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Seismic waves in fractured porous media

INTRODUCTION

A fractured porous medium is a dual-porosity medium, i.e., 
it consists of two interacting porous systems whose permeabil-
ities are very different. The purpose of this paper is to math-
ematically model seismic wave propagation in saturated frac-
tured porous media when the wavelength is large compared to 
the fracture characteristic length.

The acoustics of porous saturated media are of first impor-
tance in numerous engineering areas, e.g., seismic exploration, 
property testings in paper manufacturing, designing antinoise 
devices. When modeling transport processes in porous media, 
we can distinguish two kind of approaches (1) phenomenolog-
ical approaches, i.e., macroscopic approaches, and (2) homog-
enization methods by which the macroscopic equations are 
derived by starting with the detailed microscale physical de-
scription. The acoustics of single-porosity media, i.e., porous 
media with a single pore-size characteristic length, was pio-
neered by Biot, who derived his model on the basis of phe-
nomenological reasoning (Biot, 1956). In Biot’s theory, the 
porous matrix is assumed to be elastic, and the fluid is vis-cous 
and Newtonian. Biot’s model is a two-phase model: the 
porous saturated medium is described by two macroscopic dis-
placement fields, us for the porous matrix and u f for the fluid. 
In describing the relative fluid–solid movement, the solid dis-
placement is effectively constant at the microscale, which 
shows that, at this scale, its movement is a rigid translation. As 
for the local fluid displacement, it depends upon the position 
within the pore. Thus, u f stands for its average throughout an 
aver-aging volume. For a slightly compressible or an 
incompressible fluid at constant angular frequency, ω, Biot’s 
model reads

∂#T
i j

∂x j
= −(1 − $)ω2ρsusi − ω2ρ f u f i , (1)

#T
i j = Ci jkl Ekl(us) − Ŵi j p, (2)

∂(iωu f i − iω$usi )

∂xi
= −'i j iωEi j (us) − biωp, (3)

iωu f i − iω$usi = −Ki j

(

∂p

∂x j
− ω2ρ f us j

)

, (4)

where Σ
T is the total stress; ρs and ρ f are the solid and the fluid

densities, respectively; E is deformation; $ is porosity; P is the
pressure; Ci jkl , Ŵi j = 'i j , and b are elastic coefficients; and Ki j

is the acoustic permeability, which is complex valued and fre-
quency dependent. An important feature of Biot’s model is the
symmetry Ŵi j = 'i j . Equation (4) represents the acoustic filtra-
tion law. Biot’s model has been derived by homogenization in
Levy (1979), Auriault (1980), and Burridge and Keller (1981).
Homogenization has also proven that Biot’s model [equations
(1)–(4)] is not the only mathematical model for describing
the acoustics of elastic porous media saturated by a viscous
Newtonian fluid (Auriault, 1991a).

A dual-porosity medium consists of two interacting porous
systems of distinctly different fluid transport properties, as is
the case in a fractured porous medium: one porous structure is
associated with the fractures, and the second is associated with
the porous matrix. The concept of dual porosity was introduced
by Barenblatt et al. (1960) to investigate fluid flow in naturally
fractured porous media. A few attempts have been made, us-
ing phenomenological reasoning, to generalize Biot’s theory
for wave propagation in saturated fractured media (Wilson
and Aifantis, 1984; Beskos, 1989; Berryman and Wang, 2000).
By homogenization, Auriault and Boutin (1994) derived four
distinct macroscopic models. The objective of our paper is to
summarize this work on deriving the equations that control
wave propagation in saturated fractured media.

Fractured porous media are characterized by the existence
of three separate scales of distinctly different characteristic
lengths: the pore scale, the fracture scale, and the macroscopic
scale (see Figure 1). When investigating wave propagation,
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the macroscopic characteristic length to be considered is the
wavelength λ. Let’s denote by ℓ and ℓ′ the pore-scale and the
fracture-scale characteristic lengths, respectively. We therefore
have

ℓ % ℓ′ % λ.

A three-scale homogenization method is therefore used. The
only hypotheses are in the laws used to describe the physics at
the pore and fracture scales. The porous, fractured matrix is
assumed to be elastic, and the fluid within the pores and frac-
tures is viscous Newtonian and incompressible or slightly com-
pressible. The three-scale homogenization method consists of
homogenizing the pore-scale description to derive the porous
matrix behavior and homogenizing the fracture-scale descrip-
tion to obtain the macroscopic equations. The macroscopic be-
havior depends strongly upon the relative order of magnitude
of the scale ratios ℓ/ℓ′ and ℓ′/λ.

The analysis below is restricted to the case of a fractured
porous medium subject to a two-phase Biot’s regime in the
fractures for which four distinct macroscopic two-phase models
are obtained. In effect, single-phase regimes occur when there
is no local flow and are therefore of lower interest.

The next section is devoted to a brief, general presentation
of the homogenization method. A following section considers
the homogenized models for acoustics in single-porosity media.
The last section presents the models obtained for describing
wave propagation in dual-porosity media. Attention is focused
on the results obtained by the homogenization process. For
details related to the derivation of the models, the reader is
referred, when required, to other references.

HOMOGENIZATION METHOD

The essence of homogenization techniques is to deter-
mine an equivalent macroscopic behavior by upscaling the

FIG. 1. The three scales of a fractured porous medium.

local description. The fundamental assumption behind any
homogenization method is that the scales must be separate.
For a two-scale medium, this condition is expressed as ℓ % L ,
where ℓ and L are the characteristic lengths at the heterogene-
ity scale and the macroscopic scale, respectively. This defini-
tion conjures up a purely geometric separation of scales, but
this fundamental condition must also be satisfied by the phys-
ical process considered. For example, for wave propagation
in a heterogeneous medium, the heterogeneity characteristic
length ℓ must also be small compared to the wavelength.

We use the homogenization method for periodic structures
(also called method of multiple scales) introduced by Keller
(1977), Bensoussan et al. (1978), and Sanchez-Palencia (1980).
When dealing with a two-scale medium, the key parameter of
the method is the small parameter

ε =
ℓ

L
% 1. (5)

Depending on the problem under consideration, L is either
geometric (i.e., the sample size) or related to excitation (e.g.,
wavelength). With this homogenization method, the medium
is also assumed to be periodic. This assumption is actually not a
restriction; it allows derivation of the macroscopic model with-
out any assumption on the form of the macroscopic equations.
In this study, we use the formulation of the method suggested in
Auriault (1991b), with which the problem is tackled in a more
physical manner. This formulation uses the dimensionless num-
bers that arise from the local description. These dimensionless
numbers must be estimated with respect to the scale ratio ε.
Using the two characteristic lengths, two dimensionless space
variables are defined:

y =
x

ℓ
, y′ =

x

L
, (6)

where x is the physical space variable. If the condition of sepa-
ration of scales is satisfied, then y and y′ appear as two indepen-
dent space variables: y is the microscopic variable and describes
the heterogeneity scale, whereas y′ is the macroscopic variable.
As a consequence, the physical variables of the problem, p and
u, are a priori functions of y and y′:

p = p(y, y′), u = u(y, y′). (7)

Such a separation into y and y′ dependence is fully justified in
an asymptotic sense. The homogenization method of multiple
scales is based on the fundamental premise that if the scales
are well separated, then all physical variables can be looked
for in the form of asymptotic expansions in powers of ε:

p = p0(y, y′) + εp1(y, y′) + · · · , (8)

u = u0(y, y′) + εu1(y, y′) + · · · , (9)

in which the functions pi and ui are y-periodic.
The method consists of incorporating expansions (8) and (9)

in the dimensionless form of the local description. Solving the
boundary-value problems arising at the successive orders of ε

leads to the macroscopic description.
When considering a dual-porosity medium, this methodol-

ogy must be extended to three-scale problems. Thus, three di-
mensionless space variables must be defined and two scale ra-
tios be considered. This three-scale homogenization method,



established by Auriault and Boutin (1992, 1993) and has been
applied successfully to various dual-porosity problems.

SINGLE-POROSITY MEDIA

Let’s denote by +s and + f the solid and fluid parts of the
period, respectively, and let Ŵ be the pore surface. The local,
i.e., pore-scale, description is given by

∂#αi j

∂x j
= −ω2ραuαi , in +α, α = s, f, (10)

#si j = Ai jklEkl(us),
(11)

# f i j = −pIi j + 2µEi j (iω u f ),

∂u f i

∂xi
=

−p

Kw

, in + f , (12)

#si jn j = # f i jn j , (13)

usi = u f i on Ŵ, (14)

where ρα (α = s, f ) is the density, I is the identity tensor, A is
the elastic rigidity of the solid, µ is the viscosity of the fluid, and
Kw is the rigidity of the fluid. Equation (10) is the momentum-
balance equation; the behaviors of the solid and the liquid are
given by equation (11). Equation (12) is the mass-balance equa-
tion for the fluid and is valid for an incompressible or a slightly
compressible fluid. Equations (13) and (14) are the boundary
conditions on Ŵ that express the continuity of normal stresses
and displacements, respectively.

It turns out that the macroscopic behavior is fully condi-
tioned by the order of magnitude of the following dimension-
less number (Auriault, 1991b),

R =
|C|

ωµ
,

where |C| is an a priori estimate of the porous matrix elas-
tic modulus. The value R is linked to boundary condition (13)
and characterizes the local fluid–solid movement. Four macro-
scopic models are obtained that correspond to four orders of
magnitude for the property ratio R. The model classification be-
low is made with decreasing orders of R which, assuming fixed
values for |C| and ω, corresponds to increasing values for µ.

The order of magnitude with respect to ε is defined by
R= O(ε p), p integer, if ε p+1 % R% ε p−1.

Model A: R >– O(ε−−3).—At the first order of approximation,
the saturated porous medium behaves like an empty elastic
porous medium. The quality factor Q−1 is defined as the max-
imum value, with respect to ω, of the ratio of the dissipation
energy during a cycle to the maximum elastic energy. In the
present case there is no viscous effect: the quality factor is
therefore negligible and is estimated as Q−1 = O(ε).

Model B: R = O(ε−−2).—There is movement of the fluid
relative to the skeleton. The macroscopic behavior is given
by Biot’s model [equations (1)–(4)]. The quality factor is
Q−1 = O(1).

Model C: R = O(ε−−1).—The macroscopic model describes
single-phase elastic behavior but differs from model A. In ef-
fect, in contrast to model A, which describes the behavior of

an empty matrix, the present model describes the behavior of
a impermeable porous matrix saturated by a fluid. The fluid
has an influence on the elastic properties of the material. The
quality factor is Q−1 = O(ε).

Model D: R = O(1).—There is a very strong influence
from the fluid properties. The macroscopic model represents
a single-phase viscoelastic behavior. The quality factor is
Q−1 = O(1).

The four models are summarized in Figure 2.

DUAL-POROSITY MEDIA

When looking for the macroscopic behavior of wave propa-
gation in fractured porous media, three scales (pore, fracture,
and macroscopic) and, consequently, two scale ratios must be
considered:

α =
ℓ

ℓ′ % 1 pore/fracture scale ratio,

β =
ℓ′

λ
% 1 fracture/wavelength scale ratio.

The macroscopic behavior depends upon the orders of magni-
tude of the property ratios:

Rp =
|C |

ωµ
pore-scale property ratio,

R f =
|D|

ωµ
fracture-scale property ratio,

where |C | and |D| are a priori estimates of the elastic moduli
of the porous matrix (fracture scale) and the fractured matrix
(macroscopic scale), respectively. More precisely, the macro-
scopic behavior is conditioned by the order of Rp with respect
to α, which determines the regime in the porous matrix, and
by the order of R f with respect to β, which characterizes the
type of macroscopic model. The results obtained in the single-
porosity case indicate that a two-phase model (B) corresponds
to R= O(ε−2). Thus, to obtain two-phase dual-porosity models
(which effectively correspond to an extension of Biot’s theory
to fractured porous media), we restrict the analysis to

R f = O(β−2),

for which the quality factor is Q f = O(1). Two-phase models
are those of greatest interest for geophysical applications since
in the corresponding situations there exists a movement of the
fluid relatively to the matrix. As a consequence, the signature
of the fluid flow is contained in these models. Once R f has
been fixed, the behavior remains conditioned by the order of
Rp with respect to α:

Rp = O(α p).

FIG. 2. The four behaviors of a single-porosity medium.
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This will determine the regime in the porous matrix. We gen-
erally have D= O(C); hence, Rp and R f are the same order:

Rp = O(α p) = O(R f ) = O(β−2).

Therefore, the macroscopic behavior is conditioned by the rel-
ative order of magnitude of both scale ratios:

α = O(βq), q integer.

Four macroscopic models are obtained that correspond to that
of Auriault and Boutin (1994):

α = β1/2; α = O(β); α = O(β2); α = O(βn), n > 4.

When α = β1/2, we get Rp = O(α−4) which, according to the
single-porosity classification, corresponds to a type A regime in
the porous matrix. This dual-porosity model will therefore be
type B-A. Thus, we get the following classification for the four
models:

• α = β1/2 : Rp = O(α−4) ⇒ model B–A,

• α = O(β) : Rp = O(α−2) ⇒ model B–B,

• α = O(β2) : Rp = O(α−1) ⇒ model B–C,

• α = O(βn), n > 4 : Rp = O(α0) ⇒ model B–D.

(15)

Model B–A: Low pore-fracture separation of scales

Model B–A is defined by ℓ/ℓ′ = O(
√

ℓ′/λ) and is given by

∂#T
i j

∂x j
= − [(1 − $p)ρs + $pρ f ](1 − $ f )

× ω2usi − ω2ρ f u f i , (16)

#T
i j = Di jklExkl(us) − Ŵi j p, (17)

∂(iωu f i − iω$ f usi )

∂xi
= −'i j iωExi j (us) − biωp, (18)

iωu f i − iω$ f usi = −K f i j

(

∂p

∂x j
− ω2ρ f us j

)

, (19)

where $p and $ f are the pore and fracture porosities, respec-
tively; Di jkl and Ŵi j ̸= 'i j and b are effective elastic coefficients,
K f i j is the acoustic permeability of the fracture system, and
p is the pressure in the pores and fractures. Model B–A is
a Biot’s model [see equations (1)–(4)]. However, in contrast
with the original Biot’s model, we can prove that the symme-
try between Ŵi j and 'i j is broken: Ŵi j ̸= 'i j . The quality factor
is Q−1 = O(Q−1

f ) = O(1).

Model B–B: Equal separations of scales

Model B–B is characterized by ℓ/ℓ′ = O(ℓ′/λ). This dual-
porosity model shows strong interactions between pore flow
and fracture flow. The regime of the porous matrix is a
Biot’s regime of model B and gives rise to squirt flow.
Attenuation is from both pore flow and fracture flow:
Q−1 = O(Q−1

f + Q−1
p ) = O(1). Homogenization yields a model

similar to model B–A. However, model B–B has important
new features. First, the effective coefficients Di jkl , Ŵi j ̸= 'i j and
b are now complex valued and frequency dependent. At the
macroscopic scale, the saturated microporous matrix is seen

as a porous medium that undergoes a time-dependent con-
solidation process. Second, p is the pressure in the fracture
only: p= p f , pp ̸= p f . Note that the symmetry remains bro-
ken: Ŵi j ̸= 'i j .

Model B–C: High pore-fracture separation of scales

In this case the scale ratios are such that ℓ/ℓ′ = O((ℓ′/λ)2).
The microporous system behaves like a single-phase elastic
medium (modelC). As a consequence, attenuation is obtained
from the fracture system only: Q−1 = O(Q−1

f ) = O(1). Again,
the homogenized model is similar to equations (16)–(19). As
in model B–A, Di jkl , Ŵi j , 'i j and b are real-valued effective
elastic coefficients, but they differ from those in model B–A.
As in model B–B, we have p= p f , pp ̸= p f . Note, however, that
the symmetry Ŵi j = 'i j is now verified. In this respect, model
B–C is similar to a Biot’s model.

Model B–D: Strongly high pore-fracture separation of scales

We consider now the case ℓ/ℓ′ = O((ℓ′/ℓ′′)n), n> 4. The
microporous system behaves like a single-phase viscoelastic
medium (model D). However, viscoelastic effects are quite low.
Attenuation is given by Q−1 = O(Q−1

f ) = O(1).
The upscaled model is again described by equations (16)–

(19), in which Di jkl , Ŵi j = 'i j , and b are effective viscoelastic
coefficients, but they differ from those in model B–B. As in
models B–B and B–C we have p= p f , pp ̸= p f . The symmetry
Ŵi j = 'i j is verified. Model B–D is similar to a Biot’s model
with a viscoelastic porous matrix.

For a precise interpretation of the models, we define the
following times,

τp =
ℓ′2

cpK p

, τ f =
λ2

d f K f

, (20)

that characterize the physical processes in the porous ma-
trix and the fracture network, respectively, where cp and d f
are the bulk moduli of the pore and the fracture frames
and where K p and K f are the permeabilities of both porous
systems. We have cp = O(d f ) and, in the viscous regime,
K p = O(ℓ2/µ), K f = O(ℓ′2/µ). Analysis of the order of mag-
nitude of their ratio,

τp

τ f
= O

(

ℓ′4

ℓ2 λ2

)

= O(α−2β2), (21)

which depends only on the scale ratios, provides information
on the intensity of fluid exchange between both porous sys-
tems with respect to fracture flow. It also indicates whether the
porous matrix may be subject to consolidation.

Model B–A is characterized by τp = O(βτ f ) % τ f , which in-
dicates that fluid exchange between both porous structures is
instantaneous whereas fracture flow occurs later. Furthermore,
the microporous matrix consolidates at τp . In model B–B we
get τp = O(τ f ), which gives rise to strong interactions between
pore flow and fracture flow. Finally, for models B–C and B–D
the characteristic times are such that τp * τ f . As a result, fluid
exchange is negligible a time τ f with respect to fracture flow,
and the microporous matrix does not consolidate at τ f .

The domains of validity of models B–A, B–B, B–C , and B–D,
which are defined by means of the relative orders of magnitude
of the scale ratios α and β [equation (15)], are shown in Figure 3.



FIG. 3. Domains of validity of the four dual-porosity models.

CONCLUSION

An important conclusion drawn from this study is that
there exist four distinct macroscopic two-phase models for de-
scribing seismic wave propagation in fractured porous media.
The choice of model is conditioned by the relative order of
magnitude of the scale ratios. In a given medium, ℓ and ℓ′ are
related to the knowledge of the structure of the material and
are therefore defined, whereas λ depends on the excitation.
Therefore, the choice of the macroscopic model is fully condi-
tioned by the excitation of the medium.

Our presentation is restricted to cases of interest for geo-
physical applications, i.e., two-phase behaviors for which the
signature of fluid flow is contained in the model. These results
can easily be extended to the three other possible behaviors
for the fractured system. The analysis is also limited to the case
of a viscous regime defined by K p = O(ℓ2/µ), K f = O(ℓ′2/µ),
which corresponds to the range of frequencies of seismic waves.
Within the inertial regime, we have K p = O(1/ iωρ f ) = O(K f ),
which gives rise to different behaviors.

The four distinct two-phase, dual-porosity behaviors are
shown in Figure 3 with respect to the orders of magnitude of the
scale ratios. For log(ℓ/ℓ′) = 1, the dual-porosity medium has a
single-porosity behavior. In the case under consideration here,
we retrieve Biot’s model. For log(ℓ′/ℓ′′) > −1, i.e., ℓ′/ℓ′′ > 0.1,
the separation of scales of the fractured porous medium be-
comes quite poor. This bound is generally considered a rea-

sonable limit for the existence of a macroscopic equivalent
behavior.

Biot’s theory and our results are valid for an incompress-
ible or a slightly compressible fluid. For all models we present,
Gassman’s limit is reached when ω → 0. For strongly compress-
ible fluids, Biot’s model would be modified (the macroscopic
mass balance is changed) and Gassman’s limit would not be
reached.
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