Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates - Archive ouverte HAL
Article Dans Une Revue Journal of the mechanical behavior of biomedical materials Année : 2011

Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates

Résumé

This paper presents a coupled experimental/modeling study of the mechanical response of porcine brain under high strain rate loading conditions. Essentially, the stress wave propagation through the brain tissue is quantified. A Split-Hopkinson Pressure Bar (SPHB) apparatus, using a polycarbonate (viscoelastic) striker bar was employed for inducing compression waves for strain rates ranging from 50 to 750 s−1. The experimental responses along with high speed video showed that the brain tissue’s response was nonlinear and inelastic. Also, Finite Element Analysis (FEA) of the SHPB tests revealed that the tissue underwent a non-uniform stress state during testing when glue is used to secure the specimen with the test fixture. This result renders erroneous the assumption of uniaxial loading. In this study, the uniaxial volume averaged stress–strain behavior was extracted from the FEA to help calibrate inelastic constitutive equations.
Fichier non déposé

Dates et versions

hal-01715433 , version 1 (22-02-2018)

Identifiants

Citer

Raj Prabhu, Mark F. Horstemeyer, M.T. Tucker, E.B. Marin, Jean-Luc Bouvard, et al.. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates. Journal of the mechanical behavior of biomedical materials, 2011, 4 (7), pp.1067 - 1080. ⟨10.1016/j.jmbbm.2011.03.015⟩. ⟨hal-01715433⟩
14 Consultations
0 Téléchargements

Altmetric

Partager

More