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I. INTRODUCTION

An optical micro-resonator is a device basically made of a dielectric cavity (with typical size ranging from one to several hundreds µm) coupled to waveguides or fibers for light input and output [START_REF] Heebner | Optical Microresonators: Theory, Fabrication, and Applications[END_REF]. The cavities have a characteristic set of frequencies at which it is possible to confine light-waves when the resonance conditions are met. Light passes through the cavity from the input waveguide and it builds up in intensity over multiple round-trips due to constructive interference. Depending on the optical characteristics of the cavity, it is possible to access a wide range of optical phenomena. Optical micro-resonators came to be important components in the photonic toolbox where they are implemented as lasers, amplifiers, sensors, filters, demultiplexers, switches, routers, logic gates, etc. [START_REF] Chiasera | Spherical whispering-gallery-mode microresonators[END_REF]. However, the theoretical study of optical micro-resonators in order to improve their characteristics, their design or to broaden the field of applications is currently hampered by the weakness of the mathematical models used
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to describe their functioning and the relative inefficiency of the numerical simulation tools available.

In this work we investigate from a mathematical point of view the scattering problem associated with the computation of optical resonances in a micro-cavity for a 2D setting. The resonances are numerically computed by solving the scattering problem (detailed in Section II) by the Finite Element Method (FEM). The outgoing wave condition is handled by the use of a proper Perfectly Matched Layer (PML) presented in Section III. The properties of the PML for our scattering problem are investigated in Section IV in the particular case of a ringshaped cavity where analytical expressions for the resonances are known. We conclude with numerical simulation results in Section V.

II. THE SCATTERING PROBLEM

We consider the resonance cavity alone with invariance in the z direction. So we can assume that the optical index and the electro-magnetic field (E, H) depend only on (x, y). We denote by Ω the open connected set in R 2 filled by the dielectric cavity. We denote by ε c the dielectric permittivity of the cavity and by n c its optical index such that ε c = ε 0 n 2 c where ε 0 is the dielectric permittivity of vacuum. We also denote by Σ the boundary of Ω and by Ω the exterior domain (Ω = R 2 \ Ω) assumed to be vacuum. The optical index is the piecewise constant function n such that n = n c in Ω and n = 1 in Ω .

Under the z invariance assumption, it is well known that the set of harmonic Maxwell's equations can be split into two sub-systems of equations referred to as transverse electric (TE) equations corresponding to H = (0, 0, H z ) and transverse magnetic (TM) equations corresponding to E = (0, 0, E z ). The two subsystems being very similar, we will only consider here the (TE) case. Taking as main unknown the component u = H z of the magnetic field, the formulation of the resonance problem for TE modes reads: find

(k 0 , u) ∈ C × H 2 loc (R 2 \ Σ) with u = 0 such that div n -2 ∇u + k 2 0 u = 0 in Ω and Ω (1a) [u] = 0 and n -2 ∂ ν u = 0 across Σ (1b)
with a radiation condition at infinity that imposes that u has, outside any disk D(0, R) which contains Ω, an expansion in terms of Hankel functions of the first kind H

m of the following form in polar coordinates (r, θ):

u(r, θ) = m∈Z c m H (1) m (k 0 r) e imθ ∀θ ∈ R/2πZ. (1c) 
This radiation condition describes outgoing time-harmonic waves for the time dependence e -ik0ct where c is the speed of light in vacuum. For real positive k 0 , the radiation condition (1c) coincides with the classical Sommerfeld radiation condition for outgoing waves. However it is well known, for example [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF], that problem (1) has no solution for k 0 ∈ R * and that the resonances k 0 have a negative imaginary part (Im(k 0 ) < 0) which describes the damping of the modes u in time.

From a numerical point of view, since problem (1) is set in R 2 , an artificial boundary has to be introduced to bound the computational domain. This entails the inherent difficulty of the way of choosing the boundary condition on this artificial boundary to replace the radiation condition (1c) at infinity. We have chosen to use Perfectly Matched Layers (PML) as introduced in [START_REF] Kim | The computation of resonances in open systems using a perfectly matched layer[END_REF] for the computation of resonances in open systems.

III. SCATTERING PROBLEM WITH PML

The PML method consists of a complex scaling [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF] and a cut-off at infinity. We use a cylindrical PML with parameters σ 0 > 0, r 1 > 0 as inner radius such that Ω ⊂ D(0, r 1 ), r 2 > r 1 as outer radius, and a regularity index p ∈ {0, 1, 2, . . . }. To define the complex scaling, we introduce the function σ ∈

C p (R + ) such that σ(r) = 0 for r ≤ r 1 , σ(r) = σ 0 for r ≥ r 2 , σ(r) = σ 0 r r1 (s -r 1 ) p (r 2 -s) p ds r2 r1 (s -r 1 ) p (r 2 -s) p ds for r 1 < r < r 2 , (2)
and the following quantities:

σ(r) = σ(r) + rσ (r), d(r) = 1 + i σ(r), d(r) = 1 + i σ(r), d 0 = 1 + iσ 0 .
We set u(r, θ) = u( d(r)r, θ). The function u satisfies the system (1a,1b) in D(0, r 1 ). In the PML area for Im(d 0 k 0 ) > 0, u satisfies

∆ u + k 2 0 u = 0 for r ∈ (r 1 , +∞) \ {r 2 } (3a) [ u] = 0 and 1 d ∂ r u = 0 for r ∈ {r 1 , r 2 } (3b) lim r→+∞ u(r, θ) = 0 (3c)
where, in polar coordinates (r, θ),

∆ u = 1 r d ∂ ∂r r d d ∂ u ∂r + 1 d 2 r 2 ∂ 2 u ∂θ 2 .
Choosing r 3 ≥ r 2 , we approach u by u that satisfies the system (1a,1b) in D(0, r 1 ) and

∆ u + k 2 0 u = 0 for r ∈ (r 1 , r 3 ) \ {r 2 } (4a) [ u] = 0 and 1 d ∂ r u = 0 for r ∈ {r 1 , r 2 } (4b) u = 0 for r = r 3 (4c)
The weak formulation of the eigenvalue problem set in the bounded domain D(0, r 3 ) reads: find ( k 0 , u) ∈ C × H 1 0 (D(0, r 3 )) with u = 0 and Im( k 0 ) < 0 such that ∀v ∈ H 1 0 (D(0, r 3 ))

D(0,r3) n -2 M ∇ u • ∇v dxdy -k 2 0 D(0,r3) d d u v dxdy = 0 (5)
where M is the matrix

M = 1 x 2 + y 2   x 2 d d + y 2 d d xy d d -d d xy d d -d d x 2 d d + y 2 d d  
Problem (5) can then be solved by the Finite Element Method in the usual way. For the present study, we have used the open-source Finite Element Library XLIFE++ [START_REF]XLiFE++ : an extended library of finite element library in C++[END_REF] IV. A REFERENCE PROBLEM

In order to investigate computational issues when solving problem (1) by the FEM using PML, we consider a "reference problem" where the micro-cavity has a ring shape with inner radius r i and outer radius r o . For such a geometry, separating the variables in polar coordinates provides analytical expressions for the optical modes. We find that solutions u to problem (1) can be expressed as u(r, θ) = m∈Z u m (r) e imθ where u m is given in terms of Bessel's functions J m , Y m , and

H (1) m as u m (r) =    C 1 J m (k 0 r) if r < r i C 2 J m (n c k 0 r) + C 3 Y m (n c k 0 r) if r ∈ (r i , r o ) C 4 H (1) m (k 0 r) if r > r o
where the four constants C 1 , . . . , C 4 are determined by the interface conditions (1b) and the resonance k 0 is obtained by solving the "modal equation"

J m (nck0ri) nc J m (k0ri) -Jm(nck0ri) Jm(k0ri) Y m (nck0ri) nc J m (k0ri) -Ym(nck0ri) Jm(k0ri) = Jm(nck0ro) H (1) m (k0ro) - J m (nck0ro) nc H (1) m (k0ro) Ym(nck0ro) H (1) m (k0ro) - Y m (nck0ro) nc H (1) m (k0ro) (6) 
If m∈Z u m (r) e imθ is a resonance for k 0 then each term u m (r) e imθ is a resonance for the same k 0 . We have conducted numerical experiments on this reference problem to explore the influence of the different parameters involved in the definition of the PML on the accuracy of the computations.

First, we have noted that a much better approximation is obtained by increasing the FE polynomial order rather than increasing the number of elements. We have also observed that the parameter σ 0 in (2) must be chosen carefully: large enough to ensure a good convergence of the approximation, but not too large in which case the convergence rate would be affected. Finally, a better performance is obtained by using the lowest regularity on σ corresponding to p = 0 in (2). However, choosing p = 0 and σ ∈ C 0 ([0, r 2 ]) requires that the mesh of the domain respects the discontinuity of σ at r = r 1 . We can choose r 3 = r 2 , this is simpler to code and does not alter the convergence. Other experiments show that the PML width r 2 -r 1 does not need to be large.

V. NUMERICAL SIMULATION RESULTS

We present numerical simulations obtained for a ring with inner radius r i = 0.3, outer radius r o = 0.5, and optical index n c = 10. Similar simulations (on disk) can be found in [START_REF] Nannen | Spurious modes of the complex scaled Helmholtz equation[END_REF], [START_REF] Moiola | Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions[END_REF]. We compare a 1D calculation (done with FE of order 30 and around 200 dofs-as precise as the analytic formulas presented in the previous paragraph) and a 2D calculation (done with triangular FE of order 6 and around 60000 dofs) of the resonances. Computations were carried out using XLIFE++ [START_REF]XLiFE++ : an extended library of finite element library in C++[END_REF] with the following PML parameters: r 1 = 1.1, r 2 = r 3 = 1.6, σ 0 = 5, p = 0. We show on Fig. 1 the optical modes corresponding to the following resonances k 0 : j m 1D 2D rel. diff. 1 5 2.000254 -i 10 -7.859 2.000254 -i 10 -7.726 10 -6.5 1 10 2.942771 -i 10 -14.09 2.942771 -i 10 -10.64 10 -7.4 1 15 4.004424 -i 10 -14.79 4.004424 -i 10 -13.79 10 -7.3 2 5 3.367404 -i 10 -5.329 3.367406 -i 10 -5.336 10 -6.2 2 10 4.050435 -i 10 -13.44 4.050437 -i 10 -10.23 10 -6.3 2 15 4.975665 -i 10 -16.82 4.975673 -i 10 -14.14 10 -5.7 3 5 4.842406 -i 10 -3.657 4.842411 -i 10 -3.670 10 -5.7 3 10 5.354871 -i 10 -10.89 5.354881 -i 10 -9.789 10 -5.7 3 15 6.095389 -i 10 -14.27 6.095450 -i 10 -11.60 10 -5.0 We have also considered a race-track shaped cavity with the following features: length of the straight line 1, external turn radius 0.5, width of the cavity 0.2, and optical index n c = 10. 

VI. CONCLUSION

We have set up a way to compute resonances in 2D dielectric micro-cavity, so we can find resonances on geometries where no analytical solution is available. Furthermore, we know [START_REF] Lam | Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering[END_REF] that the resonances have asymptotic expansions as m tends to infinity for a disk. For our computations on the ring, the resonances satisfy the same asymptotic. In a future work, we plan to investigate if there are asymptotic expansions for other geometries.

Fig. 1 .

 1 Fig. 1. Optical modes for a ring cavity (real part of the eigenfunction u) for various resonances k m 0,j corresponding to j = 1, 2, 3 (row index) and m = 5, 10, 15 (column index).

  Fig 2 shows the optical mode corresponding to k 0 = 3.19-i 10 -4.13 . Computations were carried out with triangular FE of order 6, around 60000 dofs, and the following PML parameters: r 1 = 1.1, r 2 = r 3 = 1.6, σ 0 = 5, p = 0.

Fig. 2 .

 2 Fig. 2. Optical modes for a race-track shaped cavity (real part of the eigenfunction u) for k 0 = 3.19 -i 10 -4.13 .
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