negative polarity re-

spectively. The value � means that different subformulas of φ give

different polarity to p, and thus p does not have consistent polarity

within. The value {−1, 1} means that φ does not depend on p.

In this work, we restrict ourselves to formulas whose parameters

have consistent polarity, which is a common case. The satisfaction

of such formulas is monotonic w.r.t. parameter values and this al-

lows us to characterize signals in terms of the tightest parameter

values with which a given formula is satisfied. Restricting to con-

sistent polarity does not incur a loss of generality, in the following

sense. Given a formula φ with an inconsistent parameter p, we can
replace its negative occurrences with a fresh parameter p′, and
keep the positive occurrences untouched. Then we can intersect

the validity domain of this new formula with the plane p = p′ to
obtain the validity domain of the original formula.

In addition to assuming consistent polarity, we assume that the

formula is given to our algorithm in negation normal form. That is,

our input language is described by the following grammar:

φ ::= true | false | x ≺ c | x ≻ c | x ≺ p | x ≻ p |

φ1 ∨ φ2 | φ1 ∧ φ2 | ♢[a,b] φ | □[a,b] φ | φ1U φ2 | φ1 R φ2

where ≺ ∈ {<, ≤} is a comparison operator, and the meaning of

x , c,p,a, and b is as before. Every formula φ has an equivalent in

negation normal form, produced by rewriting φ using standard

arithmetic and logical rules and the temporal equivalences:

¬ ♢[a,b] φ ⇔ □[a,b] ¬φ ¬(φUψ) ⇔ ¬φ R ¬ψ

Finally, we restrict ourselves to computing the topological clo-
sure of the validity domain. One can also see this as computing

the boundary of the validity domain disregarding the fact whether

the boundary lies inside or outside of it. Syntactically, taking the

topological closure of the domain is equivalent to replacing strict in-

equalities in the formula with their non-strict versions. We assume

that our formulas are in negation normal form and only contain

non-strict inequalities x ≤ c , x ≥ c , x ≤ p, x ≥ p.

3 COMPUTING THE VALIDITY SIGNALS
In this section, we study the case of piecewise-constant input

signals, which we represent as finite sequences of time intervals

mapped to values. We show how to compute the validity signals of

formulas by induction on their structure.

Definition 3.1 (Piecewise-Constant Signal Representation).
A piecewise-constant signalw is represented as a sequence of in-

tervals [ti−1, ti) mapped to valueswi
:

⟨[t0, t1) 7→ w1
; [t1, t2) 7→ w2

; · · · ; [tn−1, tn) 7→ wn⟩

where t0 = 0, tn = |w | is the duration ofw , andwi
is the value of

w[t]when t ∈ [ti−1, ti). We say that n is the length of the signal. We

call segment a mapping of an interval to a constant value, written

[ti−1, ti) 7→ wi
.

For a piecewise-constant input signal, the validity signal is also

piecewise-constant.

Theorem 3.2. For a formula φ and piecewise-constant signalw ,
(1) d(φ,w) is a piecewise-constant signal;
(2) d(φ,w)[t] is finite union of rectangles in V for all t ∈ T.

The rest of the section can be seen as a constructive proof of this.

For the Boolean constants and atomic comparisons, we can di-

rectly build the piecewise-constant validity signals, where the valid-

ity domains are rectangles. For the logical and temporal operators,

HSCC ’18, April 11–13, 2018, Porto, Portugal Alexey Bakhirkin, Thomas Ferrère, and Oded Maler

we combine the validity signals of the subformulas using a finite

number of set unions and intersections. We process the validity

signals of the subformulas piece by piece, and concatenate the re-

sulting pieces together. We now introduce additional notation for

this purpose. Let w = ⟨[t0, t1) 7→ w1
; · · · ; [tn−1, tn) 7→ wn⟩ be a

signal and let s = [τ ,τ ′) 7→ w ′ be a new segment. When τ = tn , we
may append the new segment tow . We write ⟨w ; s⟩ to denote the

result of appending. When t0 > 0 (i.e.,w is not a fully constructed

signal) and τ ′ = t0, we may prepend the new segment to w . We

write ⟨s;w⟩ to denote the result of prepending. We write ⟨⟩ to de-

note the empty signal, that has no segments and has duration 0.

The empty signal can be appended or prepended to any signal s ,
which leaves it unaffected, that is, ⟨⟨⟩; s⟩ = ⟨s; ⟨⟩⟩ = s .

3.1 Overall Algorithm
The algorithm proceeds by induction on the formula structure. For

Boolean constant and atomic comparisons, we compute the validity

signal directly, by iterating over the segments of the input signal.

For the logical and temporal operators, we first compute the full

validity signals of the subformulas. Finally, the validity domain of

a formula is given by the value of its validity signal at time 0.

Below we explain how to compute the validity signal for every

type of formula. For every operator, the computation step imple-

ments the corresponding relation of Lemma 2.5. The algorithms in

this section view validity domains as plain set of parameter valua-

tions (i.e., subsets ofV) without any internal structure, and combine

them with set union and set intersection. We will later discuss the

properties of validity domains of consistent-polarity formulas and

how these domains can be efficiently represented.

3.1.1 Boolean Constants. For the Boolean constants, the validity
signals are the constant functions:

d(true,w) = ⟨[0, |w |) 7→ V ⟩

d(false,w) = ⟨[0, |w |) 7→ �⟩

3.1.2 Atomic Comparisons. Let the component x of the input

signal w be represented as the sequence ⟨[ti−1, ti) 7→ wi
x ⟩i=1..n .

Then, the validity domains for atomic constraints are computed in

the following way. For the comparisons with constants x ≤ c and
x ≥ c , we have

d(x ≤ c,w) = ⟨[ti−1, ti) 7→ ifwi
x ≤ c then V else �⟩i=1..n

d(x ≥ c,w) = ⟨[ti−1, ti) 7→ ifwi
x ≥ c then V else �⟩i=1..n

For the comparison with parameters x ≤ p and x ≥ p, we have

d(x ≤ p,w) = ⟨[ti−1, ti) 7→ {v ∈ V : vp ≥ wi
x }⟩i=1..n

d(x ≥ p,w) = ⟨[ti−1, ti) 7→ {v ∈ V : vp ≤ wi
x }⟩i=1..n

3.1.3 Disjunction and Conjunction. The validity signals d(φ ∨
ψ ,w) andd(φ∧ψ ,w) are produced by combining the validity signals

d(φ,w) and d(ψ ,w) point-wise with set union and set intersection

respectively. In Fig. 1, we show the function Combine that produces
such a combination for two piecewise-constant validity signals of

the same duration. We have

d(φ ∨ψ ,w) = Combine(d(φ,w),d(ψ ,w),∪)

d(φ ∧ψ ,w) = Combine(d(φ,w),d(ψ ,w),∩)

1 function Combine(dφ ,dψ , f)
2 let dφ = ⟨[ti−1, ti) 7→ d

φ
i ⟩i=1..n

3 let dψ = ⟨[τj−1,τj) 7→ d
ψ
j ⟩j=1..m

4 res← ⟨⟩, i ← j ← 1

5 while i ≤ n ∧ j ≤ m do

6 res← ⟨res; [max{ti−1,τj−1},min{ti ,τj }) 7→ f (d
φ
i ,d

ψ
j)⟩

7 if ti = min{ti ,τj } then i ← i + 1

8 if τj = min{ti ,τj } then j ← j + 1

9 return res

Figure 1: Combining two validity signals dφ and dψ with a
given function f .

3.1.4 Bounded Eventually and Always. Given a time point t , the
value of the validity signal d(♢[a,b] φ,w) at time t is the union of

values of d(φ,w) on the interval [t +a,min{t +b, |w |}]. We call this

interval the forward cone of t w.r.t. [a,b]. Conversely, we observe
that given a time point t ′, for every t ∈ [min{0, t ′ − b}, t ′ − a] we
have d(♢[a,b] φ,w)[t] ⊆ d(φ,w)[t ′].

The interval [min{0, t ′ − b}, t ′ − a] is called a backward cone of
t ′. This definition can be lifted to an interval [t , t ′) for which the

[a,b]-backward cone is defined as

[t , t ′) ⊖ [a,b] = [max{0, t − b}, t ′ − a).

This operation is based on Minkowski difference (over a bounded

time domain) and we denote it accordingly. Now, if the piecewise-

constant representation of d(φ,w) contains a segment [ti−1, ti) 7→
d
φ
i then for every t ∈ [ti−1, ti) ⊖ [a,b] we have d(♢[a,b] φ,w)[t] ⊆

d
φ
i . This leads to the idea that we can compute d(♢[a,b] φ,w,) by
backshifting: for every segment in the piecewise-constant represen-

tation of d(φ,w) we produce its backward cone and then combine

the backward cones with set union.

Let us consider an example, shown in Fig. 2. At the top of the

figure, we show the input validity signal that talks about a single

parameter p. It maps the interval [0, 3) to the set {v : vp ≥ 3}, [3, 6)

to {v : vp ≥ 2}, [6, 9) to {v : vp ≥ 4}, [9, 17) to {v : vp ≥ 3}, and

[17, 20) to {v : vp ≥ 0}. Below, we show the backward cones of

these intervals w.r.t. the time window [1, 8]. For this time window,

the backward cone of [0, 3) is [0, 2), the backward cone of [9, 17) is

[1, 16) and so on. At the bottom of the figure we show the result

of combining the backward cones with set union. Notice, how no

backward cones overlap the interval [19, 20) and thus the result

maps this interval to the empty set.

The algorithm Backshift in Figures 3–5 is designed to combine

the backward cones efficiently. The combination is done with set

union for the eventually operator and with set intersection for al-
ways. For a number of initial segments of d(φ,w), their backward
cones start at time 0 (in the example in Fig.2, these are segments

[0, 3), [3, 6), and [6, 9)). We can produce the intermediate result of

combining just these backward cones by scanning d(φ,w) back-
wards and computing the running union or intersection. This is

done by the function BackshiftInit in Fig. 4. The remaining segments

of d(φ,w) are combined by scanning them forward and calling the

function BackshiftAdd (in Fig. 5) for every backward cone.

Efficient Parametric Identification for STL HSCC ’18, April 11–13, 2018, Porto, Portugal

0

vp
≥
3

3

vp
≥
2

6

vp
≥
4

9

vp
≥
3

17

vp
≥
0

20

0

vp ≥ 3

2

0

vp ≥ 2

5

0

vp ≥ 4

8

1

vp ≥ 3

16

9

vp ≥ 0

19

0

vp ≥ 2

5

vp ≥ 3

9

vp ≥ 0

19

�

20

Figure 2: Example of backshifting by a time window [1, 8],
with f = ∪.

1 function Backshift(dφ ,a,b, f ,⊥f)
2 let dφ = ⟨[ti−1, ti) 7→ di ⟩i=1..n
3 res← BackshiftInit(dφ ,a,b, f ,⊥f)
4 i ← min i, s.t. ti−1 − b > 0

5 while i ≤ n do

6 BackshiftAdd(res, [ti−1ti) ⊖ [a,b],d
φ
i , f)

7 i ← i + 1

8 if a > 0 then res← ⟨res; [|res |, |w |) 7→ ⊥f ⟩
9 return res

Figure 3: Backshifting algorithm. Here dφ is the validity sig-
nal to be backshifted; backward cones are computed w.r.t.
the interval [a,b]; overlapping backward cones are combined
with the function f ; ⊥f is the neutral element w.r.t. f .

Algorithm BackshiftAdd scans the intermediate result of back-

shifting res backwards and combines the validity domains of the

existing segments di and the validity domain of the new segment

d ′. An important property is that in the intermediate result of back-

shifting res, segments that overlap with the incoming backward

cone [τ ,τ ′) are always arranged in descending order when combin-

ing with set union and in ascending order when combining with

intersection. This means that BackshiftAdd can stop scanning res
when it encounters a validity domain which is a superset of d ′. We

return to this point later when discussing complexity, in Section 5.

Finally, we get

d(♢[a,b] φ,w) = Backshift(d(φ,w),a,b,∪,�)

d(□[a,b] φ,w) = Backshift(d(φ,w),a,b,∩,V)

1 function BackshiftInit(dφ ,a,b, f ,⊥f)
2 let dφ = ⟨[ti−1, ti) 7→ d

φ
i ⟩i=1..n

3 i ← max i, s.t. ti−1 − b ≤ 0

4 res = ⟨⟩, drun ← ⊥f
5 while i ≥ 1 ∧ ti − a > 0 do

6 d ← f (drun,d
φ
i)

7 res← ⟨[ti−1ti) ⊖ [a,b] 7→ drun; res⟩
8 i ← i − 1

9 return res

Figure 4: Backshifting the initial segments, for which the
backward cones start at time 0. Here dφ is the validity signal
to be backshifted; backward cones are computedw.r.t. the in-
terval [a,b]; overlapping backward cones are combined with
the function f ; ⊥f is the neutral element w.r.t. f .

1 function BackshiftAdd(res, [τ ,τ ′),d ′, f)
2 if τ ′ ≤ 0 then return

3 else if res = ⟨⟩ then res← ⟨[0,τ ′) 7→ d ′⟩

4 else

5 let res = ⟨s1, · · · , sm⟩ and si = [ti−1, ti) 7→ di
6 i ←m

7 while i ≥ 1 ∧ τ < ti do

8 if f (di ,d
′) = di then break

9 else if τ > ti−1 then

10 replace si
11 with ⟨[ti−1,τ) 7→ di ; [τ , ti) 7→ f (di ,d

′)⟩

12 else

13 replace si with [ti−1, ti) 7→ f (di ,d
′)

14 i ← i + 1

15 res← ⟨res; [|res |,τ ′) 7→ d ′⟩

Figure 5: Adding a backward cone to the intermediate back-
shifting result res. Here [τ ,τ ′) 7→ d ′ is the new backward
cone and its corresponding validity domain; overlapping
segments are combined with the function f .

3.1.5 Until and Release. The computation of the validity domain

ofφUψ is better explained in the case whend(φ,w) andd(ψ ,w) are
represented using the same sequence of intervals. That is, d(φ,w) =

⟨[ti−1, ti) 7→ d
φ
i ⟩i=1..n , d(ψ ,w) = ⟨[ti−1, ti) 7→ d

ψ
i ⟩i=1..n , and

thus d(φUψ ,w) = ⟨[ti−1, ti) 7→ dUi ⟩i=1..n . Then, the validity

domains dUi can be inductively defined as follows. To satisfy φUψ
at time t ∈ [tn−1, tn) during the last time interval, we have to

satisfy φ and ψ . That is, dUn = d
φ
n ∩ d

ψ
n . For 1 ≤ i < n, to satisfy

φUψ at time t ∈ [ti−1, ti), we have to satisfy φ and ψ ; or we
have to satisfy φUψ during the following time interval [ti , ti+1)
and also satisfy φ on [ti−1, ti). That is, for 1 ≤ i < n, we have

dUi = (d
φ
i ∩ d

ψ
i) ∪ (d

φ
i ∩ d

U
i+1).

The function Until in Fig. 6 generalizes this inductive definition

for the case when d(φ,w) and d(ψ ,w) are represented using dif-

ferent sequences of intervals. It is also parameterized with two

HSCC ’18, April 11–13, 2018, Porto, Portugal Alexey Bakhirkin, Thomas Ferrère, and Oded Maler

1 function Until(dφ ,dψ , f ,д,⊥f)
2 let dφ = ⟨[ti−1, ti) 7→ d

φ
i ⟩i=1..n

3 let dψ = ⟨[τj−1,τj) 7→ d
ψ
j ⟩j=1..m

4 res← ⟨⟩, i ← n, j ←m, dnow ← д(d
φ
n ,d

ψ
m)

5 while true do

6 res← ⟨[max{ti−1,τj−1},min{ti ,τj }) 7→ dnow); res⟩
7 if i = 1 ∧ j = 1 then break

8 if τj−1 > ti−1 then

9 j ← j − 1

10 else if ti−1 > τj−1 then

11 i ← i − 1

12 else

13 i ← i − 1, j ← j − 1

14 dnow ← д(d
φ
i , f (d

ψ
j ,dnow))

15 return res

Figure 6: Computing the validity signal of until and release.
Here dφ and dψ are the validity signals of the subformulas;
(f ,д,⊥f) are (∪,∩,�) for until and (∩,∪,V) for release.

operations, f and д. For until, f is set union, and д is set intersec-
tion. For release, this is the other way around. The function scans

both input validity signals backwards, maintaining a pair of point-

ers, i and j . The interval [max{ti−1,τj−1},min{ti ,τj }) is the current
interval, on which both d(φ,w) and d(ψ ,w) do not change. The

value of d(φUψ ,w) on the current interval is stored in dnow. It is
initialized with the intersection of d(φ,w) and d(ψ ,w). To update

dnow, we intersect the previously computed value with the union

of d(φ,w) and d(ψ ,w) in the current time interval. Thus,

d(φUψ ,w) = Until(d(φ,w),d(ψ ,w),∪,∩,�)

d(φ Rψ ,w) = Until(d(φ,w),d(ψ ,w),∩,∪,V)

Below we discuss specific data structures and optimizations used

in the implementation.

3.2 Implementation Details
3.2.1 Upward-Closed Rectangular Sets. Define partial order ≤

on V in the standard way: v ≤ v ′ iff vi ≤ v
′
i for all i = 1, . . . ,k .

The upward closure of a point v in the partially-ordered set V is

the set {v ′ : v ≥ v}. A subset of U ⊆ V is upward-closed and

rectangular if it is an upward closure of a finite set of points ↓U
which is called its support set. The support set ↓U can be used to

represent the upward-closed setU compactly. For example, the set

{v ∈ R2 : (v1 ≥ 0 ∧ v2 ≥ 1) ∨ (v1 ≥ 1 ∧ v2 ≥ 0)} is the upward

closure of the pair of points {(0, 1), (1, 0)}. Set-theoretic operations

(union, intersection, etc) on upward-closed rectangular sets can

usually be translated to operations on their support sets. Efficient

implementation of set union is usually studied in the context of

maintaining a Pareto front in multi-objective optimization. For

that, support sets are usually stored in a tree-like structure or, for

dimensions up to 2, in a sorted list. In our implementation, we store

support sets as unsorted arrays and leave the use of more efficient

data structures for future work.

For the formulas with consistent polarity, we can actually make

all the validity domains upward-closed, if for a negative parameter

p, we interpret vp as the opposite of the value of p. This is equiv-
alent to replacing in a formula every negative parameter p with

a positive parameter −p (as done in [6]). This allows to represent

validity domains as sets of their support points and also to restate

Theorem 3.2 to talk about finite unions of upward-closed rectangles.

3.2.2 Distributing Temporal Operators over Boolean. Before run-
ning the computation, by default, we rewrite the input formula by

distributing eventually over disjunction and always over conjunc-
tion, using the equivalences:

♢[a,b](φ ∨ψ) ⇔ ♢[a,b] φ ∨ ♢[a,b]ψ

□[a,b](φ ∧ψ) ⇔ □[a,b] φ ∧ □[a,b]ψ

It is often the case that φ andψ have different sets of parameters,

thus d(φ,w) and d(ψ ,w) take values of smaller size and dimension

than d(φ ∨ψ ,w) and usually have shorter sequences of incompa-

rable values (we discuss this further in Section 5). In some of our

experiments, this rewriting reduced the run time of backshifting

up to a factor of 10.

3.2.3 Merging Adjacent Segments. In our implementation of the

algorithms (Combine, Backshift, Until), we maintain the invariant

that in the representation of a piecewise-constant signal there are

no two adjacent intervals that map to the same value. For clarity of

presentation though, we do not show this in the pseudo-code of the

algorithms. Maintaining this invariant does not come for free. In

some cases, we can rely on the properties of underlying operations

(e.g., the implementation of set union can detect the cases when

the result is equal to one of the operands), but in other cases, we

have to perform additional set comparisons explicitly. Maintaining

this invariant can greatly reduce the length of validity signals for

until and eventually/always over wide temporal windows. In our

experiments, applying a temporal operator to a signal with tens of

thousands of segments could produce a validity signal with just

about a hundred of segments.

4 EXAMPLES
In this section, we illustrate the outcome of the algorithm as applied

to the example signal shown in Fig. 7. Its components, x and y, are
square waves that alternate between two stable values: 0 and 2, but

for a short period of time (for 1 unit) can take the transient value

1. They can be viewed as coarse quantizations of some periodic

signals and the reader can imagine how they can be refined in space

and time.

 0

 1

 2

 0 5 10 15 20 25 30

x

 0

 1

 2

 0 5 10 15 20 25 30

y

Figure 7: Example of signal.

Efficient Parametric Identification for STL HSCC ’18, April 11–13, 2018, Porto, Portugal

4.1 Range of Values
Perhaps the simplest use of PSTL is to find the bounds on the value

of a signal x . For that, we can use the formula □(x ≤ p1 ∧ x ≥ p2).
Our procedure finds the smallest possible value of p1 and the largest
possible value of p2 that renders the formula true, which gives for

this signal the validity domain (p1 ≥ 2∧p2 ≤ 0) at time 0, meaning

that the value of x lies between 0 and 2.

4.2 Enumeration of Values
Consider now the formula ♢(x ≤ p1 ∧ x ≥ p2). For the example

signal, the validity domain of this formula at time 0 is (p1 ≥ 0∧p2 ≤
0) ∨ (p1 ≥ 1 ∧ p2 ≤ 1) ∨ (p1 ≥ 2 ∧ p2 ≤ 2). This validity domain

is shown in Fig. 8, under the convention of negating the values of

negative-polarity parameter p2. It actually enumerates all possi-

ble values of x . Applying this formula to a sampled analog signal

would yield a fast-growing set of incomparable rectangles. This is

expensive to compute yet the outcome is not very informative.

(1,−1)

(2,−2)

(3,−3)

p1

−p2

0

Figure 8: Validity domain at time 0 for the signal in Fig. 7
and the formula ♢(x ≤ p1 ∧ x ≥ p2).

4.3 Common Threshold
We can use the formula □(x ≥ p ∨ y ≥ p) to find the common

threshold, s.t. at all times at least one signal component is above

it. For our example the validity domain of this formula at time 0 is

(p ≤ 1), meaning that at all times x is above 1 or y is above 1.

4.4 High/Low Values
As a less simple example, we consider an analog signal x whose

value is interpreted as Boolean 1 when above some threshold x
hi
, as

Boolean 0 when below some threshold x
lo
, and considered transient

otherwise, during a rising or a falling edge. Our example signal is a

simple instance of this case, where x
hi
= 2 and x

lo
= 0. We can use

PSTL to find the values of x
hi
and x

lo
, e.g., as follows. Let us assume

we know the maximum duration of a rising or a falling edge t
edge

and the minimum amount of time t
stab

that the signal will spend in

a well-defined Boolean state after an edge. Then, we can use the

formula □ ♢[0,t
edge
+t

stab
]((□[0,t

stab
] x ≤ p1) ∨ (□[0,t

stab
] x ≥ p2)). For

our example signal in Fig. 7, the validity domain of this formula

at time 0 is the set (p1 ≥ 2) ∨ (p1 ≥ 0 ∧ p2 ≤ 2) ∨ (p2 ≤ 0). In

particular, we are interested in the rectangle that has the form (p2 ≤
x
hi
∧p1 ≥ x

lo
) where x

hi
> x

lo
, i.e., the rectangle (p1 ≥ 0∧p2 ≤ 2),

which allows to conclude that x
hi
= 2 and x

lo
= 0, as expected. The

other two rectangles in the validity domain are not relevant for

our question. In practice, depending on the signal, we may have to

apply the outer always with the time window [0, |w | − t
edge
− t

stab
].

If the signal ends in a transient state, the final time points will fail

to satisfy the eventually subformula, and we will want to exclude

them from the computation.

5 PERFORMANCE
In this section we give a preliminary performance evaluation of

our algorithm from both theoretical and empirical perspectives, the

latter based on our implementation of the identification procedure

in OCaml, available at https://gitlab.com/abakhirkin/stlpi.

Our backshifting algorithm can actually be seen as amodification

of Lemire’s algorithm [32] for computing minima and maxima over

a shifting window, which in particular was first used for robustness

computation in [18]. The novel feature of our algorithm is that we

work in a partially-ordered parameter space and take the union

and intersection of validity domains (represented by Pareto sets of

minimal supporting points) instead of applying min and max.

During backshifting, the tail of the intermediate result res is ar-
ranged in descending order (when f is set union, and in ascending

order when f is set intersection) and plays the role of Lemire’s

queue. Thus, when the values of the validity signal (i.e., validity

domains) that is being backshifted are totally ordered, backshift-

ing performs O(n) set operations (union, intersection), where n is

the length of the signal. This is, e.g., the case when the validity

domains have one dimension. Until and backshifting with a large

upper bound (when BackshiftInit does all the work) take O(n) set
operations regardless of the structure of validity domains.

When some validity domains are incomparable, backshifting

performs O(mn) set operations wherem is the maximum number

of incomparable elements that fall within the same backshifting

window. The value ofm depends on the width of the backshifting

window, but also comes from some property of the input signal.

In favorable cases, it may be the period of a periodic signal or the

width of raising and falling edges; in the worst case this may be the

number of distinct values that the signal takes (see Section 4 for an

example).

With our current implementation, the worst-case complexity of

operations on sets of support points is O(l2) where l is the number

of points in a set. For dimensions 1 and 2, this can be improved to

O(l) by storing the points in a sorted array, and there also exist tree

structures suitable for higher dimensions. We do not have a good

intuition into how l is connected to the length of the signal, n. It is
easy to construct examples, where l is proportional to the length
of the signal, but it is unclear whether it can grow faster. In this

work we focus on formulas and signals for which l is small and

does not depend too much on factors such as timing constants in

the formula, the length of the signal and the presence of noise.

5.1 Artificially Generated Signals
In the first group of experiments, we evaluate the implementation

using artificially generated signals of different length, and we have

two kinds of signals. Signals of the first kind, referred as wsincos,

have two components: a sine wavewx [t] = sin(2πt
500
) and a cosine

wavewy [t] = cos(2πt
500
). Both are sampled with a step of one time

unit and thus have a period of 500 samples. Signals of the second

https://gitlab.com/abakhirkin/stlpi

HSCC ’18, April 11–13, 2018, Porto, Portugal Alexey Bakhirkin, Thomas Ferrère, and Oded Maler

kind, referred as wsquare, are randomly generated square waves

with noise and non-zero duration of the rising and falling edges.

The average period is 1000 units, and again we take one sample per

time unit. A fragment of this signal is shown in Fig. 9. We generate

three versions of each signal with varying length: 10 000, 100 000,

and 1 million samples.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500

Figure 9: Fragment of a generated square wave with noise
that we use in the evaluation.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 500 1000 1500 2000 2500

cmd - resp
resp - cmd

Figure 10: Fragment of the output of an airplane pitch con-
trol model. We show the difference between the command
and response signals.

Using these signals, we run parameter identification for a number

of formulas and report the results (run time of the identification

procedure in seconds and, space permitting, the validity domain

at time 0 for the signal with 1 million samples) in Table 1. Time

figures were obtained on a PC with a Core i7-3630QM CPU and

8GB RAM.

In this evaluation we are interested in signals and formulas for

which the validity domains have a small number of rectangles that

does not depend too much on the temporal windows in the formula,

the length of the signal, presence of noise and so on; in particular,

we wish to avoid validity domains that enumerate distinct signal

values. The only formula in our evaluation which is ill-behaved

in this sense is φ6; its validity domain depends on the presence of

noise and also on the length of the signal.

The goal of our implementation was to efficiently perform pa-

rameter identification for formulas with small validity domains, and

we think that we achieved this goal. For most example formulas,

it takes a few seconds to run parameter identification for a signal

with 1 million samples, and the run time grows linearly with the

length of the signal or close to that.

We evaluate multiple versions of the formulasφ5 andφ6, with dif-
ferent temporal windows. Formulas φ5,1,φ5,2 and φ6,1,φ6,2 demon-

strate the effect of changing the window of an outermost temporal

operator in a formula with a small validity domain. We can observe

that for shorter signals it is more efficient to backshift with a higher

upper bound, since in the implementation BackshiftInit is more

efficient than repeated application of BackshiftAdd. Formula φ6,3
demonstrates how changing the window of a nested temporal oper-

ator can change the formula from being well-behaved to ill-behaved

for a given signal. There appears to be an interaction between the

upper bounds of eventually and the signal period (250 corresponds

to the half-period, 125 is the quarter-period).

5.2 Airplane Pitch Control Model
We also evaluate the implementation using the data produced by

the Simulink model of an airplane longitudinal flight control system.

The aim of this system is to control the pitch orientation of the

airplane. We assume the control is biased with some fixed offset,

and the expected property of the system is that within a delay

of 15 units the response signal of the system stabilizes close to

the command signal, and the stable state is kept for at least 30

units. The model is driven with a command signal that is piecewise-

constant with constant periods lasting 200 units (long enough for

the response to stabilize), and varying command values in the

range [−1.0, 1.0]. In Fig. 10 we show a fragment of the difference

signal between command and response. In Table 1, we refer to

this signal asw
pitch

. In the evaluation, we measure the bounds on

the difference between command and response in a stable state.

We use the fact that response always stabilizes above command

and employ the following formula: □ ♢[0,45] □[0,30](xcmd−resp ≥

p1 ∧ xresp−cmd ≤ p2). The validity domain of this formula at time 0

is (p1 ≤ −0.066∧p2 ≥ 0.066), which means that response stabilizes

within the range of 0.066 from command signal.

6 RELATEDWORK
The problem of parameter estimation/synthesis in system mod-

els [15] as well as in properties such as those expressed in PSTL,

is a crucial problem in the design and analysis of systems and is

implemented in tools such as S-Taliro [5] and Breach [16]. The

industrial-size case studies of [27] and [36] demonstrate the prac-

tical relevance of PSTL, and its value in conjunction with other

methods.

In general, the problem that we solve in this paper can be seen

as a case of learning from positive examples since we observe only

behaviors which are possible. In other contexts, such as those of

[13] and [11, 30], the traces can be classified as normal or abnormal

and the problem becomes that of learning from both positive and

negative examples, a case of supervised learning.

The works of [26], of [25, 42], and of [29] are most related to

ours. The problem they study can be stated as follows: given a

system modelM and a parameterized temporal formula φ[p], find
the validity domain of φ relative toM , that is, the set of parameter

valuations v such thatw |= φ[v]. Here the system model is viewed

as a black box, that can produce from some inputu ∈ U a simulation

tracew = M(u). The input spaceU is typically large or uncountable,

and such methods are approximate. They explore the boundary

of D(φ,M) =
⋂
w ∈M (U) D(φ,w) by search in the combined space

U ×V of system inputs and formula parameters.

Efficient Parametric Identification for STL HSCC ’18, April 11–13, 2018, Porto, Portugal

Table 1: Evaluation results.

Formula Signal d(φ,w)[0]
Signal length / time, s

10
4

10
5

10
6

φ1 = □(x ≤ p1 ∧ x ≥ p2)
wsincos p1 ≥ 1 ∧ p2 ≤ −1 0.03 0.36 3.9

wsquare p1 ≥ 8 ∧ p2 ≤ −2.6 · 10
−6

0.03 0.36 3.75

φ2 = □(x ≥ p ∧ y ≥ p) wsincos p ≤ −0.70265 0.025 0.28 3.4

φ3 = □(y ≥ pU x ≥ p) wsincos p ≤ −0.70265 0.03 0.31 3.4

φ4 = □(x ≤ 6⇒ ♢[0,50](x ≥ 6 ∨ x ≤ p)) wsquare p ≥ 1.65696 0.01 0.12 1.4

φ5,1 = ♢[0,5K](x ≥ p1 ∨ □[0,250] y ≥ p2) wsincos

p1 ≤ 1 ∨ p2 ≤ −2.4 · 10
−16

0.04 0.41 4.4

φ5,2 = ♢[0,50K](x ≥ p1 ∨ □[0,250] y ≥ p2) p1 ≤ 1 ∨ p2 ≤ 4 · 10−15 0.03 0.4 4.3

φ6,1 = □[0,5K] ♢[0,250]((□[0,200] x ≤ p1) ∨ (□[0,200] x ≥ p2))
wsincos not shown 0.24 4 44

wsquare not shown 0.05 0.75 8

φ6,2 = □[0,50K] ♢[0,250]((□[0,200] x ≤ p1) ∨ (□[0,200] x ≥ p2))
wsincos not shown 0.08 2.5 42

wsquare not shown 0.04 0.67 8.7

φ6,3 = □[0,50K] ♢[0,125]((□[0,200] x ≤ p1) ∨ (□[0,200] x ≥ p2))
wsincos not shown 2.6 TO TO

wsquare not shown 0.05 0.66 8.1

φ7 = □ ♢[0,45] □[0,30](xcmd−resp ≤ p1 ∧ xresp−cmd ≤ p2) w
pitch

p1 ≤ −0.066 ∧ p2 ≥ 0.066 0.05 0.56 6

Our work builds up on that of [6] to solve the problem, for a

single simulation or execution trace of the system. In fact [6] con-

sidered two techniques, one exact and based on translation to a

quantified formula in linear arithmetic, and one approximate, based

on search in the parameter space. In this work, we solve the prob-

lem in an exact manner using signal-processing computations in

the style of [18, 33], avoiding reliance on a (costly) quantifier elimi-

nation routine. The exhaustive computation of the validity domain

is similar to that of [12], who study the problem of monitoring STL*,

a variant of STL with freeze quantification [4]. There the parameter

space is over subsets of Tk for k frozen variables, but could be

rephrased over Rk , something we intend to explore further.

With or without parameters, the main application of STL moni-

toring is found in falsification. This problem, dual of verification,

attempts not to prove that the systemM is correct under all inputs

u ∈ U , but simply to find a faulty execution w = M(u), without
any formal guarantees that it will be found. The most effective

technique, as illustrated in [2, 34], turns the falsification problem

into the following optimization problem: “minimize ρ(φ,w) subject
to w = M(u),u ∈ U .” The robustness value ρ is expected to be

continuous in u, and by definition is w ̸ |= φ when ρ(φ,w) < 0.

This technique was indeed used in [25, 27, 29, 42] precisely for the

purpose of temporal logic parameter exploration.

The choice of minimization algorithm in the above is crucial,

and several alternatives have been explored, see [1, 39] for instance.

It can be argued with [3, 26] that the choice of the cost function

is equally important. An undesirable behavior of the robustness

value as cost function, is due to its absolute-norm semantics, which

selects the value of the safest signal variable (the furthest away from

violation) as the one to optimize. We believe that parametrizations

of STL formulas provide a way to define better behaved (smoother)

cost functions. For this, observe that the robustness ρ(φ,w) can be

recovered as the tightest parameter assignments of PSTL formula

φ ′[p] where p is a unique parameter replacing all constants, and

φ ′ is the positive normal form of φ. Using several parameters (for

several signal variables) could provide a cost function with non-zero

derivative in more than one variable.

7 CONCLUSIONS AND FUTUREWORK
In this work we presented a novel algorithm for parametric identi-

fication for STL and applied it to formulas with space parameters

and piecewise-constant (PC) signals where the validity domains

are unions of rectangles. We have shown that in many cases, a pro-

totype implementation of our algorithm can compute the validity

domain for signals with millions of samples. Hence our method pro-

vides a viable alternative to the previously used algorithms based

on quantifier elimination or search in the parameter-space, and will

allow the derivation of compact representations of systems based

on observable behaviors.

The immediate direction for future work is improving the im-

plementation, in particular the representation of validity domains.

Now, we store validity domains as arrays of support points, and the

complexity of disjunction and conjunction is quadratic in the size

of the support set. More efficient representations of such sets are

known in the context of maintaining a Pareto front, but adapting

the data structures and algorithms to our setting is still a challenge.

There are two immediate extensions of our work. If we use a

piecewise-linear (PL) interpolation for signals, we will not have

rectangular validity domains in each intervals but polytopes that

depend on t . The computational trade-offs between using PL and PC

signals should be investigated. On one hand, rectangles are easier

to manipulate but on the other, PC signals will require a denser

sampling than PL signals to achieve the same approximation level

with respect to the underlying continuous signal. In general the

influence of sampling rates of the same signal on the obtained

validity domain should be studied.

The more interesting and urgent extension is to include timing

parameters where, naturally, validity domains will explicitly depend

on time, which changes continuously and does not immediately fit

in the piecewise-constant setting. We are confident, though, that

this can be done and that the validity domains associated with

timing parameters and PC signals are more restricted types of

polyhedral sets than the semi-linear sets associated with PL signals.

It should be noted that mixing space and time parameters will often

HSCC ’18, April 11–13, 2018, Porto, Portugal Alexey Bakhirkin, Thomas Ferrère, and Oded Maler

lead to many incomparable points. For example, the validity domain

for the PSTL formula ♢[0,p1] x ≤ p2 relative to a decaying signal

consists of a continuum of incomparable (p1,p2) points. Another
question is whether our approach can be translated to other timed

formalisms such as signal regular expressions [7].

Parametric validity domains can be viewed as amulti-dimensional

generalization of robustness which we suggest will provide finer

information concerning the robustness associated with subformu-

las and with different parts of the signal. Some work is needed to

gain better insights on the precise relation between the two and its

implications for robustness-guided falsification algorithms.

Finally, in addition to providing a succinct representation of

observed behaviors, we can view PSTL formulas as a new type of

feature extractors, functions that map high-dimensional objects such

as signals into low-dimensional objects, in our case sets of tightest

values in the validity domain. Once mapped into this space, the

signals can be subject to various learning and clustering algorithms

as suggested recently in [41].

REFERENCES
[1] Houssam Abbas and Georgios E. Fainekos. 2013. Computing descent direction of

MTL robustness for non-linear systems. In American Control Conference. 4405–
4410. http://ieeexplore.ieee.org/document/6580518/

[2] Houssam Abbas, Bardh Hoxha, Georgios Fainekos, and Koichi Ueda. 2014.

Robustness-guided temporal logic testing and verification for stochastic cyber-

physical systems. In Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, 1–6.

[3] Takumi Akazaki and Ichiro Hasuo. 2015. Time robustness inMTL and expressivity

in hybrid system falsification. In CAV. Springer, 356–374.
[4] Rajeev Alur and Thomas A Henzinger. 1994. A really temporal logic. Journal of

the ACM (JACM) 41, 1 (1994), 181–203.
[5] Yashwanth Annpureddy, Che Liu, Georgios E Fainekos, and Sriram Sankara-

narayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid

Systems.. In TACAS, Vol. 6605. Springer, 254–257.
[6] Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. 2011. Para-

metric identification of temporal properties. In Runtime Verification. Springer,
147–160.

[7] Alexey Bakhirkin, Thomas Ferrère, Oded Maler, and Dogan Ulus. 2017. On

the Quantitative Semantics of Regular Expressions over Real-Valued Signals.

In International Conference on Formal Modeling and Analysis of Timed Systems.
Springer, 189–206.

[8] Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. 2013. A temporal logic approach

to modular design of synthetic biological circuits. In International Conference on
Computational Methods in Systems Biology. Springer, 164–177.

[9] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded

Maler, Dejan Nickovic, and Sriram Sankaranarayanan. 2018. Specification-based

Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applica-

tions. In The Handbook of Runtime Verification.
[10] Giuseppe Bombara and Calin Belta. 2017. Signal Clustering Using Temporal

Logics. Springer International Publishing, Cham, 121–137. https://doi.org/10.

1007/978-3-319-67531-2_8

[11] Giuseppe Bombara, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka,

and Calin Belta. 2016. A Decision Tree Approach to Data Classification using

Signal Temporal Logic. In HSCC. ACM, 1–10.

[12] Lubos Brim, P Dluhoš, D Šafránek, and Tomas Vejpustek. 2014. STL*: Extend-

ing signal temporal logic with signal-value freezing operator. Information and
Computation 236 (2014), 52–67.

[13] Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo Borelli, Umberto Lucan-

gelo, and Luca Bortolussi. 2014. Temporal Logic Based Monitoring of Assisted

Ventilation in Intensive Care Patients. In Leveraging Applications of Formal Meth-
ods, Verification and Validation. Specialized Techniques and Applications - 6th
International Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014,
Proceedings, Part II. 391–403. https://doi.org/10.1007/978-3-662-45231-8_30

[14] Fraser Cameron, Georgios E. Fainekos, David M. Maahs, and Sriram Sankara-

narayanan. 2015. Towards a Verified Artificial Pancreas: Challenges and So-

lutions for Runtime Verification. In Runtime Verification - 6th International
Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings. 3–17.
https://doi.org/10.1007/978-3-319-23820-3_1

[15] Thao Dang, Tommaso Dreossi, and Carla Piazza. 2015. Parameter synthesis

through temporal logic specifications. In International Symposium on Formal

Methods. Springer, 213–230.
[16] Alexandre Donzé. 2010. Breach, a toolbox for verification and parameter synthesis

of hybrid systems.. In CAV, Vol. 10. Springer, 167–170.
[17] Alexandre Donzé, Eric Fanchon, Lucie Martine Gattepaille, Oded Maler, and

Philippe Tracqui. 2011. Robustness analysis and behavior discrimination in

enzymatic reaction networks. PloS one 6, 9 (2011), e24246.
[18] Alexandre Donzé, Thomas Ferrere, and Oded Maler. 2013. Efficient robust moni-

toring for STL. In CAV. 264–279.
[19] A. Donzé, B. Krogh, and A. Rajhans. 2009. Parameter synthesis for hybrid systems

with an application to simulink models. In HSCC (LNCS). Springer-Verlag.
[20] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In FORMATS. 92–106.
[21] Georgios E. Fainekos and Georges J. Pappas. 2006. Robustness of Temporal Logic

Specifications. In FATES/RV (LNCS), Vol. 4262. Springer, 178–192.
[22] Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[23] Samira S Farahani, Vasumathi Raman, and Richard M Murray. 2015. Robust

model predictive control for signal temporal logic synthesis. IFAC-PapersOnLine
48, 27 (2015), 323–328.

[24] Carlo Alberto Furia and Matteo Rossi. 2007. On the expressiveness of MTL

variants over dense time. In International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 163–178.

[25] Bardh Hoxha, Adel Dokhanchi, and Georgios Fainekos. 2017. Mining parametric

temporal logic properties in model-based design for cyber-physical systems.

International Journal on Software Tools for Technology Transfer (2017), 1–15.
[26] Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Tuhin Sahai, and Natarajan Shankar.

2017. TeLEx: Passive STL Learning Using Only Positive Examples. In Runtime
Verification. 208–224.

[27] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, and Sanjit A. Seshia.

2013. Mining Requirements from Closed-loop Control Models. In HSCC.
[28] Kevin D Jones, Victor Konrad, and Dejan Nickovic. 2010. Analog property

checkers: a DDR2 case study. Formal Methods in System Design 36, 2 (2010),

114–130.

[29] Eric S Kim, Murat Arcak, and Sanjit A Seshia. 2016. Directed specifications

and assumption mining for monotone dynamical systems. In Proceedings of the
19th International Conference on Hybrid Systems: Computation and Control. ACM,

21–30.

[30] Zhaodan Kong, Austin Jones, and Calin Belta. 2017. Temporal logics for learning

and detection of anomalous behavior. IEEE Trans. Automat. Control 62, 3 (2017),
1210–1222.

[31] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. 2010. Approx-

imating the Pareto Front of Multi-criteria Optimization Problems. In TACAS
(LNCS), Vol. 6015. Springer, 69–83.

[32] D. Lemire. 2006. Streaming Maximum-Minimum Filter Using No More than

Three Comparisons per Element. CoRR abs/cs/0610046 (2006).

[33] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of

Continuous Signals. In FORMATS/FTRTFT. 152–166.
[34] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,

Aarti Gupta, and George J Pappas. 2010. Monte-carlo techniques for falsification

of temporal properties of non-linear hybrid systems. In HSCC. ACM, 211–220.

[35] Dejan Nickovic. 2008. Checking timed and hybrid properties: Theory and applica-
tions. Ph.D. Dissertation. Université Joseph Fourier, Grenoble, France.

[36] Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B Finn, Alberto L Sangiovanni-

Vincentelli, Richard M Murray, Alexandre Donzé, and Sanjit A Seshia. 2014. A

contract-based methodology for aircraft electric power system design. IEEE
Access 2 (2014), 1–25.

[37] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and

Sanjit A Seshia. 2015. Reactive synthesis from signal temporal logic specifications.

In Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control. ACM, 239–248.

[38] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. 2008. On a

continuous degree of satisfaction of temporal logic formulae with applications

to systems biology. In CMSB. Springer, 251–268.
[39] Simone Silvetti, Alberto Policriti, and Luca Bortolussi. 2017. An Active Learning

Approach to the Falsification of Black Box Cyber-Physical Systems. arXiv preprint
arXiv:1705.01879 (2017).

[40] Szymon Stoma, Alexandre Donzé, François Bertaux, Oded Maler, and Gregory

Batt. 2013. STL-based analysis of TRAIL-induced apoptosis challenges the notion

of type I/type II cell line classification. PLoS computational biology 9, 5 (2013),

e1003056.

[41] Marcell Vazquez-Chanlatte, Jyotirmoy V. Deshmukh, Xiaoqing Jin, and Sanjit A.

Seshia. 2017. Logical Clustering and Learning for Time-Series Data. Springer Inter-
national Publishing, Cham, 305–325. https://doi.org/10.1007/978-3-319-63387-9_

15

[42] Hengyi Yang, Bardh Hoxha, and Georgios E Fainekos. 2012. Querying Parametric

Temporal Logic Properties on Embedded Systems. In ICTSS. Springer, 136–151.

http://ieeexplore.ieee.org/document/6580518/
https://doi.org/10.1007/978-3-319-67531-2_8
https://doi.org/10.1007/978-3-319-67531-2_8
https://doi.org/10.1007/978-3-662-45231-8_30
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-319-63387-9_15

	Abstract
	Acknowledgments
	1 Introduction
	2 Parametric Signal Temporal Logic
	3 Computing the Validity Signals
	3.1 Overall Algorithm
	3.2 Implementation Details

	4 Examples
	4.1 Range of Values
	4.2 Enumeration of Values
	4.3 Common Threshold
	4.4 High/Low Values

	5 Performance
	5.1 Artificially Generated Signals
	5.2 Airplane Pitch Control Model

	6 Related Work
	7 Conclusions and Future Work
	References

