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Abstract

Dense fluid-particle flow occurs in many industrial applications, such as fluidized bed technology. To model these flows, statistical
approaches are developed and, since quite recently, particle resolved simulations may be used to support the validation and the develop-
ment of models. The viscous penalty method is used here to track moving solid particles coupled with the Direct Numerical Simulation
(DNS) of the interstitial fluid flow. Particle-particle collisions are taken into account by Discrete Element Method (DEM) as well as the
lubrication forces. 3D direct numerical simulations have been carried out of a periodic Couette flow were performed for finite Stokes
number and moderate Reynolds number values for dense flows ranging from 5 to 30%. The results show a particle accumulation - at
the centre or at the wall- according to the Stokes number and particle volume fraction. The production, diffusive, collisional and fluid
interaction terms are analyzed for the momentum equation and particle kinetic stress equation as well.

Keywords: Direct Numerical Simulation, Fluid-Particle 3D Couette Flow, Kinetic Theory

1. Introduction

Fluid-particle flow occurs in many industrial (oil cracking,
pulverized coal boiler, fluorination of uranium) and environmen-
tal areas (sediment transport, polutant dispersion). The numerical
simulation of particle-laden flows has gained a lot interest since a
few decades, first because it permits the study of the flow at rel-
atively low cost and second, because it is difficult to experimen-
tally access important parameters of such flow. Several methods
exist to compute the particle-laden flows. The Euler-Euler ap-
proaches are able to perform numerical simulations at the reac-
tor scale, but they still rely on several assumptions those can be
addressed by DNS. The numerical simulations performed at the
scale of the particle allow to understand the local fluid-particle in-
teraction [4]. As such a method has a high computation cost it is
then restricted to academic configurations such as Couette flow.

Figure 1: Instantaneous field of a fully resolved DNS with 382
particles (Case A).

2. Numerical Method

In the literature several methods can be found for performing
Direct Numerical Simulation (DNS) of particle-laden flow: Lat-
tice Boltzmann approach [2], Immersed Boundary Method [8]
and Viscous Penalty Method [9]. The present numerical simula-
tions have been carried out by using the viscous penalty method
that allows to track moving solid particles coupled with the DNS
of the interstitial fluid flow. Particle-particle hard-sphere colli-
sions are taken into account by Discrete Element Method (DEM)
as well as the lubrication forces [3].

Table 1: Fluid and particle material properties.
Particle diameter dp 6.0 10−3 m

Particle density ρp 1.0 103 kg/m3

Fluid density ρf 1.0 101 kg/m3

Fluid viscosity µf 3.8 10−3 Pa.s

Domain dimension H 1.2 10−1 m

The computational domain is a box of length Lx = H ,
Ly = H , and Lz = H/2. In streamwise direction (x-direction)
and spanwise (z-direction) periodic boundary conditions are ap-
plied. In y-direction two moving walls with no-slip boundary
conditions for the fluid phase take place. For the particle, free-
slip wall boundary condition is imposed.

Four cases have been considered differing by two the parti-
cle volume fraction and by the imposed wall velocity Vw. These
set-up parameters are shown by Table 2. The material properties
of the fluid and particle are gathered in Table 1 and the different
cases in Table 2. Figure 1 shows an instantaneous field of the
numerical simulation.

The mesh used is a structured grid with Nx = Ny = 2Nz =

240 cells in each direction. Following Vincent et al. [9] the
number of cell has been chosen in order that dp/∆x = 12 where
∆x =∆y =∆z = 5 10−4 m is the mesh size.
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Table 2: Description of the cases with Np the particle num-
ber, αp,bulk the particle volume fraction, Vw the wall velocity,
Stbulk = τp Vw/H the Stokes number and Ref = ρfVwH/µf

the fluid Reynolds number.
CASE Np αp,bulk Vw Stbulk Ref

A 382 5% 1.14 m/s 10 360

B 2292 30% 1.14 m/s 10 360

C 382 5% 3.42 m/s 30 1080

D 1146 15% 3.42 m/s 30 1080

3. First Results

At t = 0 the particles are uniformly and randomly distributed
in the domain without overlapping between particles. As shown
by Figure 2 the whole particle agitation reaches a steady state that
for case A is approximately at 10 s.
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Figure 2: Total particle agitation for the case A.

The cumulative number of particles in contact, Nc, is shown
by the Figure 3. One can observe at 10 s , that Nc has a linear
time-evolution indicating also a steady-state. From the cumula-
tive number of particles in contact, the collision frequency in the
whole box can be computed as

fc =
1

2

d

dt
(Nc) (1)

and the inter-particle collision timescale reads

τc =
Np

2fc
(2)

The Table 3 shows the time-average values of the inter-particle
collision frequency and timescale for each case.

Table 3: Collision frequency and collision time-scale.
CASE fc τc

A 260 col/s 0.7346 s

B 1049 col/s 1.0924 s

C 4315 col/s 0.04426 s

D 28675 col/s 0.01998 s

Interestingly, at steady-state, for the case A, all the particles
tend to migrate to centre of the flow, and at the opposite, for the

case C, they tend to migrate towards to the wall, that is high-
lighted at the Figure 4.
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Figure 3: Cumulative number of particle in contact (Nc) for the
case A.

Figure 4: Effect of the wall slip velocity on the instantaneous dis-
tribution of particles at steady-state in case A (top) and case C
(bottom). The particle volume fraction is αp,bulk = 5%.

Figure 4 shows instantaneous particle distribution found at
steady-state for the same solid volume fraction (αp,bulk = 5%)
but different wall velocity. On can observed that for the low ve-
locity (case A) the particles are much more located at the centre
of the domain. Large-scale clusters are also found. In contrast,
for Vw = 3.42 m/s the particle distribution is much more uniform
across the domain.
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Figure 5: Effect of the particle volume fraction on the instanta-
neous distribution of particles at steady-state in case A (top) and
case B (bottom). The wall slip velocity is Vw = 1.14 m/s.

Figure 5 shows the instantaneous particle distributions for the
same wall velocity (Vw = 1.14 m/s) but different particle volume
fractions. As expected, increasing the particle volume fraction
leads to increase the inter-particle collisions and then the parti-
cles are much more uniformly distributed in the domain.

4. Results and discussion

The time-average variables, shown in this section, are com-
puted at the steady-state and during a sufficiently long time in
order to get converged statistics. The focus is made on the case
C.
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Figure 6: Mean particle velocity normalized by the wall slip
velocity with respect to the wall-distance. The symbols are

: Up,x/Vw; : Up,y/Vw; : Up,z/Vw

The mean particle velocities are shown by Figure 6. Wall-
normal and spanwise mean particle velocities are equal to zero.
In contrast the streamwise particle velocity exhibit a linear shear
in the core of the flow.
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Figure 7: Stokes number with respect to the wall-distance.

Figure 7 shows the Stokes number profile. It is defined as
St = τp ∂Up,x/∂y where the particle response time is given by
τp = ρpd

2
p/18µf . At the centre of the domain the Stokes number

profile is about 20 and increases close to the two moving wall. As
τp is given constant, the evolution of the Stokes number is com-
ing from change of the velocity shear across the channel which,
in this case, is roughly constant for 2y/H between -0.3 and +0.3.

As shown by Figure 8 the wall-normal distribution of the par-
ticles across the domain is not uniform. The particles are more
present in the near wall region and less in the core of the domain.
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Figure 8: Particle number density with respect to the wall-
distance.

The particle kinetic stress tensor is defined by Rp,ij =

⟨u′p,iu
′

p,j⟩p where u′p,i is the particle velocity fluctuation. Fig-
ure 10 shows all components of the particle kinetic stress tensor
with respect to the distance with the wall. It shows that the par-
ticle agitation in strongly anisotropic and is measured essentially
in the streamwise direction. The spanwise and the wall-normal
particle kinetic stress component are nearly the same. In addition
Rp,xz and Rp,yz are found close to zero. As expected the shear
component, Rp,xy , is negative.
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The particle kinetic agitation corresponds to the trace of the
particle kinetic stress tensor. Then it is defined by q2p = 1/2Rp,ii.
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Figure 9: Particle kinetic agitation q2p with respect to the wall-
distance.
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Figure 10: Particle kinetic stress tensor Rp,ij with respect to the
wall-distance. The symbols are : Rp,xx; : Rp,yy; :
Rp,zz; : Rp,xy; : Rp,xz and : Rp,yz

The profile of q2p is shown by Figure 9. One can notice that
the agitation of the particles is higher at the centre of the domain,
where particle volume fraction is lower.

In the framework of a statistical description of granular flow
[7] the transport equation of each moment of the particulate phase
can be derived. By assuming that Up,y , Up,z and the gradient in
x- and z-direction are negligibles , momentum equation writes

∂Up,i

∂t
= −

1

np

∂ (npRp,iy)

∂y
+ ⟨afi ⟩p +

1

np
C (up,i) (3)

where ⟨afi ⟩p is the acceleration of the particles due to fluid inter-
action.
Budget balance of Eq. (3), in the y- direction, is shown by Fig-
ure 11. One can notice that a balance is established between the
production term, which tends to move the particles towards the
walls and and the fluid interaction term which leads the particles
towards the centre.
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Figure 11: Budget analysis of the transport equation of Up,y

given by Eq. (3). The symbols are : −1/np∂ (npRp,yy) /∂y;
: ⟨ay⟩p; : C (up,i) /np; : sum of all terms.

The particle kinetic tensor transport equation can also be
derived. With the same assumptions, the equations for Rp,xx,
Rp,yy , Rp,zz ,Rp,xy and q2p read

∂Rp,xx

∂t
= −

1

np

∂ (npSp,yxx)

∂y
− 2Rxy

∂Up,x

∂y
(4)

+ 2⟨afxu
′

p,x⟩p +
1

np
C (u′p,xu

′

p,x)

∂Rp,yy

∂t
= −

1

np

∂ (npSp,yyy)

∂y
(5)

+ 2⟨afyu
′

p,y⟩p +
1

np
C (u′p,yu

′

p,y)

∂Rp,zz

∂t
= −

1

np

∂ (npSp,yzz)

∂y
(6)

+ 2⟨afzu
′

p,z⟩p +
1

np
C (u′p,zu

′

p,z)

∂Rp,xy

∂t
= −

1

np

∂ (npSp,xyy)

∂y
−Rp,yy

∂Up,x

∂y
(7)

+ ⟨afxu
′

p,y⟩ + ⟨a
f
yu

′

p,x⟩p +
1

np
C (u′p,xu

′

p,y)

∂q2p
∂t
= −

1

2np

∂ (npSp,yii)

∂y
−Rxy

∂Up,x

∂y
(8)

+ ⟨afi u
′

p,i⟩ +
1

np
C (u′p,iu

′

p,i)

In Eqs. (4)-(8), Sp,ijk = ⟨u
′

p,iu
′

p,ju
′

p,k⟩ is the third order cor-
relation of the particle fluctuating velocity. Figure 12 - 15 shows
each contribution of Eq. (4) - Eq. (7). One can observe that in x-
direction the particle kinetic stress is produced by the mean shear.
As expected the friction of the particles with the fluid leads to the
destruction of the particle kinetic stress componentRp,xx,Rp,yy ,
Rp,zz and Rp,xy . In the x- and z- direction the inter-particle
interactions is negative meaning that the collisions decrease the
particle kinetic stress component. In contrast in y-direction the
inter-particle interaction term is positive meaning that the colli-
sions increase Rp,yy and Rp,zz . This effect is due to the nature
of the collisions that is an isotropization effect. In the present
case, the particle agitation in x-direction is redistributed towards
y- and z-direction by the inter-particle collision [10]. Such kind
of behavior has also been found at [11, 12].
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A diffusive term is also found near the centre of the domain for
the budgets of Rp,xx, Rp,yy and Rp,xy , this effect leads to the
transport of agitation away of the centre.
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Figure 12: Budget analysis of the transport equa-
tion of Rp,xx given by Eq. (4). The symbols are

: −1/np∂ (npSp,yxx) /∂y; : −2Rxy∂Up,x/∂y;
: 2⟨afxu

′

p,x⟩p; : C (u′p,xu
′

p,x) /np; : sum of all the
terms.

The terms of the evolution of the particle agitation equation
given by Eq. (8) are depicted by Figure 16. One can notice that
the global effect is that the random kinetic energy is produced by
the mean particle shear velocity, and it is dissipated by the colli-
sions and the interaction with the fluid.
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Figure 13: Budget analysis of the transport equa-
tion of Rp,yy given by Eq. (5). The symbols are

: −1/np∂ (npSp,yyy) /∂y; : 2⟨afyu
′

p,y⟩p;
: C (u′p,yu

′

p,y) /np; : sum of all terms.
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Figure 14: Budget analysis of the transport equa-
tion of Rp,zz given by Eq. (6). The symbols are

: −1/np∂ (npSp,yzz) /∂y; : 2⟨afzu
′

p,z⟩p;
: C (u′p,zu

′

p,z) /np; : sum of all terms.
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Figure 15: Budget analysis of the transport equa-
tion of Rp,xy given by Eq. (7). The symbols are

: −1/np∂ (npSp,xyy) /∂y; : −Rp,yy∂Up,x/∂y;
: ⟨afxu

′

p,y⟩ + ⟨a
f
yu

′

p,x⟩p; : C (u′p,xu
′

p,y) /np; :
sum of all terms.
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Figure 16: Budget analysis of the transport equa-
tion of q2p given by Eq. (8). The symbols are

: −1/ (2np)∂ (npSp,ykk) /∂y; : −Rxy∂Up,x/∂y;
: ⟨afku

′

p,k⟩p; : C (u′p,ku
′

p,k) / (2np); : sum of all
terms.

5. Conclusion

3D dense fluid-particle Couette flow were studied using di-
rect numerical simulation. Fundamental parameters of the flow
have been extracted from the steady-state such as, particle kinetic
stress tensor, third order correlation, collision time-scale, etc. The
production, diffusion, collisional and fluid interaction terms were
analyzed highlighting fundamental physics of the flow, such as
the isotropization effect with the collisions.
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