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Introduction

Kernel estimation is an efficient and commonly used method to estimate a density from a sample of independent identically distributed random variables. It relies on the convolution of the empirical measure with a function K (the kernel), adjusted via a tuning parameter h (the bandwidth).

Several commonly used data-driven methods for bandwidth selection such as [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] or [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF] have stood the test of time although none can be recognized as objectively best. In the past decades, aggregation for kernel density estimators has been investigated as an alternative to bandwidth selection. Methods proposed in the literature include stacking ( [START_REF] Smyth | Linearly combining density estimators via stacking[END_REF]), sequential processes ( [START_REF] Catoni | The mixture approach to universal model selection[END_REF][START_REF] Yang | Mixing strategies for density estimation[END_REF]) and minimization of quadratic ( [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF]) or Kullback-Leibler ([BDD + 17]) criteria. In these papers, the initial estimators are assumed nonrandom, which is generally achieved by dividing the sample to separate training and validation.

The aim of the present article is to propose a new procedure to combine several competing density kernel estimators obtained from different, possibly data-driven, bandwidths. The method, in the spirit of model averaging, aims at minimizing the integrated square error of a linear combination of the kernel estimators. In this particular context, the first order asymptotic of the error is known up to a single parameter γ equal to the integrated squared second derivative of the density. The easily tractable error is precisely what makes kernel estimation a good candidate for averaging procedures, as we discuss in Section 2. Furthermore, the estimation of γ can be made from the same data used to estimate the density so that no sample splitting is needed. The method is detailed in Section 3, where it is proved to be asymptotically as efficient as the best possible combination, referred to as the oracle. Our simulation study demonstrates that our method compares favorably to other existing procedures and confirms that sample splitting may lead to poorer results in this setting.

Some facts on kernel estimators

Let X 1 , ..., X n be a sample of independent and identically distributed real random variables with density f with respect to the Lebesgue measure. Given a kernel K : R → R and a bandwidth h > 0, the kernel estimator of f is defined

as fh (x) := (nh) -1 n i=1 K h -1 (X i -x) , x ∈ R.
Henceforth, we assume that K is a bounded, symmetric around zero, density function on R such that

K 2 := K 2 (u)du < ∞ and c K := u 2 K(u)du < ∞. (H K ) 2
Concerning f , we assume it is twice continuously differentiable on R and f , f and f are bounded and square integrable. (H f )

Under (H K ) and (H f ), [START_REF] Hall | Limit theorems for stochastic measures of the accuracy of density estimators[END_REF] showed that the Integrated Square Error (ISE) of a kernel estimator fh satisfies

ISE( fh ) := fh -f 2 = K 2 nh + γ h 4 c 2 K 4 + o p 1 nh + h 4 , (1) 
where γ := f (x) 2 dx. In the typical case where (nh) -1 and h 4 balance out, meaning that h = O(n -1/5 ) and h = o(n -1/5 ), or for short h n 

h i -h * i = o p (n -2/5
), then

Σ = A + γB + o p (n -4/5 ), (3) 
where

A ij = 1 n K(u/h i )K(u/h j )du and B ij := 1 4 h 2 i h 2 j c 2 K , i, j = 1, ..., k.
Proof. Following [START_REF] Hall | Extent to which leastsquares cross-validation minimises integrated square error in nonparametric density estimation[END_REF], let ∆(h) = ISE( fh ) and consider the first-order ex-

pansion ∆(h i ) -∆(h * i ) = (h i -h * i )∆ ( hi )
, for some hi between h i and h * i . From Section 2 and Lemma 3.2 in [START_REF] Hall | Extent to which leastsquares cross-validation minimises integrated square error in nonparametric density estimation[END_REF], we know that ∆ ( hi

) = O p (n -3/5 ). Com- bined with the fact that ∆(h * i ) O p (n -4/5 ), the condition h i -h * i = o p (n -2/5 ) implies ISE( fhi ) -ISE( fh * i ) / ISE( fh * i ) = o p (1) for all i.
Using the arguments of Theorem 2 in [START_REF] Hall | Limit theorems for stochastic measures of the accuracy of density estimators[END_REF], we get Σ = A * + γB * + o p (n -4/5 ), where A * and B * are defined similarly as A and B with h * i in place of h i . The map (x, y) → K(u/x)K(u/y)du is continuous for x, y > 0, which implies its uniform continuity on every compact set in (0, +∞) 2 . Applying this function to the sequences (x * n , y * n ) = (n 1/5 h * i , n 1/5 h * j ), i = j, which are bounded away from zero, and (x n , y n ) = (n 1/5 h i , n 1/5 h j ), we deduce that n 4/5 (A -A * ) = o p (1).

Similarly, n 4/5 (B -B * ) = o p (1) yielding the result.

The most common bandwidth selection procedures do verify the condition

h i -h * i = o p (n -2/5
) for some deterministic h * (see [START_REF] Jones | A brief survey of bandwidth selection for density estimation[END_REF]), making the approximation (3) available. For instance, Silverman's rule of thumb approximates the deterministic bandwidth h * = c min{σ, iqr/1.34} n -1/5 where σ is the standard deviation, iqr the inter-quartile range and c is either equal to 0.9 or 1.06, based on empirical considerations, see [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. The biased and unbiased least-square cross-validation bandwidths discussed in [START_REF] David | Biased and unbiased crossvalidation in density estimation[END_REF][START_REF] Hall | Extent to which leastsquares cross-validation minimises integrated square error in nonparametric density estimation[END_REF] and the plug-in approach of [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF] approximate the deterministic bandwidth

h * = K 2/5 (nc K γ) -1/5
. The latter achieves a rate h/h * -1 = O p (n -5/14 ) that can be improved up to O p (n -1/2 ) if γ is estimated following [START_REF] Hall | On optimal data-based bandwidth selection in kernel density estimation[END_REF].

Note finally that, as argued by several authors, a truncation argument allows to extend Proposition 2.1 to non compactly supported kernels K, see e.g. [START_REF] Hall | On the amount of noise inherent in bandwidth selection for a kernel density estimator[END_REF] or Remark 3.9 in [START_REF] Byeong | Comparison of data-driven bandwidth selectors[END_REF].

3 The average estimator

Let h = (h 1 , ..., h k ) ∈ R k
+ be a collection of (possibly data-driven) bandwidths and set f = ( fh1 , ..., fh k ) . Following [START_REF] Lavancier | A general procedure to combine estimators[END_REF], we consider an estimator of f expressed as a linear combination of the fhi 's,

fλ = λ f = k i=1 λ j fhi , (4) 
where the weight vector λ = (λ 1 , ..., λ k ) is constrained to sum up to one, i.e. λ 1 = 1 for 1 = (1, ..., 1) . Under this normalizing constraint, the integrated square error of fλ has the simple expression ISE fλ = λ Σλ. If Σ is invertible (which we shall assume throughout), the optimal weight vector λ * minimizing the ISE under the constraint λ 1 = 1, is given by λ

* = 1 Σ -1 1 -1 Σ -1 1. The resulting average estimator f * = λ * f is called the oracle.
With all bandwidths h i of order n -1/5 , we know from Proposition 2.1 that 

Σ = A + γB + o p (n -
C = o p (n -4/5 ). Therefore ΣΣ -1 = (A + γB)Σ -1 = I -CΣ -1 + (γ -γ)BΣ -1 and since BΣ -1 = O p (1), ||| I -ΣΣ -1 ||| ≤ |||CΣ -1 ||| + |γ -γ|O p (1). ( 6 
)
The result follows from the fact that CΣ -1 = o p (1) and γ -γ = o p (1).

Remark 3.2. In our setting, the number k of initial estimators is assumed fixed although the result remains valid if k = k n increases slowly with n. As seen in the proof, the ISE of fAV approaches that of the oracle f * provided that ||| I -ΣΣ -1 ||| = o p (1). This can still be achieved if k n increases sufficiently slowly with n, e.g. logarithmically. In practice however, the numerical study shows that the results are less satisfactory with a too large number of initial estimators, due to Σ being close to singular. For better performances, we suggest to use no more than four initial estimators, obtained from different methods, in order to reduce linear dependencies (see the discussion in Section 4).

One may be interested in setting additional constraints on the weights λ i , restricting λ to a proper subset Λ ⊂ {λ : λ 1 = 1}. A typical example is to impose the λ i 's to be non-negative, a framework usually referred to as convex averaging. In fact, the same result as in Theorem 3.1 holds for any such subset Λ, using the corresponding oracle and average estimator, the proof being identical. A reason for considering additional constraints on λ is to aim for a more stable solution, which may be desirable in practice especially when working with small samples (see e.g. Table 1 in Section 4). However, since the oracle is necessarily worse (in term of integrated square error) for a proper subset Λ, the result lacks a theoretical justification for using a smaller set. Note that, on the contrary, the constraint λ 1 = 1 is necessary for the equality ISE( fλ ) = λ Σλ to hold true.

The next proposition establishes a rate of convergence in the case where the bandwidths h i used to build the experts fhi are deterministic and of the order

h i n -1/5 . The additional assumption γ -γ = o p (n -2/5
) is mild as the best known convergence for an estimator γ is γ -γ = O p (n -1/2 ), see for instance Proof. Under the assumptions, Theorem 2.1 applies with second order asymp-

totic expansion C = Σ -A -γB = O p (n -6/5
). In view of ( 5) and ( 6), the rate The result of Proposition 3.3 improves on the residual term O(n -1 ) obtained in [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF] where the initial estimators, or experts, are built from a training sample of size n tr , while the aggregation is performed on an independent validation sample of size n va with n = n tr + n va . In fact, [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF] show that conditionally to the training sample (making the experts built once and for all), their aggregation procedure reaches the minimax rate O(n -1 va ), which is at best of the order O(n -1 ). In our setting, the rate of the residual term is improved due to the initial kernel estimators contributing a factor O p (n -4/5 ).

Simulations

Based on a sample of n independent and identically distributed observations, we consider the estimation of the following density functions, depicted in Figure 4:

the standard normal distribution N (0, 1); the Gamma distribution with shape parameter 2 and scale parameter 1; the Cauchy distribution; the equiprobable mixture of N (-1.5, 1) and N (1.5, 1); and the mixture of N (-1.5, 1) with probability 0.7 and N (1.5, 1) with probability 0.3.

The initial kernel estimators are built with Gaussian kernel and data-driven bandwidths nrd0 (Silverman's rule of thumb), nrd (its variation with normaliz- This was confirmed by simulations (not displayed here), where the inclusion of these estimators did not improve the performances described below. The three kernel estimators are then combined by our method where γ is estimated as in [START_REF] Hall | On optimal data-based bandwidth selection in kernel density estimation[END_REF]. We also assess convex averaging where, in addition, the weights λ i are restricted to non-negative values. For the sake of comparison with existing techniques, we implement the linear and convex aggregation methods considered in [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF] who also use a quadratic loss function. In their setting, the experts fhi are computed from a training sample of half size, independent from the remaining validation sample on which the weights λ i are estimated.

In the same spirit, we have also tested this splitting scheme for our average estimator, where γ is estimated from the validation sample. For robustness, it is advised in [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF] to average different aggregation estimators obtained over multiple sample splittings. We followed this recommendation and we considered 10 independent splittings into two samples of equal size. The mean integrated square errors of the aforementioned estimators are summarized in Table 1, depending on the sample size n. These errors are approximated by the average over 10 3 replications of the integrated square errors.

It shows that our averaging procedure (AV in the table) outperforms every single initial kernel estimators when the sample size is large (n ≥ 500) and the gain becomes significant when n ≥ 1000. On the contrary, our averaging procedure is inefficient for small sample sizes (n = 50), which is probably explained by a poor use of the asymptotic expansion of Σ in this case. In fact, the convex averaging procedure (AVconv in the table) seems preferable for small n although it also fails to achieve the same efficiency as the best estimator in the initial collection.

A transition seems to occur for moderate sample sizes around n = 100, where the results of the average estimator are comparable to the best kernel estimator.

In all cases, our averaging procedure outperforms the alternative aggregation method of [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF]. Finally, according to the numerical results, a splitting scheme for our method (AVsplit in the table) is not to be recommended, suggesting that all the available data should be used both for the initial estimators and for γ, which is in line with our theoretical findings.

  4/5 ). Because both A and B are known, approximating Σ is reduced to estimating γ = f (x) 2 dx. This problem has been tackled in the literature, see for instance[START_REF] Hall | Estimation of integrated squared density derivatives[END_REF][START_REF] Hall | On optimal data-based bandwidth selection in kernel density estimation[END_REF][START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF]. Hence, given an estimator γ of γ, one obtains an approximation of Σ by Σ = A + γB. Replacing Σ by its approximation Σ yields the average density estimator fAV = fλ =1 Σ -1 1 -1 1 Σ -1 f .Theorem 3.1. Under the assumptions of Proposition 2.1, if Σ and Σ are invertible and γ -γ = o p (1), then ISE fAV = ISE( f * ) 1 + o p (1) . Proof. Write ISE( fAV ) = λ Σ λ = λ Σ λ + λ Σ -Σ λ. By construction, λ Σ λ ≤ λ * Σλ * = λ * Σλ * + λ * Σ -Σ λ * . Moreover, denoting by |||.||| the operator norm, |||A||| = sup ||x||=1 ||Ax||, we have for all λ ∈ R k , |λ Σ -Σ λ| ≤ ||| I -ΣΣ -1 ||| λ Σλ, see the proof of Lemma A.1 in [LR16]. Applying the above inequality to λ and λ * , we get 1 -||| I -ΣΣ -1 ||| ISE( fAV ) ≤ 1 + ||| I -ΣΣ -1 ||| ISE( f * ) (5) where we recall ISE( f * ) = λ * Σλ * . It remains to show ||| I -ΣΣ -1 ||| = o p (1). By Proposition 2.1, Σ = A + γB + C with A = O p (n -4/5 ), B = O p (n -4/5 ) and
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 1 Figure 1: Densities functions considered in the numerical examples

Table 1 :

 1 Estimated MISE (based on 10 3 replications) of the kernel estimators with bandwidths

	n	Law	nrd	nrd0 SJ	. AV	AVsplit RT	AVconv RTconv
	50	Norm	1936 1737 1902 . 1788 1698	2480 1844	2030
		Gamma 1822 1903 1864 . 1897 2088	2685 1841	2173
		Cauchy 1214 1289 1233 . 1292 1493	1778 1218	1452
		Mix05	999	1043 1056 . 1239 1397	1393 1063	1164
		Mix03	1086 1145 1155 . 1238 1401	1582 1159	1267
	100	Norm	1057 957	1026 . 962	947	1325 998	1113
		Gamma 1129 1239 1146 . 1153 1305	1615 1135	1376
		Cauchy 748	848	756	. 775	906	1059 750	938
		Mix05	634	699	677	. 796	922	888	705	772
		Mix03	669	751	703	. 728	852	898	717	823
	200	Norm	628	578	616	. 568	556	767	597	660
		Gamma 701	795	705	. 701	772	944	696	839
		Cauchy 462	540	454	. 452	531	613	454	585
		Mix05	391	453	409	. 474	559	501	452	492
		Mix03	398	470	406	. 395	467	486	412	510
	500	Norm	310	286	299	. 276	274	346	292	321
		Gamma 388	462	370	. 367	411	459	369	459
		Cauchy 232	283	220	. 208	240	294	221	293
		Mix05	210	253	209	. 223	258	227	240	264
		Mix03	223	271	218	. 199	222	234	222	282
	1000 Norm	183	171	177	. 163	163	196	174	191
		Gamma 231	285	216	. 211	240	262	215	272
		Cauchy 145	182	133	. 121	138	178	134	181
		Mix05	126	158	120	. 120	138	120	134	159
		Mix03	132	165	125	. 108	117	124	127	164
	2000 Norm	111	104	106	. 99	98	113	105	114
		Gamma 146	183	132	. 130	147	160	132	167
		Cauchy 84	108	76	. 66	73	110	76	101
		Mix05	79	100	73	. 68	74	68	79	95
		Mix03	77	98	72	. 59	61	66	72	92

nrd, nrd0 or SJ (by default in R) and the combinations of these estimators by our method (AV), our method with sample splitting (AVsplit), the linear method in

[START_REF] Ph | Linear and convex aggregation of density estimators[END_REF] 

(RT), our convex method (AVconv) and the convex method in [RT07] (RTconv).