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Abstract—We investigate the computation of whispering
gallery modes in optical micro-resonators. From a mathematical
point of view, this leads to the computation of the complex res-
onances of dielectric micro-cavities in the sense of the scattering
theory. We consider here the 2D case where the scattering prob-
lem consists of the Helmholtz equation in R2 with discontinuities
of the normal derivative at the cavity boundary and with the
outgoing wave condition at infinity. The computational domain
is made finite by the use of perfectly matched layers (PML)
compatible with the outgoing wave condition, which results in
a non self-adjoint problem. Discretization is then achieved by
the Finite Element Method. We show theoretical and numerical
results for 2D geometries of the micro-cavity.

Index Terms—Scattering resonances, Optical micro-resonators,
Finite Element Method, PML

I. INTRODUCTION

An optical micro-resonator is a device basically made of
a dielectric cavity (with typical size ranging from one to
several hundreds µm) coupled to waveguides or fibers for light
input and output [1]. The cavities have a characteristic set of
frequencies at which it is possible to confine light-waves when
the resonance conditions are met. Light passes through the
cavity from the input waveguide and it builds up in intensity
over multiple round-trips due to constructive interference.
Depending on the optical characteristics of the cavity, it
is possible to access a wide range of optical phenomena.
Optical micro-resonators came to be important components
in the photonic toolbox where they are implemented as lasers,
amplifiers, sensors, filters, demultiplexers, switches, routers,
logic gates, etc. [2]. However, the theoretical study of optical
micro-resonators in order to improve their characteristics, their
design or to broaden the field of applications is currently
hampered by the weakness of the mathematical models used
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to describe their functioning and the relative inefficiency of
the numerical simulation tools available.

In this work we investigate from a mathematical point of
view the scattering problem associated with the computation
of optical resonances in a micro-cavity for a 2D setting. The
resonances are numerically computed by solving the scattering
problem (detailed in Section II) by the Finite Element Method
(FEM). The outgoing wave condition is handled by the use of
a proper Perfectly Matched Layer (PML) presented in Section
III. The properties of the PML for our scattering problem are
investigated in Section IV in the particular case of a ring-
shaped cavity where analytical expressions for the resonances
are known. We conclude with numerical simulation results in
Section V.

II. THE SCATTERING PROBLEM

We consider the resonance cavity alone with invariance
in the z direction. So we can assume that the optical index
and the electro-magnetic field (E,H) depend only on (x, y).
We denote by Ω the open connected set in R2 filled by the
dielectric cavity. We denote by εc the dielectric permittivity
of the cavity and by nc its optical index such that εc = ε0 n

2
c

where ε0 is the dielectric permittivity of vacuum. We also
denote by Σ the boundary of Ω and by Ω′ the exterior domain
(Ω′ = R2 \ Ω) assumed to be vacuum. The optical index is
the piecewise constant function n such that n = nc in Ω and
n = 1 in Ω′.

Under the z invariance assumption, it is well known that
the set of harmonic Maxwell’s equations can be split into two
sub-systems of equations referred to as transverse electric (TE)
equations corresponding to H = (0, 0, Hz) and transverse
magnetic (TM) equations corresponding to E = (0, 0, Ez).
The two subsystems being very similar, we will only consider
here the (TE) case. Taking as main unknown the component
u = Hz of the magnetic field, the formulation of the resonance



problem for TE modes reads: find (k0, u) ∈ C×H2
loc(R2 \Σ)

with u 6= 0 such that

∆u+ k20 n
2 u = 0 in Ω and Ω′ (1a)

[u] = 0 and
[

1

n2
∂νu

]
= 0 across Σ (1b)

with a radiation condition at infinity that imposes that u has,
outside any disk D(0, R) which contains Ω, an expansion
in terms of Hankel functions of the first kind H

(1)
m of the

following form in polar coordinates (r, θ):

u(r, θ) =
∑
m∈Z

cm H(1)
m (k0r) eimθ ∀θ ∈ R/2πZ. (1c)

This radiation condition describes outgoing time-harmonic
waves for the time dependence e−ik0ct where c is the speed
of light in vacuum. For real positive k0, the radiation con-
dition (1c) coincides with the classical Sommerfeld radiation
condition for outgoing waves. However it is well known, for
example [3], that problem (1) has no solution for k0 ∈ R∗
and that the resonances k0 have a negative imaginary part
(Im(k0) < 0) which describes the damping of the modes u in
time.

From a numerical point of view, since problem (1) is set in
R2, an artificial boundary has to be introduced to bound the
computational domain. This entails the inherent difficulty of
the way of choosing the boundary condition on this artificial
boundary to replace the radiation condition (1c) at infinity.
We have chosen to use Perfectly Matched Layers (PML) as
introduced in [4] for the computation of resonances in open
systems.

III. SCATTERING PROBLEM WITH PML

The PML method consists of a complex scaling [5] and a
cut-off at infinity. We use a cylindrical PML with parameters
σ0 > 0, r1 > 0 as inner radius such that Ω ⊂ D(0, r1), r2 >
r1 as outer radius, and a regularity index p ∈ {0, 1, 2, . . . }.
To define the complex scaling, we introduce the function σ̃ ∈
Cp(R+) such that σ̃(r) = 0 for r ≤ r1, σ̃(r) = σ0 for r ≥ r2,

σ̃(r) = σ0

∫ r
r1

(s− r1)p (r2 − s)p ds∫ r2
r1

(s− r1)p (r2 − s)p ds
for r1 < r < r2, (2)

and the following quantities: σ(r) = σ̃(r) + rσ̃′(r), d̃(r) =
1 + i σ̃(r), d(r) = 1 + iσ(r), d0 = 1 + iσ0.

We set ũ(r, θ) = u(d̃(r)r, θ). The function ũ satisfies the
system (1a,1b) in D(0, r1). In the PML area for Im(d0k0) > 0,
ũ satisfies

∆̃ũ+ k20 ũ = 0 for r ∈ (r1,+∞) \ {r2} (3a)

[ũ] = 0 and
[

1

d
∂rũ

]
= 0 for r ∈ {r1, r2} (3b)

lim
r→+∞

ũ(r, θ) = 0 (3c)

where, in polar coordinates (r, θ),

∆̃ũ =
1

rd̃

∂

∂r

(
r
d̃

d

∂ũ

∂r

)
+

1

d̃2r2

∂2ũ

∂θ2
.

Choosing r3 ≥ r2, we approach ũ by û that satisfies the system
(1a,1b) in D(0, r1) and

∆̃û+ k̂20 û = 0 for r ∈ (r1, r3) \ {r2} (4a)

[û] = 0 and
[

1

d
∂rû

]
= 0 for r ∈ {r1, r2} (4b)

û = 0 for r = r3 (4c)

The weak formulation of the eigenvalue problem set in
the bounded domain D(0, r3) reads: find (k̂0, û) ∈ C ×
H1

0(D(0, r3)) with û 6= 0 and Im(k̂0) < 0 such that
∀v ∈ H1

0(D(0, r3))∫
D(0,r3)

n−2M ∇û · ∇v dxdy − k̂20
∫
D(0,r3)

d d̃ û v dxdy = 0 (5)

where M is the matrix

M =
1

x2 + y2

x2 d̃d + y2 d
d̃

xy
(
d̃
d −

d

d̃

)
xy
(
d̃
d −

d

d̃

)
x2 d

d̃
+ y2 d̃d


Problem (5) can then be solved by the Finite Element Method
in the usual way. For the present study, we have used the
open-source Finite Element Library XLIFE++ [6]

IV. A REFERENCE PROBLEM

In order to investigate computational issues when solving
problem (1) by the FEM using PML, we consider a “reference
problem” where the micro-cavity has a ring shape with inner
radius ri and outer radius ro. For such a geometry, sepa-
rating the variables in polar coordinates provides analytical
expressions for the optical modes. We find that solutions u to
problem (1) can be expressed as u(r, θ) =

∑
m∈Z um(r) eimθ

where um is given in terms of Bessel’s functions Jm, Ym, and
H

(1)
m as

um(r) =


C1 Jm(k0r) if r < ri
C2 Jm(nck0r) + C3 Ym(nck0r) if r ∈ (ri, ro)

C4 H
(1)
m (k0r) if r > ro

where the four constants C1, . . . , C4 are determined by the
interface conditions (1b) and the resonance k0 is obtained by
solving the “modal equation”

J′
m(nck0ri)
nc J′

m(k0ri)
− Jm(nck0ri)

Jm(k0ri)

Y′
m(nck0ri)

nc J′
m(k0ri)

− Ym(nck0ri)
Jm(k0ri)

=

Jm(nck0ro)

H
(1)
m (k0ro)

− J′
m(nck0ro)

nc H
(1)
m

′
(k0ro)

Ym(nck0ro)

H
(1)
m (k0ro)

− Y′
m(nck0ro)

nc H
(1)
m

′
(k0ro)

(6)

If
∑
m∈Z um(r) eimθ is a resonance for k0 then each term

um(r) eimθ is a resonance for the same k0. We have conducted
numerical experiments on this reference problem to explore the
influence of the different parameters involved in the definition
of the PML on the accuracy of the computations.

First, we have noted that a much better approximation is
obtained by increasing the FE polynomial order rather than
increasing the number of elements. We have also observed
that the parameter σ0 in (2) must be chosen carefully: large
enough to ensure a good convergence of the approximation,
but not too large in which case the convergence rate would be



affected. Finally, a better performance is obtained by using the
lowest regularity on σ̃ corresponding to p = 0 in (2). However,
choosing p = 0 and σ̃ ∈ C0([0, r2]) requires that the mesh of
the domain respects the discontinuity of σ at r = r1. We can
choose r3 = r2, this is simpler to code and does not alter
the convergence. Other experiments show that the PML width
r2 − r1 does not need to be large.

V. NUMERICAL SIMULATION RESULTS

We present numerical simulations obtained for a ring with
inner radius ri = 0.3, outer radius ro = 0.5, and optical
index nc = 10. Similar simulations (on disk) can be found
in [7], [8]. We compare a 1D calculation (done with FE of
order 30 and around 200 dofs—as precise as the analytic
formulas presented in the previous paragraph) and a 2D
calculation (done with triangular FE of order 6 and around
60000 dofs) of the resonances. Computations were carried
out using XLIFE++ [6] with the following PML parameters:
r1 = 1.1, r2 = r3 = 1.6, σ0 = 5, p = 0. We show on Fig. 1
the optical modes corresponding to the following resonances
k0:

j m 1D 2D rel. diff.
1 5 2.000254− i 10−7.859 2.000254− i 10−7.726 10−6.5

1 10 2.942771− i 10−14.09 2.942771− i 10−10.64 10−7.4

1 15 4.004424− i 10−14.79 4.004424− i 10−13.79 10−7.3

2 5 3.367404− i 10−5.329 3.367406− i 10−5.336 10−6.2

2 10 4.050435− i 10−13.44 4.050437− i 10−10.23 10−6.3

2 15 4.975665− i 10−16.82 4.975673− i 10−14.14 10−5.7

3 5 4.842406− i 10−3.657 4.842411− i 10−3.670 10−5.7

3 10 5.354871− i 10−10.89 5.354881− i 10−9.789 10−5.7

3 15 6.095389− i 10−14.27 6.095450− i 10−11.60 10−5.0

Fig. 1. Optical modes for a ring cavity (real part of the eigenfunction u)
for various resonances km0,j corresponding to j = 1, 2, 3 (row index) and
m = 5, 10, 15 (column index).

We have also considered a race-track shaped cavity with
the following features: length of the straight line 1, external
turn radius 0.5, width of the cavity 0.2, and optical index
nc = 10. Fig 2 shows the optical mode corresponding to k0 =
3.19−i 10−4.13. Computations were carried out with triangular
FE of order 6, around 60000 dofs, and the following PML
parameters: r1 = 1.1, r2 = r3 = 1.6, σ0 = 5, p = 0.

Fig. 2. Optical modes for a race-track shaped cavity (real part of the
eigenfunction u) for k0 = 3.19− i 10−4.13.

VI. CONCLUSION

We have set up a way to compute resonances in 2D dielec-
tric micro-cavity, so we can find resonances on geometries
where no analytical solution is available. Furthermore, we
know [9] that the resonances have asymptotic expansions as m
tends to infinity for a disk. For our computations on the ring,
the resonances satisfy the same asymptotics. In a future work,
we plan to investigate if there are asymptotic expansions for
other geometries.
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