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Abstract 
 

Due to its importance in the industry, vibration-based diagnosis and prognosis of 
rolling element bearings (REB) attract more and more attention from the research 
community. Moreover, it is now possible to test newly developed methods on test rig 
data that are open-access. The NASA provides a list of data bases concerning prognosis 
and some REB data-sets, such as the one from the Center for Intelligent Maintenance 
Systems(1)  (IMS), University of Cincinnati. This data-set has so far been used by many 
authors. However, even if the state of health of the tested bearings is clearly provided 
and sometimes supported by photographs taken at the end of endurance, the diagnosis 
from the provided vibration signals is not so obvious. This paper tries to establish what 
can be clearly concluded from the analysis of the signals. In order to fulfill this 
objective, several diagnostic techniques are used: time analysis, spectral analysis, blind 
deconvolution, spectral coherence, envelope spectrum. A diagnosis is therefore returned 
whenever possible, together with recommendations for prognosis in those cases which 
have been identified as difficult. 
 

1. Introduction 
 

1.1 Motivations 
 
Todays, vibration-based diagnosis and prognostics of rolling element bearings 

attracts more and more attentation in the scientific community. Therefore, providing 
open-access databases is of prime importance. There are so far few available datasets. 
The Case Western Reserve University data(2) are one example dedicated to diagnostics 
which has been widely used in numerous works. The IMS dataset is another example 
which constitutes a precious database for prognostics. Indeed, endurance tests with 
natural degradation are rare. In most cases, damage is artificially initiationed in order to 
accelerate the  damage growth. Whereas for diagnosis studies seeded faults may be 
acceptable, prognostis requires an evolution of the damage starting ideally from a  
natural initiation. The IMS dataset has therefore interesting potential both for diagnosis 
and (mostly) for prognostics. 

As opposed to several studies based on the direct application of some ad 
hoctrending features (such as statistical moments), this paper follows an  explicative 
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approach where the vibration signals of the IMS dataset are thoroughly analysed by 
dedicated signal processing tools. 
 
1.2 IMS dataset in the literature 

 
This IMS database has been so far used in different research works published in the 

specialized literature. Many papers used it for illustrating remaining useful life (RUL) 
estimation based on statistical indicator(3,4,5,6) (Mahamad & all 2010) (Soualhi & all 
2013) (Ben Ali & all 2015) (Ben Ali & all 2014). Other papers used it to test new signal 
denoising techniques(7) (Guo & all 2015) often with the goal of acheiving an early 
detection of the damage(8,9) (Qiu & all 2006) (Mortada & all 2011). Paper of Qiu and 
all(8) is the reference paper concerning this dataset. 
 
 

2. Dataset description 
2.1 The test rig 
 

The IMS bearing dataset has been collected on an endurance test rig of the 
University of Cincinnati and relased in 2014(1). The test rig (shown in Fig.1) has the 
following characteristics: 

• 4 double row bearings of type Rexnord ZA-2115, 
• 2000 rpm stationary speed, 
• 6000 lbs load applied onto the shaft and bearing by a spring mechanism, 
• PCB 253B33 High sensitivity Quart ICP® accelerometers. 

 

An AC motor, coupled by a rub belt, keeps the rotation speed constant. The four 
bearings are in the same shaft and are forced lubricated by a circulation system that 
regulates the flow and the temperature. It is announced on the provided “Readme 
Document for IMS Bearing Data” in the downloaded file, that the test was stopped 

Figure 1. IMS test rig layout 
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when the accumulation of debris on a magnetic plug exceeded a certain level indicating 
the possibility of an impending failure. 

The four bearings are all of the same type. There are double range pillow blocks 
rolling elements bearing. Their characteristics are given in table 1. 
 

Table 1. Bearing characteristics 
Rexnord ZA-2115 Characteristics  
Pitch diameter 2.815 inch 71.5mm 
Rolling element diameter 0.331 inch 8.4mm 
Number of rolling element per row 16 16 
Contact angle 15.17° 15.17° 
Static load 6000 lbs 26690 N 

 
 
2.2 Data description 

 
Three datasets are provided on the downloaded file, composed of numerous files of 

one second each. Each file is made of 20,480 samples. Althougth it is mentioned that 
the sampling frequency is 20 kHz, it is thus believed that it was actually 20.48 kHz(and 
the spectral analyses presented in this paper all seem to support this assumption, since 
more consistent results are then obtained with respect to expected fault frequencies). A 
one second acquisition has been made every ten minutes. There is an exception for the 
first dataset for which the first forty-three files have been acquired every five minutes.  
 
 

The timeline of the signals files gives important information about the recording. In 
particular time intervals are identified in the first dataset where recording was switched 
off. 

The description of the datasets is given the table 2 Concerning dataset 1, there are 
two accelerometers on each bearing (x and y positions). The two other datasets only 
have one accelerometer on each bearing.  

 
 

Table 2. Datasets description 
 Number 

of files 
Number 

of 
channels 

Endurance 
duration 

Duration of 
recorded signal  

Announced damages at 
the end of the endurance 

Dataset 
1 

2156 8 49680 min 
34 days 12h 

36 min 
 

Bearing 3: inner race 
Bearing 4: rolling element 

Dataset 
2 

984 4 9840 min 
6 days 20h 

16 min 
 

Bearing 1: outer race 

Dataset 
3 

4448 4 44480 min 
31 days 10h 

74 min 
 

Bearing 3: outer race 
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The fault frequencies required for the diagnosis of the rolling element bearing 
have been calculated from the bearing characteristics. They are reported in table 3. 
 

Table 3. Characteristic frequencies of the test rig 
Characteristic frequencies  
Shaft frequency 33.3 Hz 
Ball Pass Frequency Outer race (BPFO) 236 Hz 
Ball Pass Frequency Inner race (BPFI) 297 Hz 
Ball Spin Frequency (BSF) 278Hz (2x139 Hz) 
Fundamental Train Frequency (FTF) 15 Hz 

 
 
2.3 Time analysis 

 
Before proceeding to sophisticated signal processing tools, a simple analysis in the 

time domain can already provide interesting information.  
 

Dataset 1 has been subjected to a series of interruption during the recording, 
which makes the time history not continuous. This is illustrated in Fig 2 for the time 
signal of accelerometer 1 displayed as a function of the real time (and not recording 
time which makes the signal continuous). 

 
 

Another point concerns the announced faults. There is no fault on bearing 1 and 
2. Bearing 1 and 2 are considered as healthy and their analyses are not shown hereafter. 

Dataset 2 and 3 have been recorded without interruption. Records of 1s – hereafter 
denoted as frames -have been captured every 10 min all along the endurance test. 

 
3. Methodology 
 
This section introduces the signal processing methods which are used to extract the 

diagnostic information contained in the three endurance datasets. Two preprocessing 
methods are first presented which have been used to enhance the signal. 
3.1 Preprocessing 

 

Figure 2. Raw signal and its real time history scale for dataset 1 
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In order to enhance the results, pre-whitening and blind deconvolution are used in a 
pre-processing stage.  
 

The pre-whitening operation used here consists in normalizing the spectrogram 
by its averge value taken over fifty frames. This is supposed to remove the constant 
baseline endured all along the test, which includes structural resonances of the system as 
well as s of the machinery (belt, motor).  This operation has been found important to 
better enhance the contrast between the beginning and the end of the test. For example,  
a spectral peak at 236 Hz appears in all frames all along the endurance, which in all 
likelihood corresponds to the ball passage frequency seen by the sensors which are 
placed very close to the bearing outer race. This frequency is therefore not to be 
confused with that of an outer race fault, the reason why it is important to remove from 
the beginning. Applying pre-whitening will thus avoid confusion in the diagnosis. 

 
 

Blind deconvolution is applied to the time signal in order to enhance the emergence 
of impulses in the signal due to the initiation of the fault. The blind deconvolution 
algorithm consists in maximizing the Kurtosis(10). 
 
3.2 Signal processing 

 
This section introduces the signal processing tools used to detect the possible 

presence of damage as early as possible in the endurance test. They pertain to  the 
current state-of-the-art in the domain(11).  
 
  

Time-frequency analysis is based on the Short Time Fourier Transform on each 
bloc of one second, with a 1 Hz frequency resolution without overlap (because of time 
discontinuity between each frame). Results are represented by means of the spectrogram 
on a logarithmic scale. This allows easy tracking of the frequencies along the tests. 
 
 

The Squared Envelop Spectrum (SES) is used as indicated in Ref. (11) after 
filtering the signal in an optimal band that maximized the kurtosis as found by 
application of the Kurtogram(12).  
 

Figure 3. a) raw spectrogram, b) pre-whitened spectrogram 
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As demonstrated in the literature, bearing defaults produce cyclostationary 
signals. The spectral coherence(13) has been found as anefficient tool to detect the 
presence of cyclostationarity and to identify the bearing fault frequency. 

 

 

4. Results 
 
This section presents diagnostic results based on the signal processing tools 

introduced above. Results are presented by means of tables and figures for each dataset. 
The goal is to  confirm that diagnosis of the bearing faults is feasible and, in certain 
cases, to explain some unexpected results.  

The following categorization of results is used: 
 
 

Table 4. Categorisation of diagnosis 
Category	 Explanation	
TP	 «	True	Positive	»,	when	a	fault	has	been	announced	and	is	confirmed	by	the	

diagnosis	
TP2		 «	True	positive	2	»,	confirmation	of	what	has	been	announced	needing	some	

more	explanation.	
FN	 «	False	Negative	»	when	a	fault	has	been	announced	but	is	not	confirmed	by	

the	diagnosis	
TN	 «	True	Negative	»	Nothing	has	been	announced	and	the	diagnosis	confirms	it	
FP	 «	False	Positive	»	Nothing	has	been	announced	but	the	diagnosis	detects	

some	signatures	
 

4.1 Dataset 1, inner-race damage on bearing 3, ball damage on bearing 4 
 

This dataset contains 2 accelerometers per bearing. Since analyses carried out on 
sensors placed on the same bearing are found quite similar, only results obtained on one 
of the two accelerometers are shown. This observation could indeed explain why there 
is only one accelerometer available per bearing for the other datasets. 
 

Weak harmonics are visible at twice and three times the BPFI (table 3) with 
modulation sidebands spaced by the shaft speed(33.3 Hz). This signature is typical of an 
inner race fault. In the reference paper (8) is also shown a BPFO fault at the end of 
endurance on bearing 4. It is also visible on the analyses but not shown in this paper.  

 
In the spectrogram (Fig. 4) the inner race fault signature is visible from 33,8 

days, as evidenced by a spectral comb. Twice and three times the BPFI are the dominant 
frequencies. The shaft modulations, typical of an inner race fault, are also easily 
identified. This is so considered as a TP.  

 
For test 1, the SES has been computed in the entire frequency bandwidth – see 

Fig. 5. Results are close to those of the spectrogram, with dominant frequencies at twice 
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and three times the BPFI. However, the fault signature is visible slightly sooner, from 
32 days. The sideband due to shaft modulations are also visible at 34 days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The spectral coherence probably returns the most interesting results. Although 

the detected frequencies are the same (twice and three times the BPFI), the signature of 
the inner race fault is visible from 29.2 days (Fig. 6). The shaft modulation sideband is 
also visible later, around 32 days. 

 
 
 
 
 
 

Figure 4. Spectrogram, dataset 1 accelerometer 3 

Figure 5. Squared Envelop Spectrum, dataset 1 accelerometer 3 
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The BSF (table 3) and harmonics are difficult to find and appear late in the 

endurance test. 
 
The signature of the fault in the spectrogram is only visible at the very end of the 

test, around 34 days, with clear modulation sidebands ate the shaft speed (Fig. 7). Only 
the sixth BSF harmonics can be identified from 18 days, with FTF modulations. This is 
enough the diagnose the ball fault, which is thus categorized as a TP. 

  
The SES has been computed in the entire frequency bandwidth. Although the 

signature is weaker than in the spectrogram, its is more consistant with a ball fault: a 
peak is visible at twice the BSF beginning around 25 days. Some modulations at shaft 
speed are also visible at the very end, from 34 days.  
 
 

Figure 6. Spectral Coherence, dataset 1 accelerometer 3 

Figure 7.  Spectrogram, dataset 1 accelerometer 4 
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The spectral coherence returns similar results as the SES, with more pronounced 
FTF modulations. In addition, there is a higher increase of the the peak magnitudes at 
the BSF and its harmonics from 23 days. This case is also considered as a TP. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5 summarizes the results concerning dataset 1. It  reports the 

categorization of each analysis and the time from which the fault diagnosis seems 
possible. 
 

Table 5. Summary of dataset 1 results 
	 Inner	race	fault	 Ball	fault	

accelerometer	 acc3x	 acc3y	 acc4x	 acc4y	 acc3x	 acc3y	 acc4x	 acc4y	

T-F	analysis	 TP	
(33.8	days)	 TN	 TN	 TP	

(18	days)	
Envelop	 TP	 TN	 TN	 TP	

Figure 8. Squared Envelop Spectrum, dataset 1 accelerometer 4 

Figure 9. Spectral Coherence, dataset 1 accelerometer 4 
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(32	days)	 (25	days)	
Spectral	

Coherence	
TP	

(29.2	days)	 TN	 TN	 TP	
(23	days)	

 
 

4.2 Dataset 2, outer race damage on bearing 1 
 

This case is easy to diagnose, and all methods give relevant results.  
The spectrogram (see Fig.10) provides enough information to make a first 

diagnosis. The fundamental frequency is not the most relevant ones to monitor here, in 
particular because if corresponds to the ball pass frequency seen by the sensor placed 
close to the outer-race, even in the absence of a fault. The three-time BPFO harmonic  
appears from around 3,5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. Spectrogram, dataset 2 accelerometer 1 

Figure 11. Squared Envelop Spectrum, dataset 2 accelerometer 1 
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The Squared Envelop Spectrum (see Fig. 11) has been computed after bandpass 
filtering in the optimal band between 6830 Hz and 10240 Hz as returned by the 
Kurtogram. Even if the BPFO harmonics are visible they appear later -- from 4,8 days -- 
than in the spectrogram. Once again,because of its dominance, the twice BPFO 
harmonic seems the most efficient to follow. 

 
The spectral coherence returns the best diagnostics results. Again, the BPFO 

frequency appears to not be the best one to track; although it is clearly visible, it appears 
from the beginning of the test and  increases only after 3,5 days. Twice and three times 
BPFO seem again more relevant because of their dominance 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
This case is clearly considered as a TP. 
The three other accelerometers of dataset 2 show similar results which confirm 

the diagnosis made from accelerometer 1. Although they are located on other bearings 
(see Fig. 1), they are well able to sense the BPFO fault in bearing 1.. This is categorized 
here as a TP2. Having the possibility to monitor bearing from distant location can be 
considered as very useful. 

Analysis of the signals  reveals that the fault signature appears at the same time 
whatever the distance to the faulty bearing. The spectrogram, the SES and the spectral 
coherence of accelerometer 4 are nearly identical to those of accelerometer 1 shown in 
Fig.10, 11, and 12. 

 
Table (6) summarizes the results concerning dataset 2. It  reportes the 

categorization of each analysis and the time from which the fault diagnosis seems 
possible. 

Table 6. Summary of dataset 2 results 
	 OUTER	RACE	FAULT	
	 acc1	 acc2	 acc3	 acc4	

T-F	analysis	 TP	
(3.5	days)	

TP2	
(3.5	days)	

TP2	
(3.5	days)	

TP2	
(3.5	days)	

Envelop	 TP	
(3.5	days)	

TP2	
(3.5	days)		

TP2	
(3.5	days)	

TP2	
(3.5	days) 

Figure 12. Spectral Coherence, dataset 2 accelerometer 1 



 

 12 

Spectral	Coherence	 TP	
(3.5	days)	

TP2	
(3.5	days)		

TP2	
(3.5	days)	

TP2	
(3.5	days)	

 
 
4.3 Dataset 3, Outer-race damage on bearing 3 

 
The description of dataset 3 is similar to dataset 2 except for two differences. First 

the outer race on announced inbearing 3 instead of bearing 1 at the end of the endurance 
test and second the signals are longer (about 30 days of 1s records every 10 minutes 
resulting in 72 min of signals). Although similar results as with dataset 2 are expected, 
they eventually turn out very different. None of thethe accelerometers are able to detect 
the fault. 

All other accelerometers return identical results. These results probably explain 
why dataset 3 has never been used in the literature. It so considers as a FN. 
 

Table 7.Summary of dataset 3 results 
	 OUTER	RACE	FAULT	
	 acc1	 acc2	 acc3	 acc4	

T-F	analysis	 FN FN FN FN 
Envelop	 FN FN FN FN 

Spectral	Coherence	 FN FN FN FN 
 

5. Conclusion and discussion 
 

This IMS database is frequently used in the specialized literature to test and validate 
the proposal of new diagnostic and prognositc algorithms. The goal of this paper was to 
establish in a comprehensive way which diagnostic information can be extracted from 
it. This should turn out most useful for its future use by other researchers.  

 
The IMS dataset constitutes an interesting database for several reasons. First, signals 

are provided from a long endurance test with a natural degradation of the damage, 
without artificial initiation. Second, it includes three different types of fault with 
different expected signatures. Third, it contains signals simultaneous recordered by at 
least four accelerometers placed at different locations. Some of the main findings of the 
paper are the following.  

1) It is not advisable to detect and track the fundamental frequency of the BPFO 
for diagnostic and prognostic purposes in Dataset 1 2 (outer-race fault); this 
frequency is present from the beginning of the test and corresponds to the 
natural passage of the balls as seen by accelerometer 1 mounted close to the 
outer race. 

2) The spectral signature of the inner-race fault in dataset 1 is perhaps unusual as 
it mainly contains the second and thirs harmonics of the BPFI. 

3) It is possible to detect the inner-race in bearing 3 fault and the roller in 
bearing 4 fault from accelerometers 1 and 2 mounted on the other bearings 
even if ot shown in this paper (even the outer-race in bearing 4). 

4) It is possible to detect the outer-race in bearing 1 fault from accelerometers 2, 
3 and 4 mounted on the other bearings.     
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5) Contrary to what is announced in Ref.(1), it seems that Dataset 3 does not 
contain any signature of an outer-race fault in bearing 3 (or any other 
bearing). 

6) It seems that the sampling frequency announced in Ref. (1) should be fixed to 
20.48 kHz (instead of 20kHz). 
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