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RATIO ERGODIC THEOREMS: FROM HOPF TO BIRKHOFF AND KINGMAN

Hopf's ratio ergodic theorem has an inherent symmetry which we exploit to provide a simplification of standard proofs of Hopf's and Birkhoff's ergodic theorems. We also present a ratio ergodic theorem for conservative transformations on a σ-finite measure space, generalizing Kingman's ergodic theorem for subadditive sequences and generalizing previous results by Akcoglu and Sucheston.

Introduction and statement of results

Birkhoff's pointwise ergodic theorem [START_REF] Birkhoff | A simple proof of the ratio ergodic theorem[END_REF] is a key tool in ergodic theory. It admits many notable generalizations, including Hopf's ratio ergodic theorem [START_REF] Hopf | Ergodentheorie[END_REF], Kingman's subadditive ergodic theorem [START_REF] Kingman | The ergodic theory of subadditive stochastic processes[END_REF], and more recently Karlsson-Ledrappier and Gouëzel-Karlsson theorems on cocycles of isometries [START_REF] Karlsson | On laws of large numbers for random walks[END_REF][START_REF] Gouëzel | Subadditive and multiplicative ergodic theorems[END_REF]. Since the work of Kamae [START_REF] Kamae | A simple proof of the ergodic theorem using nonstandard analysis[END_REF] and Katznelson and Weiss [START_REF] Katznelson | A simple proof of some ergodic theorems[END_REF], there exist very short and easy proofs of Birkhoff's ergodic theorem. These proofs have also been adapted to Hopf's and Kingman's ergodic theorems ( [START_REF] Kamae | A simple proof of the ratio ergodic theorem[END_REF] and [START_REF] Katznelson | A simple proof of some ergodic theorems[END_REF][START_REF] Steele | Kingman's subadditive ergodic theorem[END_REF], respectively).

In this article, we provide a proof of Hopf's and Kingman's ergodic theorem, in the context of conservative transformations preserving a σ-finite measure. We follow the argument of Katznelson and Weiss [START_REF] Katznelson | A simple proof of some ergodic theorems[END_REF] but add a noticeable twist: the statement of the ratio ergodic theorem has a natural symmetry which is not present in Birkhoff's ergodic theorem, a symmetry which can be leveraged to simplify proofs. This makes, in our opinion, Hopf's theorem more fundamental, with Birkhoff's theorem now appearing as a corollary (the inverse point of view is given in e.g. [START_REF] Zweimüller | Hopf 's ratio ergodic theorem by inducing[END_REF], where Hopf's theorem is deduced from Birkhoff's by inducing).

As for the Kingman ratio ergodic theorem on a σ-finite measure space, a similar result was obtained by Akcoglu and Suchestom [START_REF] Akcoglu | A ratio ergodic theorem for superadditive processes[END_REF] under an additional integrability assumption. Our result does not make this assumption and the proof is significantly simpler (in our opinion). As the reader may note there are no significant complications coming from working with σ-finite measures, but some parts may be simplified quite a lot if one assumes ergodicity. Definition 1.1. Consider a σ-finite measure space (X, B, µ) and a measure preserving transformation T : X → X. The transformation T is said to be conservative if:

∀A ∈ B : µ(A) > 0 ⇒ ∃n ≥ 1 : µ(A ∩ T -1 A) > 0. (1) A subset A ⊂ X is T -invariant if T -1 A = A, and a function f : X → R is T - invariant if f • T = f . The transformation T is ergodic (for µ) if for any measurable T -invariant subset A, either µ(A) = 0 or µ(X \ A) = 0.
Unless stated otherwise, we make throughout the standard assumption that (X, B, µ, T ) is a conservative measure-preserving transformation on a σ-finite measure space. Most of the time, ergodicity shall not be assumed.

Given any f : X → R, we write S n f := n-1 k=0 f • T k for the Birkhoff sums. Our first goal is to give a proof of the following well-known: Theorem 1.2 (Hopf's ratio ergodic theorem). Let (X, B, µ, T ) be a conservative, measure preserving transformation on a σ-finite measure space. Let f , g ∈ L 1 (X, µ) with g > 0 almost everywhere. Then the following limit exists µ-almost everywhere:

h := lim n→∞ S n f S n g . ( 2 
)
The function h is finite µ-almost everywhere, T -invariant, and for any T -invariant subset A ∈ B:

A f dµ = A hg dµ. (3) 
Note that, when f > 0 as well, there is a natural symmetry between f and g, which we will exploit in our proof. This symmetry is lost in Birkhoff's version, where g ≡ 1.

We will proceed to prove a ratio version of Kingman's theorem for subadditive sequences. Recall that a sequence (a n ) n≥1 of measurable functions is said to be subadditive (with respect to T ) if for n, m ≥ 1, we have µ-almost everywhere:

a n+m ≤ a n + a m • T n . ( 4 
)
Theorem 1.3 (A Kingman ratio ergodic theorem). Let (X, B, µ, T ) be a conservative, measure preserving transformation on a σ-finite measure space. Let (a n ) n≥1 be a sub-additive measurable sequence of functions with values in [-∞, +∞], and with (a 1 ) + ∈ L 1 (X, µ). Let g ∈ L 1 (X, µ) with g > 0 almost everywhere. Then the following limit exists µ-almost everywhere:

h := lim n→+∞ a n S n g ∈ [-∞, +∞). If A ∈ B is a T -invariant set, then inf n 1 n A a n dµ = lim n 1 n A a n dµ = A hg dµ ∈ [-∞, +∞).
For a similar version of this theorem, but under an additional uniform integrability condition on a n , cf. [START_REF] Akcoglu | A ratio ergodic theorem for superadditive processes[END_REF]. To our knowledge the theorem is new in the stated generality.

The remainder of this article is organized as follows. In Section 2 we prove some classical lemmas about conservative dynamical systems, and the main lemma (Lemma 2.3, which slightly generalizes the main theorem of [START_REF] Katznelson | A simple proof of some ergodic theorems[END_REF]). In Section 3 we prove Hopf's ratio ergodic theorem, and in Section 4 the above Kingman ratio ergodic theorem (whose proof uses Hopf's ergodic theorem).

Main lemmas

First, and so that our proofs will be essentially self-contained, let us state and prove some consequences of conservativity. For details the reader may consult e.g. [1, Chap 1]. Conservativity is an a priori mild recurrence condition which is equivalent to the following seemingly stronger recurrence condition. Let (X, B, µ, T ) be a conservative, measure-preserving dynamical system. Then, given any measurable subset A, almost everywhere on A,

n≥0 1 A • T n = +∞. ( 5 
)
In other words, almost every point in A returns infinitely often to A. A consequence is the following:

Lemma 2.1. Let (X, B, µ, T ) be a measure-preserving and conservative transformation. Let f : X → R + be measurable. Then, µ-almost everywhere on {f > 0}:

lim n→+∞ S n f = +∞. (6) Proof. For n ≥ 1, let A n := {f ≥ 1 n }. Let Ω n := A n ∩ m≥0 k≤m T -k
A n be the set of points of A n which return to A n infinitely many times.

Since f is positive and takes value at least 1/n on A n , Equation ( 6) follows for all

x ∈ Ω n . Let Ω ∞ := n≥1 Ω n . Then Equation (6) holds on Ω ∞ . Since (X, B, µ, T ) is assumed to be conservative, µ(Ω n ∆A n ) = 0, so that µ(Ω ∞ ∆ n≥1 A n ) = 0. But, n≥1 A n = {f > 0}, so Ω ∞ has full measure in {f > 0}.
Let (a n ) n≥1 be a super-additive sequence of functions and g ∈ L 1 (A, µ). We define for every x ∈ X the following lower and upper limits:

0 ≤ h(x) = lim inf n→∞ a n (x) S n g(x) ≤ h(x) = lim sup n→∞ a n (x) S n g(x) ≤ +∞. ( 7 
)
Both h and h are measurable and, in fact, a.e. T -invariant:

Lemma 2.2. Let (X, B, µ, T ) be a measure-preserving and conservative transformation. Let (a n ) n≥1 be a super-additive sequence of functions, with a 1 ≥ 0 a.e.. Let g ∈ L 1 (A, µ; R * + ). Then h • T = h and h • T = h almost everywhere.

Proof. We prove the result for h; the proof for h is essentially the same. Let (a n ) and g be as in the lemma. Then:

a n+1 S n+1 g ≥ a 1 + a n • T g + (S n g) • T
By Lemma 2.1, lim n→+∞ S n g = +∞ almost everywhere, whence, taking the liminf,

h ≥ h • T.
The function η = h/(1 + h) takes values in [0, 1] and we have

A := {h > h • T } = {η > η • T }. By Lemma 2.1, the map φ := η -η • T verifies lim n→+∞ S n φ = +∞ almost everywhere on A. But as S n φ = η -η • T n+1 ∈ [-1, 1] everywhere, we must have µ(A) = 0.
We can now state and prove our main lemma.

Lemma 2.3. Let (X, B, µ, T ) be a measure-preserving and conservative transformation. Let (a n ) n≥1 be a super-additive sequence of functions, with a 1 ≥ 0 almost everywhere. Let g ∈ L 1 (A, µ; R * + ).

Then h is T -invariant, and for all T

-invariant A ∈ B, lim inf n→+∞ 1 n A a n dµ ≥ A hg dµ. ( 8 
)
Proof. By Lemma 2.2, h is T -invariant, but with values a priori in [0, +∞]. For ε > 0, we set

h ε := h 1 + εh ,
with the convention that h ε (x) = 1/ε when h(x) = +∞. Let:

n ε := inf k ≥ 1 : a k ≥ S k (h ε g) .
Then n ε (x) = 1 whenever h(x) = 0. When h(x) > 0, we have h ε (x) < h(x), so n ε (x) is finite by the definition of the limsup. Introduce a time-cutoff L ≥ 1 and denote E = E ε,L := {n ε ≤ L}. We then set:

ϕ(x) = ϕ ε,L (x) := 1 if x / ∈ E n ε (x) if x ∈ E .
One verifies that for every x ∈ X:

a ϕ(x) ≥ S ϕ(x) (gh ε 1 E ).
When x ∈ E this is true by the very definition of n ε (x), while for x / ∈ E it holds because the right hand side vanishes.

Define a sequence of stopping times:

τ 0 (x) = 0, τ k+1 (x) = τ k (x) + ϕ T τ k (x) x , k ≥ 0.
.

Note that 1 ≤ τ k+1 -τ k ≤ L for every k ≥ 0, and for all x ∈ X:

a τ k (x) (x) ≥ k-1 j=0 a ϕ(x) • T τj (x) ≥ k-1 j=0 S ϕ(x) (h ε g1 E ) • T τj (x) = S τ k (x) (gh ε 1 E )(x).
Let N ≥ 1 and x ∈ X. There exists k ≥ 1 such that N < τ k (x) ≤ N + L. Then:

a N +L (x) ≥ a τ k (x) (x) + N +L i=τ k (x)+1 a 1 • T i ≥ S τ k (x) (h ε g1 E )(x) ≥ S N (gh ε 1 E )(x),
which allows us to get rid of the intermediate stopping times. Take now a Tinvariant set A ∈ B and integrate the above inequality over A. By T -invariance:

1 N + L A a N +L dµ ≥ 1 N + L A S N (h ε g1 E ) dµ = N N + L A h ε g1 E dµ.
Letting N → +∞, we conclude that:

lim inf n→+∞ 1 n A a n dµ ≥ A h ε g1 E dµ.
Letting L → +∞ and finally ε → 0, we obtain by monotone convergence:

lim inf n→+∞ 1 n A a n dµ ≥ A hg dµ.

Proof of Hopf's Ratio ergodic theorem

We are now ready to prove to prove Hopf's ergodic theorem. Lemma 2.3 only provides a upper bound on h. In most proofs using these techniques, the lower bound on h follows by repeating the same argument, with a modified stopping time (and some handwaving). Here we notice that the symmetry of Hopf's ratio ergodic theorem provides us with a shortcut:

Proof of Theorem 1.2. Let f , g ∈ L 1 (X, µ; R * + )
. By Lemma 2.3, with a n = S n f , for any T -invariant measurable A:

A f dµ ≥ A hg dµ.
In particular, taking A = X, we see that hg ∈ L 1 (X, µ).

We now use the symmetry, and apply Lemma 2.3 with g and f . Since

lim sup n→+∞ (S n g)/(S n f ) = h -1 ,
we get h -1 f ∈ L 1 (X, µ), and in particular +∞ > h ≥ h > 0 almost everywhere.

We now apply Lemma 2.3 again, with hg and f . Since

lim sup n→+∞ S n (hg) S n f = h h ,
we get that, for any T -invariant measurable A,

A f dµ ≥ A hg dµ ≥ A f h h dµ.
As f > 0 a.e. and the integral is finite we conclude that h = h =: h almost everywhere.

Let us now turn towards the proof of Theorem 1.2 without positivity assumption on f . Since µ is σ-finite, we can write f = f + -f -, with f + and f -in L 1 (X, µ; R * + ). Then, µ-almost everywhere:

lim n→+∞ S n f S n g = lim n→∞ S n f + S n g - S n f - S n g = h + -h -=: h. In addition, A f dµ = A (f + -f -) dµ = A (h + -h -)g dµ = A hg dµ.
Remark 3.1. The proof of Theorem 1.2 itself can be significantly shortened if one assumes that (X, B, µ, T ) is ergodic: since h and h are then constant, applying Lemma 2.3 to the pairs (f, g) and (g, f ) yields directly:

h ≥ X f dµ X g dµ ≥ h.
There is, to our knowledge, not much gain to be had in the proof of Lemma 2.3.

In the ergodic case, the statement of Hopf's ergodic theorem can be simplified.

Corollary 3.2 (Hopf's theorem, ergodic version). Let (X, B, µ, T ) be a measurepreserving, conservative and ergodic transformation. Let f , g ∈ L 1 (A, µ) with X g dµ = 0. Then µ-almost everywhere:

lim n→+∞ S n f S n g = X f dµ X g dµ . (9) 
Proof. We decompose as above f = f + -f -, with f ± integrable and positive. By the Theorem 1.2, µ-almost everywhere,

lim n→+∞ S n g S n f ± = k ± .
By ergodicity, the k ± are constant and then non-zero, since X g dµ = k ± X f ± dµ = 0. Thus, almost everywhere:

lim n→∞ S n f S n g = lim n→∞ S n f + S n g - S n f - S n g = 1 k + - 1 k - = X (f + -f -) dµ X g dµ = X f dµ X g dµ .
As a special case, we may also consider when µ is probability measure and g ≡ 1 (thus integrable). T is automatically conservative by Poincaré recurrence theorem. From Theorem 1.2 we deduce: Corollary 3.3 (Birkhoff's Ergodic Theorem). Let (X, B, µ, T ) be a measure preserving transformation on a probability space. Let f ∈ L 1 (X, µ). Then the following limit exists µ-almost everywhere:

f * := lim n→+∞ 1 n S n f. ( 10 
)
f * is T -invariant (up to a set of measure 0), and for any T -invariant measurable subset A:

A f dµ = A f * dµ. ( 11 
)

Kingman, σ-finite version

We proceed here with a ratio version of Kingman's theorem for non-negative super-additive sequences, from which Theorem 1.3 shall follow easily.

Proposition 4.1. Let (X, B, µ, T ) be a measure-preserving and conservative transformation. Let (a n ) n≥1 be a super-additive sequence of functions, with a 1 ≥ 0 almost everywhere. Let g ∈ L 1 (A, µ; R * + ). Then the following limit exists µ-almost everywhere:

h := lim n→+∞ a n S n g ∈ [0, +∞].
In addition, for any T -invariant measurable set A,

sup n∈N 1 n A a n dµ = lim n→+∞ 1 n A a n dµ = A hg dµ ∈ [0, +∞].
Proof. Let A be any T -invariant measurable set. By Lemma 2.3, we know that:

lim inf n→+∞ 1 n A a n dµ ≥ A hg dµ.
We want to prove the converse inequality (inverting the direction of the inequality, and the lim inf and lim sup). Let K < sup n≥1

1 n A a n dµ. Then we can find k ≥ 1 such that 1 k A a k dµ > K. For M > 0, let f k,M := min{a k , M S k g, M k}/k.
By the monotone convergence theorem, there exists M > 0 such that:

A f k,M dµ > K.
Let n ≥ 2k, and let q, r be such that n = qk + r and 0 ≤ r < k. Then: 

a n = k-1 i=0 a n k ≥ k-1 i=0 1 k   a i + q-2 j=0 a k • T i+jk + a n-i-(q-1)k • T i+(q-1)k   ≥ (q-1)k-1 i=0 a k k • T i = S (q-1)k (a k /k) ≥ S n-2k f k,M . Let h k,M := lim inf n→+∞ S n f k,M /S n g. Note that |S n f k,M -S n-2k f k,M | ≤ 2kM , so that h k,M = lim inf n→+∞ S n-2k f k,M /S
A hg dµ = A hg dµ. ( 12 
)
All is left is to prove that h = h almost everywhere. For M ≥ 0, take A := {h ≤ M }.

Then hg is integrable on A, and since g > 0 a.e. Equation ( 12) implies h = h almost everywhere on A. Since this is true for all M ≥ 0, we get that h = h almost everywhere on {h < +∞}, and obviously h = h on {h = +∞}.

Let us finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Up to taking the opposite sequences, we work with superadditive sequences. Let (a n ) n≥1 be a super-additive sequence, and g a positive and integrable function. Write a 1 = a + 1 -a - 1 and b n := a n + S n a - 1 . Then (b n ) n≥1 and g satisfy the hypotheses of Proposition 4.1, and so do (S n a - 1 ) n≥1 and g. The (almost everywhere) limits and integrals concerning (S n a - 1 ) n≥1 and g are finite, so we can subtract them from the limits and integrals concerning (b n ) n≥1 and g.
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