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Abstract

In dilute gas-solid turbulent flows, as that encountered, for example, in pulverized coal combustion processes, the correct prediction of
the non-isothermal/reactive particle-laden turbulent mixture relies on the accuracy of the modeling of the local and unsteady particle
behavior, which affects the hydro-thermodynamic coupling and the heat transfer and transport in and between the phases and at wall.
In very dilute mixtures composed of highly inertial solid particles, such a local and unsteady behavior is the result of the particle
interactions with very distant and independent turbulent eddies, namely with different dynamic and thermal turbulent scales. Such
interactions strongly modify the local particle velocity and temperature distributions, changing the local evolution of the properties of
the dispersed phase. Their knowledge is thus crucial when modeling unsteady particle-laden turbulent flows. In this work, the focus is
on the particle temperature distribution. Its characterization is provided by means of an analysis of the two-particle correlation functions
in the frame of the direct numerical simulation of non-isothermal homogeneous isotropic, statistically stationary, turbulent flows.

Keywords: Particle-laden turbulent flows, non-isothermal flows, very dilute regime

1. Introduction

Modeling non-isothermal/reactive particle-laden turbulent
flows, requires a deep understanding of the dispersed phase both
from a dynamic and a thermal point of view. In particular, when
the dispersed phase is modeled as a continuum in the frame of the
PDF moment approach, the understanding of the local particle be-
havior is crucial in order to characterize with high fidelity particle
statistical properties. From an Eulerian point of view, the char-
acterization of the particle velocity and temperature distributions
is very important for the modeling of the local and instantaneous
(i.e., DNS or LES) particle-laden flows. In the literature, several
unsteady Eulerian approaches exist, able to predict the particu-
late phase in a local fashion. For very low Stokes numbers, the
particle velocity and temperature distributions may be modeled
by the unique first-order moment [12] (i.e., the ensemble aver-
age of particle velocities and temperatures) since each particle
responds rapidly to the local changes of the fluid keeping strong
correlations with the surrounding flows and with the neighboring
particles as well. For very low Stokes numbers, methods based
on a Taylor expansion of the particle velocity and temperature
equations may also be used [6, 7]. For Stokes numbers greater
than unity (based on the Kolmogorov time scale) the monovalue
assumption generally fails since particle velocity and temperature
exhibit a local distribution which is characterized by high order
central moments. The larger is the particle inertia, the more im-
portant is their contribution. In this case, in order to be effective,
moment approaches required to account for high order moments
as well [20, 8, 9, 24, 16, 23, 3]. The understanding of the particle
velocity and temperature distributions is therefore an important
point of the particle Eulerian modeling in turbulent flows.

In order to gain insight in the understanding of the local parti-
cle behavior, Février, Simonin & Squires [8] developed a formal-
ism able to explain the nature of velocity correlations between
neighboring particles. The authors suggest a point of view about
the question, why heavy particles are less spatially correlated than
light particles at short rather than long separation distances? This
concern was investigated using spatial velocity correlations com-
puted between any two separate particles. At the scalar limit,

such a two-point correlation function approaches that of the fluid,
behaving exponentially as modeled in one-phase flow by Hinze
[10] and converging to the particle kinetic energy for distances
tending to zero. An increase in particle inertia leads to lose part
of the correlation in motion for neighboring particles with a con-
sequent decrease in correlation at the zero-distance limit. This
phenomenon was explained by analogy to the kinetic theory of
dilute gases [1]: at the limit of very large inertia, particles move
chaotically behaving like molecules in a dilute gas. In interme-
diary regimes, particles partially adapt to the turbulence because
of their response times, magnifying any microscopic difference
coming from their initial conditions: this behavior leads to tra-
jectories crossing and particles may find themselves nearby when
coming from interactions with distant and independent turbulent
eddies. The formalism proposed by Février et al. [8] allows to
take into account the effects of the inertia on the particle mo-
tion by partitioning the velocity in two contributions: first, the
mesoscopic Eulerian particle velocity field, which is a continu-
ous field shared by all the particles and accounting for correla-
tions between particles and between particles and the fluid; sec-
ond, a random spatially-uncorrelated contribution associated with
each particle and satisfying the molecular-chaos assumption. It
is referred to as uncorrelated velocity and characterized in terms
of Eulerian fields of particle velocity moments. The mesoscopic
Eulerian formalism is found to be very useful for the understand-
ing of particle-particle and fluid-particle interaction mechanisms
[11]. It has been used to investigate the spatial characteristics
of the particle velocity field in a turbulent channel flow with and
without inter-particle collisions [22] and it was compared with
a two-point probability density function method finding strong
connections when modeling spatial characteristics of inertial par-
ticles [21]. Such an approach, providing local and instantaneous
Eulerian fields for the dispersed phase, has been used to derive
the Eulerian approach for particle-laden turbulent flows in a LES
framework [18, 14]. In the spectrum of the Eulerian approaches
it is found particularly adequate to predict inertial particle-laden
turbulent flows in the presence of unsteady phenomena or in com-
plex geometries [19] and its use in non-isothermal conditions re-
mains a timely topic of research. The goal of this study is to
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improve the understanding of the particle temperature distribu-
tion and of the mechanisms of heat transfer and transport in order
to improve the Eulerian modeling, confirming the validity of a
recent extension of the formalism to non-isothermal conditions
[15, 17]. Applications in reactive two-phase flows motivate this
study.

2. Two-point particle correlation functions

In order to characterize the particle temperature distribution,
particle-particle (also referred to as two-point particle) correla-
tion functions are investigated. Two-point correlation functions
are computed using three different methods. They are here briefly
explained and formalized in the frame of homogeneous, isotropic,
and statistically stationary conditions, where particle properties
(velocity or temperature) only get a fluctuating nature around a
zero mean. The first method accounts for the product between
the temperatures of any pair of particles m and n (with m # n)
separated by a distance r. The spatial correlation function may
then be written as:

RYP(r) = {T™ T 1) ™ (1) — xS @) =7} (D)

where curly brackets and over line denote instantaneous average
over all the particle pairs and temporal average, respectively. An
alternative (cheaper) method, employing instantaneous particle
Eulerian fields, was proposed by Février et. [8]. In order to ob-
tain instantaneous particle Eulerian fields, Kaufmann et al. [11]
proposed a projection procedure which uses a well defined pro-
jection filter. The projection procedure may be written as follows:

fip(e,t) = > wE™ (1) —x) @)
(e, )T (x,t) = Y w(y™ () —x)T5™ (t) 3)

where 7,(x, t) and Ty (x,t) are approximation of local and in-
stantaneous (i.e. mesoscopic) particle number density and tem-
perature fields, respectively, expected to be exact when the num-
ber of particle realizations conditional on a given fluid flows
N, — oo. The quantity w represents a projection filter. Février
et al. [8] used a technique which may be considered as equivalent
to employ the projection procedure using a box filter:

Lo m
Az i b

0, otherwise

—xi| < Az/2
xil < Awf @)

w(xgn) _x) _

Kaufmann et al. [11] proposed a Gaussian filter which reads:

3 (m) 2
(m) _ .\ 1 6 2 _6|xp — x|
w(xy, x) = orf (\/6)3 (Trsz) exXp ( Ax2
)]

of characteristic length ~ Az. This procedure is as much accu-
rate as the local sample size is large (Ns(x,t) — 00). The local
sample size may be defined as Ns(x,t) = fp(x,t)Ax®. The
two-point correlation function computed from Eulerian fields is
then defined as :

3R (r) =

©)

23: < ip (%, ) Tp(x, t)iip(x + rei, ) Tp(x + req, t) >
pt < Ap(x, )Ny (x + 1eq, t) >

where e is the direction vector and angle brackets and over line
denote instantaneous spatial average and temporal average, re-
spectively. Under the assumption of homogeneous, isotropic, and

statistically stationary flows, spatial and temporal averages repre-
sent the ensemble average over a large number of particle-laden
flow realizations. Under such conditions, methods Eqn (1) and
Eqn (6) are theoretically equivalent. Finally, the one-particle cor-
relation, i.e. the particle temperature variance, is defined as

1 m m
G = 3| OT ), @)

where square brackets and over line denote instantaneous aver-
age over all the particles and temporal average, respectively. This
quantity will be used to normalize all the computed two-particle
correlation functions. According to the mesoscopic Eulerian for-
malism [20, 8, 15, 17] the particle temperature variance may be
decomposed in a correlated and an uncorrelated contributions
g2 = Gi + dq2. The correlated contribution may be obtained
from the particle Eulerian fields as follows:

o 1<y (x, )T (x, 1) T (x,t) > ®)
=3 < fp(x,t) > '

This quantity may also be estimated by means of the two-point
correlation functions. The amount of the correlated (respectively
uncorrelated) contribution as a function of the particle inertia
makes the object of the present investigation.

3. Numerical simulations

Simulations correspond to the dispersion of a particle cloud
into a non-isothermal homogeneous, isotropic, statistically sta-
tionary turbulence in a fully periodic cubic box. Parameter of the
turbulent field are given in Table 1. The regime is very dilute
which implies that the inter-particle collisions and the turbulence
modulation by the presence of the particles may be neglected.
Computational domain is a cubic box of 128% cells, periodical
in boundary conditions and of size Ly, = 0.128 m. Twenty-
four simulations with 40 millions particles are carried out in order
to obtain local and instantaneous Eulerian fields, with sufficient
high resolution at small scales, for various dynamic and thermal
particle inertia. The sample size approximates the statistical pop-
ulation of particles over all the particle realizations H,, for a given
fluid flow realization H . The mean sample size at each time is
< Ns(x,t) >~ 19 which corresponds to the number of particle
par cell at the initialization. Direct numerical simulations are
performed in Fourier space using a pseudo-spectral code (NS3D)
in which incompressible Navier-Stokes equations and an addi-
tional scalar equation are solved. Statistically stationary motion
is ensured by accounting for a stochastic forcing in momentum
equation written in wavenumber space [5]

811” + l:(szj — kikj

ot k2

where N; are nonlinear terms. The stochastic force is computed
using a Langevin equation with a first order numerical scheme

N N At 202 At
n+1l _ n _ =Y o

over the wavenumbers [2ko — 6ko], where ko = 27/ Loy, using
a forcing time 77 = 0.16 s and a forcing amplitude o = 0.014
m/s®. According to Février et al. [8] such a wavenumber range
represents a good compromise between the statistic contamina-
tion due to artifacts of the forcing scheme and the boundary
conditions. In order to maintain the scalar field, a mean-scalar-
gradient (along the y direction) forcing term is accounted for in
the scalar fluctuation equation written in wavenumber space:

% + N(T) = —ak®0y — ay4C, (11)
where N(T) are the scalar-velocity nonlinear terms, « is the
thermal diffusivity and ¢ a constant parameter set of the value

} N; = —vk®uy, + fi. ©)

(10)
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Table 1: Parameters of the turbulent flows

Dynamic quantities

Thermal quantities

Reynolds number Rer, 79
Kolmogorov length scale Mk / Lo 0.0046
Integral length scale L¢/Lpos 0.054

Lagrangian time scale TF |1 54

Prandtl number Pr 0.7

Obukhov-Corrsin length scale 16/ Lbox 0.006
Thermal integral length scale Lo/ Lyox 0.067
Thermal Lagrangian time scale TF /T 15.2

of 10 scalar units by meter. At each time step, fluid velocity
and scalar fields are one-way coupled with a point-particle La-
grangian tracking method. The dilute mixture is composed by
small (d, < 1) and heavy (pp, >> py) particles with an infinite
solid thermal conductivity. When the gravity and radiative ef-
fects are neglected, the well-known equations governing the mo-
tion and heat exchange of each spherical, rigid and not rotating
m-particle are:

a1y o

dt P dt ™\ ree)?
ary™ 1 [ im m

- ) &

where u(fg; and T}g) are the undisturbed fluid velocity and tem-

perature at the particfe)z center location. For small heavy particles,

the dynamic 7, and the thermal 79 response times may be defined
in the Stokes regime as

2

Prdy

18y’

where Pr is the Prandtl number chosen smaller than unity to en-
sure well-resolved thermal small scales, Nu the Nusselt number
which reduces to 2 in the Stokes regime, 1 ¢ the dynamic viscos-
ity of fluid, p,, and d,, the particle density and diameter respec-
tively and 8 = Cpp/Chpy is the particle-to-fluid heat capacity
ratio. Both fluid (nonlinear terms) and particles are time inte-
grated by using an Adams-Bashforth second order scheme. Eu-
lerian quantities at the particle location are obtained by a third-
order Lagrange polynomial algorithm. Particles were randomly
embedded in the statistically stationary turbulent flow, at the same
velocity and temperature as the fluid. Before to start with post-
processing particle data for statistics, simulations were made run
for a time much greater than the particle response times in order
to ensure convergence in particle moments (kinetic energy and
temperature variance) and in preferential concentration as well.
Twenty-four simulations were carried out for various particle in-
ertia. They may be identified by three different classes follow-
ing the ratio between the dynamic and the thermal particle re-
sponse times: 7,/79 ~ 1, 7,/7¢ > 1, and 7, /79 < 1, referred
to as A0, A1 and A2 respectively. A summary of all the sim-
ulations is given in Table 2. An estimate of the ratio between
Stokes numbers is also offered. The thermal (dynamic respec-
tively) Stokes number Sty (St) is defined as the ratio between
the thermal (dynamic) response time 7y (7,) and the fluid inte-
gral thermal (dynamic) time scale sampled along particle trajec-
tories TfL@Q (TfL@p). Dynamic and thermal Stokes numbers are
here estimated using the well known Tchen’s relation and the
corresponding relation for the particle temperature variance as
proposed by Derevich [4] and Zaichik et al. [25]:

E= g S
P4 gpifer 07 1+ St 10°r

PTppdicpp 3
=——— ~_P 13
o GNU/LfOpf 2 T/BTP ( )

Tp

(14)

where q?@p and qg@p are kinetic energy and temperature variance
of the fluid along the particle paths. It is however well known that
these relations are not accurate when the Stokes numbers tend to
zero since the autocorrelation functions no longer get an exponen-
tial behavior [25]. This mainly affect the estimate of the lower

Stokes numbers in our simulations (the first two/three points in
the Table 2).

Table 2: Ratio between response times and Stokes numbers (as
estimated from Eq. (14)) and correlation coefficients.

ID T/ To St/Stg & &o
A0 0.96 3.01 0.99 0.99
0.96 1.22 0.96 0.96
0.96 0.96 0.92 0.92
0.96 0.89 0.86 0.84
0.96 0.91 0.80 0.79
0.96 0.96 0.74 0.73
0.96 1.01 0.67 0.67
0.96 1.13 0.52 0.53
0.96 1.17 0.43 0.45
0.96 1.20 0.32 0.34
0.96 1.07 0.37 0.40
Al 2.04 2.07 0.67 0.81
3.41 3.73 0.67 0.88
5.46 6.66 0.67 0.93
A2 0.45 0.39 0.82 0.68
0.27 0.22 0.89 0.70
0.17 0.13 0.94 0.74
0.24 0.19 0.89 0.68
0.12 0.09 0.94 0.68
0.36 0.37 0.54 0.39
0.25 0.24 0.61 0.38
0.44 0.41 0.67 0.53
0.32 0.28 0.74 0.53
0.22 0.19 0.80 0.53

4. Results and discussion

Increasing Stokes number 8

% 0.1 0.2 0.3 04 05

T/Lbux

Figure 1: Two-point temperature correlation functions from AOQ.

The three methods presented in section 3 are here used to
compute two-point correlation functions. Results from simula-
tions AQ are depicted in Fig. 1. A zoom of the head of the func-
tions is also given in Fig. 2. Very similar results have been found
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when compared the three methods over low and intermediate dis-
tances, with the exception of higher Stokes numbers (first curves
on the Fig. 2 from the bottom). Such higher Stokes numbers
do not experience the phenomenon of preferential concentration,
thus the local sample size will always stays around its mean value
(~ 19), which makes statistics less accurate.

Ry¥(r)/(245)

0'20 0.02 0.04 0.06 0.08 0.1

T/Lboac

Figure 2: Zoom of Figure 1 for r — 0.

For higher separation distances, methods Eqns (6)-(4) and
Eqns (6)-(5) deviate from the classical lagrangian technique, Eqn
(1). However, statistics are not conceptually the same since the
methods Eqns (6)-(4) and Eqns (6)-(5) do not account for all
the solid angles into the shell of radius r and, since the tem-
perature field (as produced by a mean temperature gradient) is
homogeneous but not isotropic, results should not be equiva-
lent. Comparing the three methods on the correlation function
RPP(r) = RYP(r)+ 2R (r) where RV (r) and R5? (r) are lon-
gitudinal and transversal functions of the particle velocity field,
large distances are instead similar predicted (Fig. 3). Some differ-
ences between methods have been found at short distances when
comparing longitudinal and transversal functions separately (not
shown).

0 0.1 0.2 0.3 0.4 0.5
r/L

Figure 3: Two-point velocity correlation functions from AO0.

Globally, the three methods exhibit similar predictions at
short distances and can be alternatively used for assessing corre-
lated and uncorrelated particle-properties contributions for r —

0. The advantage of the methods Eqns (6)-(4) and Eqns (6)-(5) is
that they are much less expensive in term of computational costs
and they give an estimate at » = 0. In the following, method
Eqns (6)-(5) will be retained for assessing the correlated and un-
correlated contributions at » = 0. Looking at the results depicted
in Fig. 1, as expected, an increase in particle inertia points out
the existence of a part of the temperature distribution that is not
spatially correlated. This is consistent with the results of Février
et al. [8] about the particle velocity distribution.

Velocity correlations of neighboring particles play an impor-
tant role in the statistical modeling of the particle-particle inter-
actions. In the frame of a presumed two-particle PDF approach,
it has been shown [13, 21] that the amount of the correlated and
the uncorrelated contributions may be written as follows:

~2 2
qP 2 6qP _ 2
% _€p7 qg - l_fp (15)
where
2

dfp
&= —; (16)
P 44}a,q3

&p is the fluid-particle velocity correlation coefficient which, ac-
cording to the Cauchy-Schwarz inequality, is a function € [0, 1]
and gy, is the fluid-particle covariance. Using mesoscopic quan-
tities, an equivalent correlation coefficient £, may be written as
follows:

i

- »

= T~5 =~ (17)
P 4GGa,

which is also constrained between zero and unity, 0 < &, < 1.
Following the mesoscopic formalism, since the uncorrelated con-
tribution of the particle velocity is not correlated with the undis-
turbed fluid velocity at the particle center location, by definition
(}fcp = q?p and (ﬁ@p = qf:@p [8]. This makes it possible to relate
Eqn (17) with Eqn (16) and to deduce the following inequalities
~2

g<¥ oy,

5Q§ 2
< -Z<(1- 18

which show that fz (respectively 1 —53) derived by a two-particle
PDF approach, represents in fact the minimum value (maximum
value) than the correlated (uncorrelated) contribution can take un-
der realizability conditions. Février et al. [8] and Simonin et al.
[21] in homogeneous isotropic turbulence, and Vance et al. [22]
in channel flows, pointed out a linear dependency of the corre-
lated amount with the correlation coefficient £, i.e.:

~2 2

qp 6qp
—¢, Ap ¢ (19)
qg €P q% é-p

In our simulations, the predictive ability of the model Eqns (19)
is assessed and results depicted in Fig. 4. For a comparison pur-
pose, the inferior (superior) limit, corresponding to Eqns (15), is
also displayed. Results confirm the linear dependency already
observed in the aforementioned literature. This dependency rep-
resents an empirical relation for which no analytical demonstra-
tion exists [21]. In the same spirit, an equivalent fluid-particle
temperature correlation coefficient £y may be defined as follows:

2
dre
&=t

_ G (20)
495a,93

where £p is a function € [0, 1] and gyg is the fluid-particle tem-
perature correlation. On the basis of the same theoretical devel-
opment applied to mesoscopic thermal fields, the correlated and
uncorrelated temperature amount may be written as

~2 2

q dq

S=&, g =1-& @

a a;
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which, by construction, leads to the following inequalities:

2
2<B oy 0<% g (22)

dy dp

in which, ¢5 and 1 — £ denote inferior and superior limits for the
correlated and uncorrelated contributions, respectively. Eqn (21)
and the linear dependency

~2 5 2
q% = &p, 7(129 =1—-4¢s (23)
4y 4y

are also assessed in our simulations and results depicted in Fig. 5.

Figure 4: Amount of correlated and uncorrelated particle kinetic
energy, RP?(0)/2q2. Circles: sim. A0, diamonds: sim. Al,
squares: sim. A2. Solid line: &, (1 — &, respectively), dashed
line: 55 a- 512), respectively)

Contrary to what found for particle kinetic energy, the cor-
related and uncorrelated amount of the particle temperature vari-
ance do not match the predictions given by &y indiscriminately.
The three classes behave in fact in a different way. In simula-
tions A1, for which the thermal Stokes number is smaller than
the dynamic Stokes number (diamonds in Fig. 5) results and pre-
dictions match very well, which means that the particle-particle
thermal correlations only rely on the interactions between parti-
cle and fluid thermal scales as predicted by the correlation coef-
ficient £y. Similar results are found for simulations A0 in which
Stokes numbers are very close. Deviation from the model is in-
stead found for simulations A2 for which an increase of the cor-
related contribution is observed with respect to the expectations.
This feature illustrates that the thermal correlation between two
particles may increase when the correlation in motion increase.

Correlations between neighboring particles depend on the
their residence time in the same turbulent eddy compared to their
response time [20]. Such a residence time relies on the relative
velocity at which particles cross the turbulent eddy which, obvi-
ously, depends on their kinetic energy. It is therefore conjectured
that particle-particle thermal correlations should also depend on
the dynamic response time which defines their motion in a turbu-
lent flows. The dependency of the particle-particle thermal corre-
lations on both the dynamic and thermal Stokes numbers is under
investigation.

Unfortunately, the mean-temperature gradient we used to
force the scalar presents two main issues: i) the fluid temperature

field is homogeneous but not isotropic, ii) the forcing introduces
an additional low-frequency time scale (as it may be observed by
Fig. 6). These concerns affect the physics of the particle-laden
flows and make the analysis much more complex. Therefore, in
order to proceed with the investigation, an alternative scalar forc-
ing, inspired from the linear forcing proposed by Carroll et al. [2]
is being used.

Figure 5: Amount of correlated and uncorrelated particle tem-
perature variances, R5”(0)/2q3. Circles: sim. A0, diamonds:
sim. A1, squares: sim. A2. Solid line: & (1 — &g, respectively),
dashed line: £2 (1 — £2, respectively)

0.02

0.015 :
Ol017 - st - N .I\ 1

0.005 :

OO 5 1t0 15 20

Figure 6: Kinetic energy (dashed line) and temperature variance
(continuos line) of the turbulent fluid.
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