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Abstract

Microsomal prostaglandin E synthase (mPGES)-1 is a newly
identified inducible enzyme of the arachidonic acid cascade with
a key function in prostaglandin (PG)E2 synthesis. We
investigated the kinetics of inducible cyclo-oxygenase (COX)-2
and mPGES-1 expression with respect to the production of 6-
keto-PGF1α and PGE2 in rat chondrocytes stimulated with 10
ng/ml IL-1β, and compared their modulation by peroxisome-
proliferator-activated receptor (PPAR)γ agonists. Real-time PCR
analysis showed that IL-1β induced COX-2 expression
maximally (37-fold) at 12 hours and mPGES-1 expression
maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1α and
PGE2 peaked 24 hours after stimulation with IL-1β; the induction
of PGE2 was greater (11-fold versus 70-fold, respectively). The
cyclopentenone 15-deoxy-∆12,14prostaglandin J2 (15d-PGJ2)
decreased prostaglandin synthesis in a dose-dependent
manner (0.1 to 10 µM), with more potency on PGE2 level than
on 6-keto-PGF1α level (-90% versus -66% at 10 µM). A high
dose of 15d-PGJ2 partly decreased COX-2 expression but

decreased mPGES-1 expression almost completely at both the
mRNA and protein levels. Rosiglitazone was poorly effective on
these parameters even at 10 µM. Inhibitory effects of 10 µM
15d-PGJ2 were neither reduced by PPARγ blockade with GW-
9662 nor enhanced by PPARγ overexpression, supporting a
PPARγ-independent mechanism. EMSA and TransAM®

analyses demonstrated that mutated IκBα almost completely
suppressed the stimulating effect of IL-1β on mPGES-1
expression and PGE2 production, whereas 15d-PGJ2 inhibited
NF-κB transactivation. These data demonstrate the following in
IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting
for PGE2 synthesis; second, activation of the prostaglandin
cascade requires NF-κB activation; third, 15d-PGJ2 strongly
inhibits the synthesis of prostaglandins, in contrast with
rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs
independently of PPARγ through inhibition of the NF-κB
pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.

Introduction
Prostaglandins (PGs) are well-known lipid mediators that
reproduce the cardinal signs of inflammation [1] but also con-
tribute to tumorigenesis, gastrointestinal protection or osteo-
genesis [2-5]. Decreasing their biosynthesis by the inhibition
of cyclo-oxygenases (COXs) is thought to account for most of
the therapeutical properties of non-steroidal anti-inflammatory

drugs. During inflammation, the pathophysiological contribu-
tion of prostaglandins is supported by PGE2, the major medi-
ator produced by monocytes in response to inflammatory
stimulus, and prostacyclin (PGI2). However, since the discov-
ery of at least two COX isoenzymes, the pathophysiological
relevance of PG must be considered from a different point of
view. First, inflammation can be ascribed to inducible COX-2-
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derived PG rather than to basal COX-1-derived PG [6]. Sec-
ond, PGE2 and PGI2 are now recognized as end-point
products of a coordinate enzymatic cascade comprising phos-
pholipases A2, cyclooxygenases and terminal PG synthases
whose activities are coupled preferentially between constitu-
tive and inducible isoforms [7]. Third, PG produced by COX-
2 switches from PGE2 to 15-deoxy-∆12,14prostaglandin J2
(15d-PGJ2) in the course of acute inflammation [8]. Because
15d-PGJ2, a cyclopentenone by-product of PGD2, has shown
anti-inflammatory properties in various experimental models
[9,10], it has been proposed as an endogenous regulator of
inflammation favouring the resolution of acute flares [11].

PGE synthase-1 (PGES-1), the enzyme converting the COX-
derived PGH2 into PGE2, exists in multiple forms with distinct
enzymatic properties, modes of expression, subcellular locali-
zations and intracellular functions [12]. One of its isoforms,
cPGES-1, is a cytosolic protein found as a complex with heat
shock protein 90 (Hsp90) that is constitutively expressed in a
wide variety of cells and tissues. Another isoform, microsomal
PGE synthase-1 (mPGES-1), is a perinuclear membrane-
associated protein belonging to the microsomal glutathione S-
transferase family. In contrast with cPGES-1, its expression is
induced by pro-inflammatory cytokines, growth factors, bacte-
rial endotoxins and phorbol esters and is downregulated by
anti-inflammatory corticosteroids [12]. As mentioned above,
PGES-1 isoforms display distinct functional coupling with
upstream COX in cells; cPGES-1 is predominantly coupled
with constitutive COX-1, thereby contributing to basal PG syn-
thesis, whereas mPGES-1 is preferentially linked with induci-
ble COX-2 and contributes to stimulated PG synthesis [7].
Recently a novel PGES, mPGES-2 [13], was cloned and was
shown to be highly expressed in heart and brain. Its role
remains largely unknown, especially in inflammatory
conditions.

Peroxisome-proliferator-activated receptor γ (PPARγ) is a lig-
and-activated nuclear transcription factor belonging to the
nuclear hormone receptor superfamily. PPARγ binds, as a het-
erodimer with retinoid X receptor, to peroxisome-proliferator-
response element (PPRE) located in the promoter of numer-
ous target genes whose expression is regulated by PPARγ
agonists. Agonists of PPARγ include synthetic ligands, as anti-
diabetic thiazolidinediones, and natural compounds, as fatty
acids and 15d-PGJ2, which were shown initially to have a
major function in adipocyte differentiation and glucose home-
ostasis [14-16]. However, PPARγ agonists were recently
thought to contribute to the control of inflammation by inhibit-
ing the transcriptional induction of pro-inflammatory cytokines
(tumour necrosis factor-α, IL-1 and IL-6) or genes encoding
inflammatory enzymes (inducible nitric oxide synthase and
COX-2) in activated monocytic cells [17,18]. Similar pharma-
cological potencies were reported in chondrocytes [19] and
synoviocytes [20] exposed to an inflammatory stimulus, giving
a rationale to the anti-inflammatory effect of PPARγ agonists in

experimental arthritis [10,21]. Because 15d-PGJ2 was thought
to be a negative regulator of experimental inflammation [11], it
is tempting to speculate that part of this effect could be sup-
ported by the regulation of PPARγ target genes, possibly
through the control of transcription factors such as NF-κB or
activator protein-1 [22,23].

Chondrocytes express both COX isoenzymes [24] and pro-
duce large amounts of eicosanoids under inflammatory condi-
tions [25]. However, COX-2 represents only the first inducible
step in the stimulated synthesis of PG [12] and its inhibition by
PPARγ ligands remains moderate in articular cells [19,20]. We
therefore investigated whether PPARγ agonists could reduce
PG synthesis by inhibiting mPGES-1 in rat chondrocytes stim-
ulated with IL-1β. Such a mechanism would be consistent with
the ability of 15d-PGJ2 to inhibit PGE2 production and to
downregulate mPGES-1 in microsomal fractions from CHO
cells overexpressing mPGES [26].

The present study demonstrates an early induction of COX-2
and a delayed induction of mPGES-1 by IL-1β in rat chondro-
cytes, with the stimulated synthesis of prostaglandins fitting
well the expression profile of mPGES-1 for PGE2 while remain-
ing lower than the extent of COX-2 induction for 6-keto-PGF1α
(the stable metabolite of PGI2). In our experimental system,
15d-PGJ2 lowered the 6-keto-PGF1α level and the expression
of COX-2 but was much more potent towards the PGE2 level
and the expression of mPGES-1, supporting the view that
mPGES-1 is the rate-limiting step in PGE2 synthesis. The
dose-dependent inhibitory potency of 15d-PGJ2 was not
reproduced by the high-affinity PPARγ agonist rosiglitazone
and was affected neither by blockade of PPARγ with the
antagonist GW-9662 nor by PPARγ overexpression. Consist-
ent with a PPARγ-independent mechanism was our final
observation that 15d-PGJ2 decreased NF-κB transactivation,
which is crucial for the induction of mPGES-1 and the stimu-
lation of PGE2 synthesis by IL-1β in rat chondrocytes.

Materials and methods
Isolation and culture of rat chondrocytes
Chondrocytes were isolated from femoral heads of healthy
Wistar male rats (130 to 150 g) (Charles River, Saint-Aubin-
les-Elbeuf, France), killed under general anaesthesia (AEr-
rane™; Baxter SA, Maurepas, France) in accordance with
national animal care guidelines, after approval by our internal
ethics committee. Cells were obtained by sequential digestion
with pronase and collagenase [27], then washed twice in PBS
and cultured to confluence in 75 cm2 flasks at 37°C in a
humidified atmosphere containing 5% CO2. The medium used
was DMEM/Ham's F-12 supplemented with L-glutamine (2
mM), penicillin (100 U/ml), streptomycin (100 µg/ml) and
either 10% heat-inactivated FCS (Life Technologies) during
subculturing or 1% FCS during experiments. Chondrocytes
were used between passages 1 and 3 to prevent
dedifferentiation.



Available online http://arthritis-research.com/content/7/6/R1325

R1327
Study design
Chondrocytes maintained in low (1%) FCS medium were stim-
ulated with 10 ng/ml IL-1β (Sigma, St-Quentin-Fallavier,
France) in the presence or absence (vehicle alone, 0.1% of
final concentration in dimethylsulphoxide) of PPAR agonists
added 4 hours before IL-1β. In a preliminary kinetic study,
mRNA levels of COX-2 and mPGES-1 in cell layers were
determined from 6 to 48 hours after challenge with IL-1β,
whereas 6-keto-PGF1α and PGE2 levels were assayed from 6
to 36 hours in culture supernatants. Thereafter, COX-2 mRNA
level was checked 12 hours after exposure to IL-1β, whereas
the mPGES-1 mRNA level, the COX-2 and mPGES-1 protein
levels, and the secreted 6-keto-PGF1α and PGE2 levels were
evaluated at 24 hours. The PPARγ agonists rosiglitazone (Cay-
man, Ann Arbor, MI, USA) or 15d-PGJ2 (Calbiochem, Meudon,
France) were used in the range 0.1 to 10 µM, whereas addi-
tional PPARγ agonist troglitazone (Cayman) and PPARγ
antagonist GW-9662 (Cayman) were used at 10 µM.

Assay for chondrocyte viability
Cell viability was assessed by the mitochondrial-dependent
reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT; Sigma) into formazan [28]. In brief,
cells were incubated for 24 hours at 37°C in the presence or
absence of IL-1β and/or PPARγ agonists (added 4 hours
before IL-1β) in low-FCS (1%) DMEM/Ham's F-12 medium.
Chondrocytes were incubated further with MTT (1 mg/ml final
concentration) for 4 hours at 37°C before the addition of lysing
buffer (20% w/v SDS in a 50% aqueous solution of dimethyl-
formamide, pH 4.7). After 24 hours of incubation at 37°C, sol-
ubilization of formazan crystals was quantified by measuring
A580 on a Multiskan® microplate reader (Labsystems, Mon-
tigny-le-Bretonneux, France).

RNA extraction and real-time PCR analysis
Total RNA was isolated from chondrocyte layers using Trizol®

(Invitrogen, Cergy-Pontoise, France). Two micrograms of total
RNA were reverse-transcribed for 90 minutes at 37°C with
200 U of Moloney Murine Leukaemia Virus reverse tran-
scriptase (Invitrogen) and hexamer random primers. Expres-
sion of COX-2, mPGES-1 and adiponectin (chosen as a
specific PPARγ target gene [29]) mRNAs were quantified by
real-time PCR with the Lightcycler® (Roche) technology and
the SYBRgreen master mix system® (Qiagen, Courtabœuf,
France). After amplification, a melting curve was constructed
to determine the melting temperature of each PCR product;
their sizes were checked on a 2% agarose gel stained with
ethidium bromide (0.5 µg/ml). Each run included standard
dilutions and positive and negative reaction controls. The
mRNA levels of each gene of interest and of the ribosomal pro-
tein S29, chosen as a housekeeping gene, were determined
in parallel for each sample. Results are expressed as the nor-
malized ratio of mRNA level of each gene of interest over the
S29 gene.

The gene-specific primer pairs used were as follows: mPGES-
1, sense 5'-TCGCCTGGATACATTTCCTC-3', antisense 5'-
GTCCCCCATTGTGGTATCTG-3'; COX-2, sense 5'-
TACAAGCAGTGGCAAAGGCC-3', antisense 5'-CAGTATT-
GAGGAGAACAGATGGG-3'; adiponectin, sense 5'-AATC-
CTGCCCAGTCATGAAG-3', antisense 5'-
TCTCCAGGAGTGCCATCTCT-3'; S29, sense 5'-AAGAT-
GGGTCACCAGCAGCTCTACG-3', antisense 5'-
AGACGCGGCAAGAGCGAGAA-3'.

Transient transfection experiments
Chondrocytes were seeded in six-well plates at 5 × 105 cells
per well and grown to 80% confluence. Cells were transfected
with either 500 ng of a PPARγ expression vector (pcDNA3.1
PPARγ, a gift from Dr H. Fahmi, Centre Hospitalier de l'Univer-
sité de Montréal, Montréal, Canada), or 500 ng of a dominant-
negative vector of NF-κB (IκBα∆N (Ala32, Ala36) from Clon-
tech). Transfections were performed for 2 hours with 10 µl of
polyethyleneimine reagent (Euromedex, Souffelweyersheim,
France) in 1 ml of culture medium. At 24 hours after transfec-
tion, cells were stimulated with IL-1β for 24 hours in the pres-
ence or absence of PPARγ agonists.

Preparation of nuclear extracts and electrophoretic 
mobility-shift assay (EMSA)
Nuclear proteins were isolated as described elsewhere [30]
with minor modifications. In brief, cells were scraped in a lysis
buffer (10 mM HEPES, pH 7.9, 10 mM KCl, 1 mM dithiothrei-
tol (DTT)) containing a protease-inhibitor cocktail and 0.5%
Igepal®, then incubated for 15 min on ice. Nuclei were col-
lected by centrifugation at 2,000 g for 5 min at 4°C and resus-
pended in 50 µl of HEPES buffer without Igepal® and KCl, but
containing 420 mM NaCl. After a 30 min incubation on ice,
nuclear debris were removed by centrifugation at 13,000 g for
10 min at 4°C; supernatants were collected and then stored
at -80°C before use. The DNA sequences of the double-
stranded oligonucleotides specific for NF-κB were 5'-GATC-
CAGTTGAGGGGACTTTCCCAGGCG-3' and 5'-GATC-
CGCCTGGGAAAGTCCCCTCAACTG-3'. Complementary
strands were annealed and double-stranded oligonucleotides
were labelled with [32P]dCTP by using the Klenow fragment of
DNA polymerase (Invitrogen). Nuclear proteins (5 µg) were
incubated for 10 min at 4°C in a binding buffer (20 mM Tris/
HCl, pH 7.9, 5 mM MgCl2, 0.5 mM DTT, 0.5 mM EDTA and
20% glycerol) in the presence of 2 µg of poly(dIdC). The
extracts were then incubated for 30 min at 4°C with 10,000
c.p.m. of 32P-labelled NF-κB probe. The samples were loaded
on a 5% native polyacrylamide gel and run in 0.5 × Tris/
borate/EDTA buffer. NF-κB-specific bands were confirmed by
competition with a 100-fold excess of unlabelled probe, which
resulted in no shifted band.

NF-κB transactivation analysis
Nuclear proteins were prepared with the TransAM® nuclear
extract kit in accordance with the manufacturer's protocol
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(Active Motif Europe, Rixensart, Belgium). In brief, cells were
scraped into PBS containing phosphatase and protease inhib-
itors, centrifuged, resuspended in 1 × hypotonic buffer and
then kept on ice for 15 min. After the addition of detergent,
lysates were centrifuged at 14,000 g for 30 s at 4°C. The pel-
lets were resuspended in complete lysis buffer (20 mM
HEPES, pH 7.5, 350 mM NaCl, 20% glycerol, 1% Igepal®, 1
mM MgCl2, 0.5 mM EDTA, 0.1 mM EGTA, 1 mM DTT, phos-
phatase and protease inhibitors) and shaken vigorously. After
incubation on ice and centrifugation at 14,000 g for 10 min at
4°C, supernatants were collected and protein concentration
was determined with a Bradford-based assay (Bio-Rad Labo-
ratories, Marnes-la-Coquette, France).

NF-κB activation was determined with the TransAM® ELISA kit
(Active Motif Europe). In brief, 5 µg of nuclear extract was
added to each well of a 96-well plate into which an oligonucle-
otide with a NF-κB consensus binding site had been immobi-
lized. After 1 hour of incubation with smooth agitation, wells
were washed three times with washing buffer (100 mM PBS,
pH 7.5, 500 mM NaCl and 1% Tween 20) and then incubated
with p65 antibody (dilution 1:1,000 in washing buffer) for 1
hour at 20°C. After three successive washings with buffer, the
wells were finally incubated for 1 hour with diluted horseradish
peroxidase-conjugated antibody (dilution 1:1,000 in washing
buffer) before the addition of 100 µl of developing solution
(3,3',5,5'-tetramethylbenzidine substrate solution diluted in
1% dimethylsulphoxide). After 5 min of incubation, the reaction
was stopped by the addition of 100 µl of 0.5 M H2SO4 and the
final A450 was read on a Multiskan® microplate reader.

Assays for PGE2 and 6-keto-PGF1α
Levels of PGE2 and 6-keto-PGF1α were determined in culture
supernatants with Assay Design® ELISA kits (Oxford Biomed-
ical Research, Ann Arbor, MI, USA) in accordance with manu-
facturer's instructions. Assays are based on the combined use
of a monoclonal antibody against PGE2 or PGF1α and an alka-
line phosphatase-conjugated polyclonal antibody. After the
addition of p-nitrophenyl phosphate substrate, A405 was read
at on a micro Multiskan® plate reader. The limits of detection
were 10 pg/ml and 1.4 pg/ml for PGE2 and 6-keto-PGF1α,
respectively, with negligible cross-reactivity with PGE1 and
PGF2α, respectively (manufacturer's data). Positive controls
were used in each experiment.

Western blot analysis
Cells, seeded in six-well plates and grown to 90% confluence,
were washed twice with ice-cold PBS and scraped off the
wells in 1 × Laemmli blue for PPARγ or in TBS containing
0.1% SDS for other proteins. Cells were disrupted by sonica-
tion (five pulses) and centrifuged at 800 g for 10 min, before
determination of protein concentration with a Bradford-based
assay. Protein samples (5 µg) were analysed by SDS-PAGE
(10% acrylamide for COX-2 and PPARγ, 12% for β-actin, and
15% for mPGES-1), and electroblotted on a poly(vinylidene

difluoride) membrane. After 1 hour in blocking buffer (TBS-
Tween with 5% nonfat dried milk), membranes (Immobilon;
Waters, Saint-Quentin en Yvelines, France) were blotted over-
night at 4°C with antibodies against β-actin (dilution 1:500;
Sigma), mPGES-1 (dilution 1:200; Cayman), COX-2 (dilution
1:1,000; Cayman) or PPARγ (a gift from Professor Michel
Dauça, Université Henri Poincaré, Vandœuvre-lès-Nancy,
France; dilution 1:1,000), diluted in TBS-Tween with 5%
bovine serum albumin. After three washings with TBS-Tween,
the blot was incubated for 1 hour at room temperature with
anti-rabbit IgG conjugated with horseradish peroxidase (Cell
Signaling, Beverly, MA, USA) at 1:2,000 dilution in TBS-
Tween containing 5% nonfat dried milk. After four washings
with TBS-Tween, protein bands were detected by chemilumi-
nescence with the Phototope Detection system in accordance
with the manufacturer's instructions (Cell Signaling).

Statistical analysis
Results are expressed as means ± SD for at least three
assays. Comparisons were made by ANOVA, followed by the
Fisher protected least-squares difference post-hoc test with
Statview™ 5.0 software (SAS Institute Inc). A P value of less
than 0.05 was considered significant.

Results
Kinetics of COX-2/mPGES-1 expression and 
prostaglandin production in IL-1β-stimulated rat 
chondrocytes
Under basal conditions, PGE2 and 6-keto-PGF1α production
was almost undetectable (Fig. 1a), whereas COX-2 and
mPGES-1 mRNAs were expressed at a very low level (Fig.
1b). In response to IL-1β, PGE2 levels increased earlier (6
hours) than 6-keto-PGF1α levels (12 hours), although both
peaked at 24 hours (Fig. 1a). At the time of maximal produc-
tion, PGE2 levels were increased 70-fold and 6-keto-PGF1α
levels 11-fold. Under these experimental conditions, COX-2
and mPGES-1 expression was induced from 6 hours, with
maximal induction at 12 hours and 24 hours, respectively, after
challenge with IL-1β (Fig. 1b). At these times, the extent of
gene variation was higher for mPGES-1 (68-fold) than for
COX-2 (37-fold).

Effect of PPARγ agonists on prostaglandin cascade in IL-
1β-stimulated rat chondrocytes
As shown in Fig. 2a, IL-1β-induced PGE2 production was
decreased by 92%, and 6-keto-PGF1α levels by 66%, by 10
µM 15d-PGJ2. The effect of 10 µM rosiglitazone on the stimu-
lated levels of prostaglandins was less than the variation range
of our biological system (-12% for PGE2 and +10% for 6-keto-
PGF1α; Fig. 2a). Under IL-1-stimulated conditions, 10 µM 15d-
PGJ2 decreased the expression of COX-2 and mPGES-1 by
40% and 92%, respectively, at the mRNA level (Fig. 2b) and
by 52% and 73%, respectively, at the protein level (Fig. 2c). In
contrast, 10 µM rosiglitazone increased COX-2 mRNAs by
37% and decreased mPGES-1 mRNAs by 10% (Fig. 2b),
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while leaving COX-2 protein unaffected and decreasing
mPGES-1 protein by 36% (Fig. 2c). The inhibitory potency of
15d-PGJ2 on PGE2 levels was dose-related (-8% at 0.1 µM
and -42% at 10 µM), whereas rosiglitazone was still ineffective
at lower concentrations (-2% at 0.1 µM and -6% at 10 µM). As
shown in Table 1, the proliferation of chondrocytes was
increased by challenge with IL-1β but this effect was reduced
neither by 15d-PGJ2 nor by rosiglitazone. Under IL-1-stimu-
lated conditions, the PPARγ agonist troglitazone (10 µM) had
a potency similar to that of rosiglitazone on mPGES-1 mRNAs
(-12%), although its induction of COX-2 mRNAs was less
(+25% versus +37%) and it was more inhibitory towards
PGE2 levels (-25% versus -12%; data not shown). The basal
levels of prostaglandins were unaffected by PPARγ agonists
(Fig. 2a) despite a moderate inducing effect of 15d-PGJ2 on
COX-2 mRNAs (Fig. 2b) and protein (Fig. 2c).

Effect of PPARγ blockade on inhibitory potency of 15d-
PGJ2 on stimulated prostaglandin cascade
When 10 µM 15d-PGJ2 was tested in combination with the
PPARγ antagonist GW-9662 at 10 µM, its inhibitory effect on
IL-1-induced PGE2 (-94% versus -95%) and 6-keto-PGF1α (-
64% versus -58%) levels remained unchanged (Fig. 3a). Sim-
ilarly, the strong decrease in mPGES-1 mRNA (-93% versus -
87%; Fig. 3b) and protein (-70% versus -65%; Fig. 3c) levels
was unaffected. In all experiments, the inducing effect of IL-1β
on prostaglandin release and gene expression was not modi-
fied by GW-9662. Because of the low efficacy of chondrocyte
transfection with a PPRE-luciferase construct as a gene
reporter assay, the functionality of PPARγ ligands was control-
led by measuring changes in adiponectin expression. As
shown in Fig. 3d, the adiponectin mRNA level was increased
by 10 µM 15d-PGJ2 or rosiglitazone and returned to the basal
level in the presence of GW-9662.

Effect of PPARγ overexpression on inhibitory potency of 
15d-PGJ2 on stimulated prostaglandin cascade
Transfection of chondrocytes with a PPARγ expression vector
did not change their response to IL-1β and provoked a limited
increase in PGE2 level and mPGES-1 expression in resting
cells (Fig. 4a, b). The inhibition of IL-1β-induced PGE2 release
and mPGES-1 mRNA level by 10 µM 15d-PGJ2 was not
impaired in cells overexpressing PPARγ (-88% versus -94%
and -79% versus -82%, respectively; Fig. 4a, b). Control
experiments showed that PPARγ protein was efficiently over-
expressed (Fig. 4c), and that the level of adiponectin mRNA
was enhanced by 15d-PGJ2 or rosiglitazone (Fig. 4d), in cells
transfected with the PPARγ expression vector.

Contribution of NF-κB pathway to regulation of 
stimulated prostaglandin cascade by IL-1β and 15d-PGJ2 

in rat chondrocytes
As shown in Fig. 5, transfection with a dominant-negative vec-
tor of NF-κB (IκBα∆N) almost completely eliminated the syn-
thesis of PGE2 (Fig. 5a) and the expression of mPGES-1 (Fig.
5b) in IL-1β-stimulated chondrocytes. As with PPARγ, tran-
sient overexpression was associated with a negligible induc-
tion of PGE2 and mPGES-1 in resting cells (Fig. 5a, b). Gel-
shift analysis (Fig. 5c) and TransAM® assay (Fig. 5d) con-
firmed that IL-1β induced NF-κB transactivation in rat
chondrocytes and demonstrated that this activity was mark-
edly decreased by 15d-PGJ2.

Discussion
Since the discovery of a preferential coupling between several
inducible enzymes of the prostaglandin cascade [31], it has
become necessary to re-evaluate which step is critical for the
synthesis of mediators. COX and phospholipases A2 have
long been considered the rate-limiting enzymes; this was con-
firmed indirectly by the successful launching of non-steroidal
anti-inflammatory drugs for the treatment of inflammation, pain
and fever. However, the discovery of inducible mPGES-1

Figure 1

Time course of prostaglandins production, COX-2 and mPGES-1 mRNA expression, in IL-1β-stimulated chondrocytesTime course of prostaglandins production, COX-2 and mPGES-1 
mRNA expression, in IL-1β-stimulated chondrocytes. Rat cells were 
exposed to 10 ng/ml IL-1β for 6, 12, 24, 36 or 48 hours before total 
RNA extraction and collection of culture supernatant. (a) Prostaglandin 
levels (PGE2, 6-keto-PGF1α) assayed by ELISA in culture supernatant; 
(b) relative abundances of cyclo-oxygenase-2 (COX-2) and microsomal 
prostaglandin E synthase-1 (mPGES-1) mRNAs, analysed by real-time 
PCR and normalized to S29 mRNA. Prostaglandin levels and PCR 
COX-2/S29 or mPGES-1/S29 mRNA ratios presented in histograms 
are expressed as means ± SD for at least three independent experi-
ments. Statistically significant differences (P < 0.05) from controls: * for 
PGE2 or COX-2; † for 6-keto-PGF1α or mPGES-1
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opened new insights because it was expressed at a high level
in joint tissues during experimental polyarthritis [32] as well as
in periarticular soft tissues and brain during acute inflammation

[33]. Moreover, PGE2 was shown to contribute to inflamma-
tion and hyperalgesia [34], and the pivotal role of mPGES-1 in
its production was confirmed by the decrease in pain nocice-

Figure 2

Effect of PPARγ agonists on IL-1β-induced prostaglandins levels, COX-2 and mPGES-1 mRNAsEffect of PPARγ agonists on IL-1β-induced prostaglandins levels, COX-2 and mPGES-1 mRNAs. After 4 hours of pretreatment with 10 µM 15-
deoxy-∆12,14prostaglandin J2 (15d-PGJ2) or rosiglitazone, chondrocytes were incubated with 10 ng/ml IL-1β for 12 or 24 hours. (a) PGE2 and 6-
keto-PGF1α levels assayed by ELISA in culture supernatant; (b) relative abundances of cyclo-oxygenase-2 (COX-2) and microsomal prostaglandin E 
synthase-1 (mPGES-1) mRNAs, analysed by real-time PCR and normalized to S29 mRNA (c) COX-2 and mPGES-1 protein levels assessed by 
western blotting and normalized to β-actin level. Results are expressed as means ± SD for at least three independent experiments. Statistically sig-
nificant differences (P < 0.05): *, comparison with non-stimulated controls; #, comparison with IL-1β-stimulated cells.
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ption and inflammatory reactions in mPGES-1-deficient mice
[35]. Finally, in contrast with COX inhibition, blockade of
mPGES-1 could theoretically favour the biotransformation of
cyclic endoperoxide H2 into anti-inflammatory 15d-PGJ2
depending on the tissue expression of PGD synthase [36].
The pathophysiological role of mPGES-1 in inflammatory dis-
eases is therefore worthy of study, and inhibitors of this
enzyme might have potent therapeutical relevance [37].

In the present study we investigated first the respective time
courses of prostaglandin production and induction of genes of
the arachidonic acid cascade in chondrocytes activated with
IL-1β, a pro-inflammatory cytokine with a central function in
joint diseases [38]. We confirmed that normal rat chondro-
cytes were very sensitive to stimulation by IL-1β and produced
large amounts of prostaglandins [39], with kinetics compara-
ble to that of human osteoarthritic chondrocytes [19,40] or the
immortalized T/C-28a2 cell line [41]. As expected, resting and
activated chondrocytes produced several types of prostaglan-
din, although the extent of variation was much higher for PGE2
than for 6-keto-PGF1α [39,42]. Although IL-1β-induced PGE2
synthesis was associated with the induction of COX-2 expres-
sion in articular cells [19,39], it has been shown that COX-2
and mPGES-1 are coordinately upregulated, but with different
time courses [37,39,43], and that their subcellular localiza-
tions overlap in the perinuclear region [40,43]. Our kinetics
study confirmed an early induction of COX-2 and a delayed
induction of mPGES-1 in IL-1β-stimulated chondrocytes [40],
thereby mimicking the time course reported for inflamed rat tis-
sues [33].

The increase in PGE2 level fitted well with the extent of
mPGES-1 gene induction but not with that of COX-2, whereas
changes in the 6-keto-PGF1α level were much smaller than the
extent of COX-2 induction. Of course, each inducible enzyme
of the arachidonic acid cascade is rate limiting in that it con-
trols the bioavailability of substrate to downstream effectors
[6,7]. However, our results strongly support the contention
that mPGES-1 expression is the most limiting step in PGE2
synthesis, consistent with previous experiments with MK-886

Table 1

Effects of peroxisome-proliferator-activated receptor γ 
agonists on viability of IL-1β-stimulated chondrocytes

Agonist added A580 Percentage of control

None (control) 0.81 ± 0.05 100

IL-1β (10 ng/ml) 1.12 ± 0.04* 138

15d-PGJ2 (10 µM) 0.91 ± 0.07 112

IL-1β + 15d-PGJ2 1.10 ± 0.05 135

Rosiglitazone (10 µM) 0.95 ± 0.09 117

IL-1β + rosiglitazone 1.12 ± 0.07 138

15d-PGJ2, 15-deoxy-∆12,14prostaglandin J2.
*, P < 0.05, comparison with non-stimulated controls

Figure 3

Effect of PPARγ blockade on the inhibition of IL-1β-induced responses by 15d-PGJ2Effect of PPARγ blockade on the inhibition of IL-1β-induced responses 
by 15d-PGJ2. Chondrocytes were pretreated for 4 hours with 10 µM 
15-deoxy-∆12,14prostaglandin J2 (15d-PGJ2) in the presence or 
absence of 10 µM GW9662 (a specific antagonist of peroxisome-pro-
liferator-activated receptor γ (PPARγ)), then stimulated with 10 ng/ml 
IL-1β for 24 hours before analysis of prostaglandin production and 
mPGES-1 expression. (a) PGE2 and 6-keto-PGF1α levels assayed by 
ELISA in culture supernatant; (b) relative abundance of microsomal 
prostaglandin E synthase-1 (mPGES-1) mRNA analysed by real-time 
PCR and normalized to S29 mRNA; (c) mPGES-1 protein level 
assessed by western blotting and normalized to β-actin level; (d) modu-
lation of adiponectin (a PPARγ target gene) mRNAs by PPARγ ligands, 
analysed by real-time PCR and normalized to S29 mRNA. Results are 
expressed as means ± SD for at least three independent experiments. 
Statistically significant differences (P < 0.05): *, comparison with non 
stimulated controls; #comparison with IL-1β-stimulated cells; †, compar-
ison with PPARγ agonists alone or in combination with PPARγ 
antagonist.
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Figure 4

Effect of PPARγ overexpression on the inhibition of IL-1β-induced responses by 15d-PGJ2Effect of PPARγ overexpression on the inhibition of IL-1β-induced responses by 15d-PGJ2. Chondrocytes in six-well plates were transfected with 
pcDNA3.1 peroxisome-proliferator-activated receptor γ (PPARγ) construct (500 ng) for 36 hours. Thereafter, cells were pretreated for 4 hours with 
10 µM 15-deoxy-∆12,14prostaglandin J2 (15d-PGJ2), then stimulated with 10 ng/ml IL-1β for 24 hours before extraction of total RNA and collection of 
culture supernatant. (a) PGE2 levels assayed by ELISA in culture supernatant; (b) relative abundance of microsomal prostaglandin E synthase-1 
(mPGES-1) mRNAs analysed by real-time PCR and normalized to S29 mRNA; (c) western blot control experiment of PPARγ and β-actin expression; 
(d) modulation of adiponectin (a PPARγ target gene) mRNAs by PPARγ agonists and pcDNA3.1 PPARγ construct, analysed by real-time PCR and 
normalized to S29 mRNA. Results are expressed as means ± SD for at least three independent experiments. Statistically significant differences (P < 
0.05): *, comparison with non-stimulated controls; #, comparison with IL-1β-stimulated cells; †, comparison with PPARγ agonists alone or in combi-
nation with PPARγ plasmid.
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[40], a five-lipoxygenase activating protein (FLAP) inhibitor
with in vitro inhibitory potency towards mPGES-1 [44].

Because the stimulated synthesis of 6-keto-PGF1α requires
successive metabolization by COX-2 and prostacyclin syn-
thase (PGIS), the lower than expected increase could reflect
a limited induction of PGIS in rat chondrocytes. Thus, induc-
tion of PGIS by IL-1β was less than double that in rat non-artic-
ular cells [45] despite its selective upregulation by COX-2
induction in human endothelial cells [46]. A decrease in PGIS

expression, contrasting with an increase in mPGES-1 expres-
sion, was also reported in inflamed tissues of rat with adjuvant
polyarthritis [32]. Alternatively, other metabolic pathways
might have been favoured such as the conversion of cyclic
endoperoxides into other prostaglandins [42], depending on
the substrate concentration dependences of the terminal syn-
thases [6,46]. Arachidonic acid could also have been trans-
formed into hydroxylated non-prostaglandin metabolites,
which can be synthesized in IL-1β-stimulated chondrocytes
[25], depending on the balance between the COX and lipoxy-

Figure 5

Contribution of NF-κB pathway to IL-1β-induced responses and 15d-PGJ2 inhibitory effectsContribution of NF-κB pathway to IL-1β-induced responses and 15d-PGJ2 inhibitory effects. In one set of experiments (a, b), chondrocytes cultured 
in six-well plates were transfected with 500 ng of IKBα dominant-negative (IκBα∆N) vector for 24 hours, then stimulated for 24 hours with 10 ng/ml 
IL-1β. (a) PGE2 levels in culture supernatant assayed by ELISA; (b) Relative abundance of microsomal prostaglandin E synthase-1 (mPGES-1) 
mRNAs analysed by real-time PCR and normalized to S29 mRNA. Results are expressed as means ± SD for at least three independent experiments. 
In another set of experiments (c, d), chondrocytes cultured in six-well plates were exposed to 10 ng/ml IL-1β for 15 min in the presence or absence 
of 10 µM 15-deoxy-∆12,14prostaglandin J2 (15d-PGJ2) before extraction of nuclear proteins. Activation of NF-κB was determined by EMSA (c) and 
by ELISA with the TransAm® technology (d). Results in (d) are expressed as relative arbitrary units with IL-1β treatment set at 100, and are repre-
sentative of three different experiments. Statistically significant differences (P < 0.05): *, comparison with non-stimulated controls; #, comparison 
with IL-1β-stimulated cells.
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genase pathways [47]. In all instances, IL-1β stimulated all
inducible steps of the arachidonic acid cascade to produce
PGE2 maximally in rat chondrocytes.

The study of the expression of COX-2 or mPGES-1 and the
release of prostaglandins in activated chondrocytes showed
that 15d-PGJ2 was strongly inhibitory, whereas the high-affin-
ity PPARγ agonist rosiglitazone was marginally potent in the
same concentration range. Although 15d-PGJ2 and rosiglita-
zone were able to induce adiponectin expression, thereby
demonstrating their potency to activate PPARγ, these results,
irrespective of the binding affinity of agonists to PPARγ [48],
supported the idea that this isotype was not primarily involved.
It is interesting to note that the inducing effect of rosiglitazone
on COX-2 mRNA was not confirmed at the protein level and
that it was slightly inhibitory on mPGES-1, resulting in an
unchanged PGE2 level. When we tried to decrease the inhibi-
tory potency of 15d-PGJ2 by antagonizing its binding to
PPARγ with GW-9662, we failed to observe any changes in
gene mRNAs and PGE2 levels. As a corollary, the efficient
overexpression of PPARγ did not enhance the potency of 15d-
PGJ2 in our experimental system. Finally, despite the existence
of a PPRE consensus site in the promoter of human COX-2
[49] and evidence that 15d-PGJ2 stimulates COX-2 gene
expression in rat chondrocytes as in human synovial fibrob-
lasts [50], we failed to observe any change in the basal pro-
duction of PGE2, as reported previously in human
osteoarthritic chondrocytes [51].

Taken together, our data strongly support the contention that
15d-PGJ2 was acting independently of PPARγ. Very few data
are available in the rat species, but a PPARγ-dependent inhibi-
tion of inducible arachidonic acid cascade was reported in
cardiac myocytes stimulated with IL-1β [52]. Because the
inhibitory potency of 15d-PGJ2 on the COX-2, mPGES-1 and
PGE2 levels was closely similar in both studies, we suggest
that this discrepancy might be supported by cell type specifi-
cities. Indeed, the decrease in the levels of prostacyclin metab-
olites was different between cardiac myocytes and
chondrocytes (no inhibition versus -66%) for a comparable
extent of COX-2 inhibition (-40 to -50%), whereas the syn-
thetic PPARγ agonist troglitazone was much more inhibitory
towards PGE2 levels in the former cell type. In human chondro-
cytes, the inhibitory potency of 15d-PGJ2 was similar to our
results on PGE2 levels [51], although supported by a stronger
inhibition of COX-2 and a PPARγ-dependent inhibition of
mPGES-1 [53]. In this cell type, the dose-dependent effect of
15d-PGJ2 was also thought to be mainly supported by the acti-
vation of PPARγ for the control of other inflammatory media-
tors [54] and apoptosis [55]. The biological responses to
PPAR agonists are well known to differ between species [56],
but our data support the notion that the potency of PPARγ
agonists on joint cells might be influenced by differences in
both cell type and species. Consistently, 15d-PGJ2 and trogli-
tazone were shown to inhibit PGE2 production and mPGES-1

expression in IL-1β-stimulated human synovial fibroblasts [57],
whereas troglitazone was totally ineffective on LPS-induced
COX-2 expression in rat cells [20]. Finally, one could underline
that the contribution of PPARγ might also depend on 15d-
PGJ2 concentration, because the inhibition of PGE2 produc-
tion was reported to be PPARγ-dependent in the nanomolar
range while becoming PPARγ-independent in the micromolar
range [58]. Despite a variable contribution of the PPARγ iso-
type depending on the biological system used, the present
study confirms that 15d-PGJ2 downregulates inducible steps
of the arachidonic acid cascade in joint cells, thereby probably
contributing to its anti-arthritic properties [10].

The inhibitory potency of 15d-PGJ2 was PPARγ-independent
but dose-related, which does not favour non-specific activity.
This led us to investigate whether 15d-PGJ2 could interact
with the NF-κB pathway, which is known to be one of its major
targets in many cell types [59,60]. A previous study of the
mouse mPGES-1 promoter indicated that it lacked binding
sites for NF-κB, the cAMP-response element, and E-box,
which have been implicated in COX-2 induction, implying that
the mechanisms for inducible expression of COX-2 and
mPGES-1 were distinct in this species [61]. In human synovial
fibroblasts, transcriptional regulation of the mPGES-1 gene by
IL-1β was shown to be closely dependent on the transcription
factor early growth response factor-1 (Egr-1) [57], although
activator protein-1 and specificity protein-1 binding sites were
also found [62]. In human chondrocytes, IL-1β was demon-
strated to use overlapping, but distinct, signalling pathways to
induce COX-2 and mPGES-1, with a major role for ERK1/2
and p38β MAPK in controlling the latter [41]. However, in a
non-articular human cell type, a substantial role for NF-κB was
demonstrated recently in the coordinate induction of COX-2
and mPGES-1 by IL-1β [63]. As indicated previously, some of
these signalling pathways can be inhibited in a PPARγ-
dependent manner, possibly secondary to the squelching of
transcription cofactors such as CBP/p300 by protein-protein
interaction with PPARγ [64]. Consequently, such a mecha-
nism is unlikely to explain the PPARγ-independent inhibitory
potency of 15d-PGJ2 in our system.

Although the promoter of rat mPGES-1 has not so far been
explored, our data with mutated IκBα are consistent with a
major role of NF-κB in the control of its transcriptional activity.
We showed further that 15d-PGJ2 inhibited IL-1β-induced NF-
κB nuclear binding (with the use of EMSA) and transactivation
(with a TransAM® assay). This inhibitory effect was consistent
with the ability of 15d-PGJ2 to decrease IκB kinase (IKK) activ-
ity, by limiting the phosphorylation of its catalytic subunit IKKβ,
and to prevent IκBα degradation by the proteasome [65].
Because of the high chemical reactivity of its cyclopentenone
ring with substances containing nucleophilic groups, such as
the cysteinyl thiol group of proteins [66], possible mechanisms
may include covalent binding of 15d-PGJ2 to IKK [67] or
alkylation of a conserved cysteine residue located in the p65
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subunit DNA-binding domain of NF-κB [68]. A possible chem-
ical interaction with NF-κB components is further sustained by
the ability of 15d-PGJ2 to suppress the induction of COX-2 in
PPARγ-deficient macrophages [14]. However, we did not
investigate whether NF-κB binds directly to mPGES-1 rat pro-
moter, and the delayed induction of mPGES-1 by IL-1β sup-
ports indirect regulation. NF-κB was consistently shown to
regulate the early expression of Egr-1 [69], which has been
implicated in the regulation of murine and human mPGES-1
[57,61]. Alternatively, we cannot exclude the possibility that
inhibition of COX-2 by 15d-PGJ2 might participate partly in its
inhibitory potency towards mPGES-1, because PGE2 produc-
tion associated with COX-2 is involved in the induction of
mPGES-1 by IL-1β in rheumatoid synovial fibroblasts [43].

Conclusion
The data reported here demonstrate that IL-1β activates COX-
2 and mPGES-1 sequentially in rat chondrocytes and that the
production of large amounts of PGE2 depends mainly on the
expression of mPGES-1. In our cell type, 15d-PGJ2 displayed
a strong inhibitory effect on prostaglandin levels and gene
expression, whereas rosiglitazone was poorly active in the
same concentration range. Despite its efficient activation of
PPARγ, the effect of 15d-PGJ2 occurred through a PPARγ-
independent mechanism. The activation of the NF-κB pathway
was critical for mediating the inducing effect of IL-1β on PGE2
levels and mPGES-1 expression in rat chondrocytes, and was
abolished by 15d-PGJ2. On the basis of the pathophysiologi-
cal role of PGE2 in rheumatic diseases, our data support the
general meaning that 15d-PGJ2 could behave as an endog-
enous regulator of inflammation if it was synthesized in suffi-
cient amounts within joint tissues.
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