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IMPLEMENTATION VIA APPROVAL MECHANISMS∗

MATÍAS NÚÑEZa AND DIMITRIOS XEFTERISb

Abstract. We focus on the single-peaked domain and study the class of Generalized Approval

Mechanisms (GAMs): First, players simultaneously select subsets of the outcome space and

scores are assigned to each alternative; and, then, a given quantile of the induced score dis-

tribution is implemented. Our main finding is that essentially for every Nash-implementable

welfare optimum –including the Condorcet winner alternative– there exists aGAM that Nash-

implements it. Importantly, the GAM that Nash-implements the Condorcet winner alterna-

tive is the first simple simultaneous game with this feature in the literature.

Keywords. Nash Implementation, Strategy-proofness, Approval Voting, Single-Peakedness,

Condorcet winner.

JEL Classification. C9, D71, D78, H41.

1. Introduction

In the single-peaked domain, the Nash-implementable welfare optima, practically, coin-
cide with the outcomes of Generalized Median Rules (GMRs).1 In simple terms, the outcome
of a GMR is the median of a set of points that consists of: a) the voters’ ideal policies and
b) some exogenous values also known as phantoms. As proved by Moulin [1980] GMRs
are the unique social choice rules that satisfy efficiency and strategy-proofness, while Berga
and Moreno [2009] established that strategy-proof rules which are “not too bizarre” (in the
context of Sprumont [1995])2 are the only implementable ones.

However, one should note that the direct revelation game of each GMR need not lead to
the same outcome as the GMR itself. In this respect, the direct revelation games of GMRs
share a common feature with other strategy-proof mechanisms: They admit a large multi-
plicity of Nash equilibria, some of which produce different outcomes (see Saijo et al. [2007]).
For instance, the direct revelation game triggered by the pure median rule –whose outcome
is the Condorcet winner alternative– exhibits a large set of equilibria: As long as every player
a
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2 MATÍAS NÚÑEZ AND DIMITRIOS XEFTERIS

announces the same alternative x, this constitutes an equilibrium with outcome x since no
unilateral deviation affects the median choice.3 This leads to the following conclusion: The
direct revelation game of a GMR does not Nash-implement the GMR (see Repullo [1985]
for similar results).4

So how do we Nash-implement GMRs in a simple manner? Yamamura and Kawasaki
[2013] propose the class of averaging mechanisms. Each player announces an alternative
and a monotonic transformation of the average alternative is implemented. The equilibrium
outcome coincides with the outcome of a GMR with an important restriction: All phantoms
must be interior, which prevents, among others, the implementation of the Condorcet win-
ner alternative. Moreover, Gershkov et al. [2016] have recently shown that sequential quota
mechanisms can also implement GMRs.5 Indeed, being able to implement GMRs by the
means of simple sequential games is very important, but ideally one would like to be able
to do the same using simple simultaneous games as well.

In this paper, we design the class of Generalized Approval Mechanisms (GAMs). These
mechanisms are quite easy to describe and belong to the class of simultaneous voting games.
First, players select subsets of the outcome space and scores are assigned to each alternative
(hence, Approval). Given a subset of alternatives, two different GAMs may assign differ-
ent positive scores to the same approved alternative (hence, Generalized). Then, a given
quantile of the score distribution induced by the players’ choices is implemented. Our main
finding is that every generic6 GMR –including the Condorcet winner alternative– can be Nash-
implemented by some GAM. We explain how to derive aGAM for eachGMR and we explicitly
design the one that implements the Condorcet winner alternative, also known as the pure
median rule. To our knowledge, this is the first simple simultaneous game that implements
the Condorcet winner alternative and arguably this finding is of interest on its own. The
equilibrium strategies of most players7 take an easy “I approve every alternative at most
(least) as large as the implemented alternative” form. In fact, every player with a preferred
alternative to the left (right) of the implemented one approves the implemented alternative
and all the alternatives to its left (right). That is, GAMs not only Nash-implement GMRs,
but also promote sincerity and agreement, in the sense that most players include both their
ideal policies and the implemented outcome in their approval sets.

Naturally, the present analysis relates to the wider Approval voting literature. Approval
voting has been studied since Weber [1995] and Brams and Fishburn [1983], and has been
shown to exhibit interesting properties in a variety of contexts: For example, it improves
the quality of decisions in common value problems compared to plurality rule (Bouton and

3Experimental evidence shows that strategy-proof mechanisms need not lead a large share of the agents to
reveal their true type (see Attiyeh et al. [2000], Kawagoe and Mori [2001], Kagel and Levin [1993] and Cason
et al. [2006] among others).
4A game/mechanism Nash-implements a social choice rule if it admits a unique equilibrium outcome which
coincides with the outcome of the social choice rule (see Maskin [1999]).
5More precisely, their sequential mechanisms are obtained by modifying a sequential voting scheme suggested
by Bowen [1943].
6We consider that a GMR is generic if its interior phantoms –if any– are all non-identical.
7If a player’s peak coincides with the equilibrium outcome, then this player may be employing a different kind
of strategy.
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Castanheira [2012]) and leads to the sincere revelation of preferences in certain private value
settings (see Laslier [2009], Laslier and Sanver [2010] and Núñez [2014]). As we show, in
the single-peaked domain Approval voting can additionally help a society reach, essentially,
every feasible welfare optimum.

In what follows we describe the setting (section 2) and present an example (section 3).
Then we provide our formal results and explain how to implement the Condorcet winner
through a GAM (section 4).

2. The setting

2.1. Basic concepts and definitions. Let A := [0,1] denote the set of alternatives and N :=
{1, . . . ,n} the set of players with n ≥ 2. Let U be the set of single-peaked preferences. Each
player i has utility function ui in U with ui(x) the utility of player i when x ∈ A is imple-
mented. Each player i has a unique peak, ti , so that ui(x′) < ui(x′′) when x′ < x′′ ≤ ti and
when ti ≤ x′′ < x′.8 We let t = (t1, . . . , tn) stand for a peak profile and u = (u1, . . . ,un) ∈ U :=∏n
j=1U . A social choice function is a function f : U → A that associates every u ∈ U with

a unique alternative f (u) in A. For any finite collection of points x1, . . . ,xs in [0,1], we let
m(x1, . . . ,xs) denote their median: m(x1, . . . ,xs) is the smallest number in {x1, . . . ,xs} which
satisfies 1

s#{xi | xi ≤ m(x1, . . . ,xs)} ≥ 1
2 and 1

s#{xi | xi ≥ m(x1, . . . ,xs)} ≥ 1
2 . A social choice func-

tion is a generalized median rule (GMR) if there is some collection of points p1, . . . ,pn−1 in
[0,1] such that, for each u ∈ U , f (u) = m(t,p1, . . . ,pn−1). We refer to p1, . . . ,pn−1 as the phan-
toms of the GMR. A GMR is considered to be generic if its interior phantoms –if any– are
non-identical.

A mechanism is a function θ : S → A that assigns to every s ∈ S, a unique element θ(s) in
A, where S :=

∏n
i=1Si and Si is the strategy space of player i. Given a mechanism θ : S→ A,

the strategy profile s ∈ S is a Nash equilibrium of θ at u ∈U , if ui(θ(si , s−i)) ≥ ui(θ(s′i , s−i) for
all i ∈N and any s′i ∈ Si . Let Nθ(u) be the set of Nash equilibria of θ at u. The mechanism θ

implements the social choice function f in Nash equilibria if for each u ∈U , a) there exists
s ∈Nθ(u) such that θ(s) = f (u) and b) for any s ∈Nθ(u), θ(s) = f (u).

2.2. Generalized Approval Mechanisms. We let B denote the collection of closed intervals
ofA.9 AGAM is a mechanism θ : Bn→ Awhich requires each player to play simultaneously
a strategy in B and determines for each strategy profile some alternative in A. For each bi ∈
B, we write bi = minbi and bi = maxbi . The set B includes elements of different dimensions:
singletons and positive length intervals. Since each bi is a convex set, its dimension is well-
defined so that for each approval profile b = (bi ,b−i), we let dim(b) = maxi∈N dim(bi). The
set of zero-dimensional and one-dimensional strategies are respectively labeled by B0 and
B1 with B = B0 ∪B1. Similarly, Bn

0 denotes the set of profiles in which every player plays
a singleton and Bn

1 the set of profiles such that at least one player plays a one-dimensional
strategy.

8For simplicity, we assume that ti , tj for any i, j ∈N . Our results are not affected when relaxing this constraint.
9This assumption can be relaxed by allowing any finite union of closed and convex subsets of A to be the set
of pure strategies. Relaxing it however would imply more cumbersome notation and proofs since then two
strategies that differ by a zero-measure set can have equivalent consequences.
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In order to state a precise definition of a GAM, we let η : R→ R be a differentiable and
strictly increasing function with η(0) = 0 and η(1) = 1 and q a non-negative real number. We
assume that when player i submits the interval bi , he is endowed with a weight of q+η(bi)−
η(bi) to be distributed over bi . More precisely, if dim(bi) = 1, then the strategy bi assigns an
individual score of sx(bi ,q,η) to each x ∈ [0,1] as follows:

sx(bi ,q,η) =
q

bi − bi
+ η′(x) for any x ∈ bi and sx(bi ,q,η) = 0 otherwise,

so that s(bi ,q,η) =
∫ 1

0
sx(bi ,q,η)dx equals q+η(bi)−η(bi) as defined. On the contrary, when

dim(bi) < dim(b), bi is a singleton and some player announces a one-dimensional interval,
we let sx(bi ,q,η) = 0 for every x ∈ [0,1] so that his strategy is not taken into account.

Collectively, each profile b in Bn
1 assigns to each alternative x a score of sx(b,q,η) with

sx(b,q,η) =
∑n
i=1 sx(bi ,q,η). Hence, the score distribution is the function φq,η : Bn

1 × [0,1]→
[0,1] such that

φq,η(b,z) =
∫ z

0

sx(b,q,η)∑n
i=1 s(bi ,q,η)

dx.

A GAM θα,q,η associates any profile b ∈ Bn
0 with θα,q,η(b) = m(b1,b2, . . . , bn) 10 and any

profile b ∈Bn
1 with

θα,q,η(b) = min{x ∈ [0,1] | φq,η(b,θα,q,η(b)) = α}, where α ∈ (0,1).

In other words, a GAM selects the α-quantile of the distribution endogenously generated by
b given q and η when at least some player announces a positive length interval; otherwise,
it selects the median of the announced singletons. In what follows, we write θ rather than
θα,q,η .

The initial step is to show that any GAM is well-defined.

Lemma 1. For any admissible q, α and η, the associated GAM is well-defined.

Proof. Note first that for any b ∈ Bn
1 , sx(b,q,η)∑n

i=1 s(bi ,q,η) ≥ 0 for every x ∈ [0,1]. It suffices to show

that its integral over [0,1] equals 1, which is equivalent to φq,η(b,1) = 1. But this is satisfied

since
∫ 1

0
sx(b,q,η)dx =

∑n
i=1 s(bi ,q,η). Q.E.D.

For each GAM θ, we let the points κ1,κ2, . . . ,κn−1 denote the phantoms of θ, with κj =

max{0,min{1,η−1(γj)}} and γj = α(nq+j)−(n−j)q
(n−j)−α(n−2j) , for each j ∈ {1, . . . ,n− 1}. Note that if η−1(γj) ∈

(0,1), then κj = η−1(γj). Moreover, by the means of standard algebraic manipulations, one
can show that that for each j ∈ {1, . . . ,n − 1}, each q ∈ R+, and each α ∈ (0,1), γj < γj+1. The
previous inequality, combined with η being differentiable and strictly increasing, implies
that 0 ≤ κ1 ≤ κ2 ≤ . . . ≤ κn−1 ≤ 1, and that as long as κi ,κj ∈ (0,1), κi , κj .

For each j ∈ {1, . . . ,n − 1} and each x ∈ [0,1], we let B(j,x) :=
{
b ∈Bn | #{bi = [0,x]} = n − j

and #{bi = [x,1]} = j}
}
. Any profile b in B(j,x) has n − j players playing [0,x] and j players

playing [x,1]. Note that θ(b) = θ(b′) if b,b′ ∈B(j,x).

10This assumption is made for the sake of completeness. We could use any alternative λ : [0,1]n→ [0,1] rather
than using the median of the singletons without affecting the results.
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Lemma 2. If θ is a GAM, j ∈ {1, . . . ,n− 1}, and b ∈B(j,x) with x ∈ (0,1) then a) θ(b) = x if and
only if x = κj ; b) θ(b) > x if and only if κj > x ; and c) θ(b) < x if and only if κj < x.

Proof. For each j ∈ {1, . . . ,n− 1}, each x ∈ (0,1) and any b ∈B(j,x), the distribution φ(b,x)
satisfies φ(b,x) = (n−j)η(x)+(n−j)q

qn+(n−j)η(x)+j(1−η(x)) . Therefore, since η is differentiable and strictly increas-

ing in (0,1), ∂
∂xφ(b,x) > 0 for each x ∈ (0,1). This implies that, ifφ(b,x) = α for some x ∈ (0,1),

then x is unique and φ(b,x) = (n−j)η(x)+(n−j)q
qn+(n−j)η(x)+j(1−η(x)) = α ⇔ x = η−1(γj) = κj , which proves a).

Moreover, each b ∈B(j,x) with x < κj satisfies φ(b,x) < α since φ(b,x) is strictly increasing
in x, and thus θ(b) > x. Similarly, each b ∈B(j,x) with θ(b) > x is such that φ(b,x) < α, which
implies x < κj and proves b). A symmetric argument proves c) concluding the proof. Q.E.D.

Notice that by the definition of a GAM –in specific by the fact that α ∈ (0,1)– it follows
that θ(b) > x when b ∈B(n,x) and θ(b) < x when b ∈B(0,x) for every x ∈ [0,1].

3. An Example: the Median Approval mechanism

In this section we present an example that illustrates how a specific GAM works for a
simple class of preference profiles. We consider a society composed of three individuals with
peaks such that 0 = t1 < t2 < t3 = 1. The Approval mechanisms that we consider throughout
have the following common structure: a) Every player simultaneously and independently
announces an interval bi ∈ B, b) these intervals generate a score distribution, and c) the
mechanism implements θ(b) which equals some quantile of the score distribution such as
the median. The Approval mechanisms differ in how this distribution is generated and in
the quantile of the distribution that is implemented.

While the general structure is discussed in the rest of the paper, we stick here to the sim-
plest interesting score assignment process: That is, we assume that when player i submits
the interval bi , he assigns an individual score sx(bi) to each x ∈ [0,1] as follows:

sx(bi) = 1 for any x ∈ bi and sx(bi) = 0 otherwise.

Collectively, each strategy profile b assigns a score of sx(b) to each alternative x with sx(b) =∑n
i=1 sx(bi). If at least one player submits a positive length interval, the distribution is the

function φ : Bn
1 × [0,1]→ [0,1] such that

φ(b,z) =
∫ z

0

sx(b)∑n
i=1(bi − bi)

dx.

The Median Approval mechanism associates any profile b with the median θ(b) of the score
distribution (when φ is continuous, φ(b,θ(b)) = 1

2 , while when all players announce a sin-
gleton, θ(b) corresponds to the median of these singletons).

We first notice that for any profile b with θ(b) , ti and bi ∈ B0, player i can effectively
move the median of the score distribution closer to her peak, ti ∈ (0,1), by submitting a
sufficiently small –but non-degenerate– interval containing ti . Hence, in equilibrium it must
be the case that an individual whose peak does not coincide with the outcome uses a one-
dimensional strategy and, in particular, he uses [0,θ(b)] if ti < θ(b) and [θ(b),1] if ti > θ(b).
This is so because placing weight to alternatives to the left of the implemented one shifts
the implemented alternative to the left and vice versa.
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Note that for the three players example that we consider, θ([0,x], [0,x], [x,1]) = 1−x
2 if x ≤ 1

3
and θ([0,x], [0,x], [x,1]) = 1+x

4 if x ≥ 1
3 . Similarly, θ([0,x], [x,1], [x,1]) = 2+x

4 if x ≤ 2
3 and

θ([0,x], [x,1], [x,1]) = 2−x
2 if x ≥ 2

3 . Therefore, θ([0,x], [0,x], [x,1]) = x if and only if x = κ1 = 1
3

and θ([0,x], [x,1], [x,1]) = x if and only if x = κ2 = 2
3 . In other words, when n = 3, the

phantoms of the Median Approval mechanism are κ1 = 1
3 and κ2 = 2

3 .
The previous arguments suggest that: a) when t2 <

1
3 the unique equilibrium is ([0, 1

3 ], [0, 1
3 ],

[1
3 ,1]) with outcome 1

3 and b) when t2 >
2
3 the unique equilibrium is ([0, 1

3 ], [1
3 ,1], [1

3 ,1]) with
outcome 2

3 . But what happens when t2 ∈ [1
3 ,

2
3 ]? Then, in any equilibrium b, player 1 still

uses [0,θ(b)] and player 3 still uses [θ(b),1], but player 2 can use a different kind of strat-
egy and have his peak implemented. Indeed, when, for example, t2 ∈ [1

3 ,
1
2 ] an equilibrium

can be such that θ([0, t2], [0,4t2 − 1], [t2,1]) = t2. In these cases the equilibrium need not
be unique, as the median player has many best responses, but the equilibrium outcome is
unique and coincides with the peak of the median player. In Figure 1 we present the unique
equilibrium outcome of the Median Approval mechanism for all the preference profiles that
we considered here. In Figure 2 we present the scores assigned to each alternative, sx(b), in
an equilibrium of the form θ([0, t2], [0,4t2 − 1], [t2,1]) = t2.

[Insert Figure 1 and Figure 2 about here]

4. Formal Analysis

We prove first how best replies are under a GAM (Lemma 3), then prove that a GAM
Nash-implements a GMR (Proposition 1) and, finally, establish that for every generic GMR
there exists a GAM that Nash-implements it (Theorem 1).

Next, we assert that if a player whose peak lies to the left (right) of the outcome uses a
best response, then he approves of all the alternatives to the left (right) of the implemented
outcome.

Lemma 3. If θ is a GAM, and b = (bi ,b−i) ∈ Bn with ti < θ(b) (ti > θ(b)), then bi is a best
response to b−i if and only if bi = [0,θ(b)] (bi = [θ(b),1]).

Proof. We only provide a proof for the case in which ti < θ(b) since the proof for ti > θ(b)
is symmetric. We first consider a strategy profile b = (bi ,b−i) with ti < θ(b) and bi , [0,θ(b)]
and argue that bi cannot be a best response of player i; and then we consider a strategy
profile b with ti < θ(b) and bi = [0,θ(b)] and argue that bi is a best response of player i.

When ti < θ(b) and bi , [0,θ(b)] there are three possibilities regarding bi : a) θ(b) > bi , b)
θ(b) < bi ; and c) θ(b) ∈ bi . If θ(b) > bi and dim(b)=0 then i can submit a sufficiently small
–but non-degenerate– interval centered at ti and bring the implemented outcome arbitrarily
closer to his peak.11 If θ(b) > bi , dim(b)=1 and dim(bi)=0 then i can deviate to [ti ,θ(b)] and
induce φ(([ti ,θ(b)],b−i),θ(b)) > φ(b,θ(b)) and φ(([ti ,θ(b)],b−i), ti) ≤ φ(b, ti); and hence bring
the implemented outcome closer to her peak. If θ(b) > bi and dim(bi)=1 then, there exists
β ∈ (0,θ(b)) such that θ(b) = θ([β,θ(b)],b−i). This is so because the outcome of a GAM does

11When ti = 0, the player can submit an interval [0, ε], with a sufficiently small ε > 0, to the described effect
(the case of ti = 1 is symmetric).
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not depend on the specific interval that one submits when this interval contains outcomes
only to the left (right) of the implemented one, but only on the total weight assigned to
policies on the left (right) of the implemented outcome. We assume that i deviates to such
a strategy, [β,θ(b)], that delivers the same outcome as bi .

12 After this intermediate step, we
simply consider marginal changes in β. Indeed, one can show that ∂

∂βφ(([β,θ(b)],b−i),θ(b)) <
0 which means that the implemented outcome θ([β,θ(b)],b−i) continuously decreases when
β decreases; and this clearly improves the payoff of player i. That is, bi cannot be a best
response of player i. Case b) admits a completely symmetric proof. Case c) is actually
simpler since it is such that bi ≤ θ(b) ≤ bi , so one can consider directly marginal changes of

bi and/or bi without the need for the described intermediate step.
Now consider that ti < θ(b) and bi = [0,θ(b)], and that there exists b′i such that ui(θ(b′i ,b−i)) >

ui(θ(b)). If b′i 1 bi then φ((b′i ,b−i),θ(b)) < φ(b,θ(b)) and hence θ(b′i ,b−i) > θ(b). If b′i ⊂ bi then
b′i = [0,β] for some β > θ(b). One can show that ∂

∂βφ(([0,β],b−i),θ(b)) < 0 when β > θ(b). That
is, a transition from bi to b′i will induce φ((b′i ,b−i),θ(b)) < φ(b,θ(b)) and hence θ(b′i ,b−i) >
θ(b). In both cases the assumption that bi = [0,θ(b)] is not a best response is contradicted
and this concludes the argument. Q.E.D.

Next we establish that a GAM implements a GMR in Nash equilibria.

Proposition 1. If the mechanism θ : Bn → A is a Generalized Approval Mechanism (GAM)
then:

a) there is an equilibrium in pure strategies for every admissible preference profile; and

b) in every equilibrium b of θ we have θ(b) =m(t1, t2, . . . , tn,κ1, . . . ,κn−1).

Proof. Take some GAM mechanism θ : Bn→ A. The proof first establishes the existence of
an equilibrium (Step A.) and then fully characterizes the unique equilibrium outcome (Step
B.). For short, we write (t,κ) rather than (t1, t2, . . . , tn,κ1, . . . ,κn−1).
Step A.: There is some equilibrium b of θ with θ(b) =m(t,κ).

Step A. is divided into two cases: There is either no th with th =m(t,κ) (Step A.I.), or there
is a th with th =m(t,κ) (Step A.II.).

Step A.I. There is no th with th =m(t,κ). Since there is no th with th =m(t,κ), there must
exist j ∈ {1, . . . ,n−1} such that κj =m(t,κ). Therefore, the number of elements located below
and above κj in (t,κ) is equal to n− 1, which is equivalent to:

#{i ∈N | ti < κj}+ (j − 1)︸                         ︷︷                         ︸
elements strictly lower than κj

= #{i ∈N | ti > κj }+ (n− j − 1)︸                              ︷︷                              ︸
elements strictly higher than κj

= n− 1.

The previous equalities imply that #{i ∈ N | ti < κj} = n − j and #{i ∈ N | ti > κj } = j. Let
b ∈B(j,κj) be such that:

bi :=

 [0,κj] if ti < κj ,
[κj ,1] if ti > κj .

12In specific, β is uniquely defined by η(θ(b))− η(β) = η(bi)− η(bi).
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By Lemma 2, θ(b) = κj and therefore θ(b) = m(t,κ). Since every player is playing a best
response as defined in Lemma 3, b is an equilibrium of the game and this concludes Step
A.I.

Step A.II. There is some th with th = m(t,κ). If there exists j ∈ {1, . . . ,n − 1} such that
κj = th, then either j = n− h or j = n− h+ 1. Using the same line of reasoning as in A.I., one
can show that: a) when j = n− h, any b ∈B(n− h, th) is an equilibrium with θ(b) = th and b)
when j = n− h+ 1, any b ∈B(n− h+ 1, th) is an equilibrium with θ(b) = th.

If th = m(t,κ) and th , κj , there are n− 1 values strictly smaller than th in (t,κ). There are
essentially two cases here: a) th ∈ (κ1,κn−1) and b) th < κ1 (the proof for the case th > κn−1 is
symmetric). Below, we consider both cases in turn.

a) Choose j, such that 1 ≤ j ≤ n−2, with κj < th =m(t,κ) < κj+1. Moreover #{κl | κl < th} = j
and #{i ∈N | ti < th} = h−1 so that: j +h−1 = n−1 =⇒ j = n−h. Therefore, κn−h < th < κn−h+1.

For each strategy c∗ ∈B, we let b = (c∗,b−h) denote a strategy profile with:

bi =


[0, th] if ti < th,
c∗ if ti = th,
[th,1] if ti > th.

Our objective is to prove that there is some c∗ such that θ(b) = th and b is an equilibrium.
By Lemma 2, it follows that if κn−h ∈ (0,1), θ(b′) = κn−h < th for any b′ ∈ B(n − h,κn−h)

and, if κn−h = 0, θ(b′) < th for any b′ ∈B(n− h, th). Again, due to Lemma 2, if κn−h+1 ∈ (0,1),
θ(b′) = κn−h+1 > th for any b′ ∈ B(n − h + 1,κn−h+1) and if κn−h+1 = 1, θ(b′) > th for any
b′ ∈ B(n − h + 1, th). Hence, it follows that θ([0, th],b−h) < th and θ([th,1],b−h) > th , so that
there exists some c∗ with θ(b) = th. This is so because when the rest of the players behave
according to b−h, h can smoothly deviate from [0, th] to [th,1] –first, continuously increase
the right bound of his interval up to 1, and, then, continuously increase the left bound of his
interval up to his peak– and induce a continuous change of the implemented policy from
θ([0, th],b−h) to θ([th,1],b−h).

In order to prove that b = (c∗,b−h) with θ(b) = th is an equilibrium, suppose by contradic-
tion that there exists some i ∈ N with a profitable deviation b′i . Yet, as proved by Lemma
3, any player with a peak different than th is playing a best response in b. Moreover, the
player with peak th is also playing a best response since θ(b) = th. Therefore, b must be an
equilibrium concluding a) in Step A.

b) In this case, th =m(t,κ) < κ1, and hence, h = n. Therefore, in any equilibrium b, the n−1
players with peak strictly lower than tn play [0, tn]. Moreover, θ([0, tn],b−n) < tn, since for any
b ∈B(0,x), θ(b) < x for every x ∈ (0,1); and θ([tn,1],b−n) > tn, since for any b ∈B(1,x), θ(b) >
x if κ1 > x (by Lemma 2 b.)). Hence, the existence of an interval A∗ such that θ(bA

∗
) = tn is

ensured. This, in turn, ensures the existence of an equilibrium similar to the one described
in a), which concludes the proof of step A.

Step B.: Any equilibrium b of θ satisfies θ(b) =m(t,κ).
For each profile (t,κ), we let i′ = #{i ∈ N | ti ≤ m(t,κ)} denote the number of players with

peak lower than m(t,κ) and j ′ = #{j ∈ {1, . . . ,n − 1} | κj ≤ m(t,κ)} stand for the number of
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phantoms lower than m(t,κ). Since (t,κ) has 2n−1 elements, it follows that i′ + j ′ ≥ n so that
n− i′ ≤ j ′.

Suppose, by contradiction, that there is some GAM, θ, that admits an equilibrium b with
1 > θ(b) > m(t,κ).13 The rest of the proof inspects the different cases for each value of n− i′.
A symmetric argument applies when 0 < θ(b) < m(t,κ).

Step B.I. n − i′ ∈ {0,n}. Assume first that there is some equilibrium b with n − i′ = 0. It
follows that i′ = n players have a peak lower than m(t,κ). Since, by assumption, m(t,κ) <
θ(b), Lemma 3 implies that each player i plays bi = [0,θ(b)]. However, by definition θ(b)
is the α-quantile of the sample generated by b given q and η. Since α ∈ (0,1), it follows
that θ(b) ∈ (0,θ(b)) which is impossible. If there is some equilibrium b with n− i′ = n, then
all players have a peak higher than m(t,κ). Hence, a similar contradiction to the case with
n− i′ = 0 arises, which concludes Step B.I.

Step B.II. n − i′ < {0,n}. Assume now that there is some equilibrium b with n − i′ < {0,n}
and let i′′ = #{i ∈ N | ti < θ(b)} denote the number of players with a peak strictly lower than
the outcome θ(b). Since, by assumption, θ(b) > m(t,κ) it follows that i′ ≤ i′′.

Given that κj ≤ κj+1 for any j ∈ {1,2, . . . ,n−2}, n−i′ ≤ j ′ and i′ , n, the following inequality
holds:

κn−i′ ≤ κj ′ ≤m(t,κ).

If i′′ = n, there are n players with a peak strictly lower than θ(b). Lemma 3 implies that
each player plays [0,θ(b)], which, in turn, implies that θ(b) is in the interior of [0,θ(b)],
a contradiction. Therefore, i′′ ≤ n − 1 ⇔ n − i′′ ≥ 1. Moreover by definition we have that
i′ ≤ i′′⇐⇒ n− i′′ ≤ n− i′ which implies that

κn−i′′ ≤ κn−i′ ≤ κj ′ ≤m(t,κ).

If there is no th with th = θ(b) then by Lemma 3, i′′ players play [0,θ(b)] and n− i′′ players
play [θ(b),1]. Therefore, b ∈B(n−i′′,θ(b)). For b to be an equilibrium it must be the case that
θ(b) = κn−i′′ which contradicts θ(b) > m(t,κ). Thus, there is no equilibrium b with θ(b) , th.

If there is some th with th = θ(b) then i′′ players play [0,θ(b)], n−i′′−1 players play [θ(b),1]
and player h plays the strategy bh. If bh = [θ(b),1] then θ(b) = κn−i′′ which contradicts θ(b) >
m(t,κ). If bh , [θ(b),1] then th = θ(b) < θ([th,1],b−h) with ([th,1],b−h) ∈B(n − i′′, th). Hence,
by Lemma 2 b.), th < θ([th,1],b−h)⇐⇒ th < κn−i′′ . Thus, we have that th = θ(b) < κn−i′′ which
contradicts θ(b) > m(t,κ). Thus, there is no equilibrium b with θ(b) = th, which ends the
proof. Q.E.D.

We now have all the tools that are necessary to state the main result of this paper.

13An equilibrium with θ(b) = 1 can be trivially ruled out since it requires that all players announce singletons.
Obviously, any i with ti < 1 can gain by deviating to [ti , ti + ε] for ε > 0 and small enough.
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Theorem 1. For every generic GMR there exists a GAM that Nash-implements it.

Proof. Take some generic GMR with phantom vector p = (p1, . . . ,pn−1). We want to prove
that there is some GAM with phantom vector κ = (κ1, . . . ,κn−1) that Nash-implements it.
Given the result of Proposition 1, it is sufficient to show that there exists a GAM with κ = p.

Assume first that every pj ∈ (0,1). In this case, it suffices to set α ∈ (0,1),q ∈ R+ and some
function η so that, for each j ∈ {1, . . . ,n− 1}:

pj = η−1(
α(nq+ j)− (n− j)q
(n− j)−α(n− 2j)

), (1)

leading to κ = p as wanted.
Assume now that there is some pair a,b ∈ {1, . . . ,n− 1} such that pa = 0 and/or pb = 1 with

pi ∈ (0,1) if i ∈ (a,b).14As previously argued, it must be the case that p1 ≤ p2 ≤ . . . ≤ pn−1.
Hence, for any s ≤ a, ps = 0 and for any t ≥ b, pt = 1.

Take now some q and α such that

α(nq+ a)− (n− a)q
(n− a)−α(n− 2a)

= 0 and
α(nq+ b)− (n− b)q
(n− b)−α(n− 2b)

= 1. (2)

This ensures that κa = 0 and κb = 1. The previous equalities are equivalent to

q =
aα

n(1−α)− a
, (3)

while α depends on the value of a+ b. More precisely,

α = 1/2 if a+ b = n, (4)

α =
1

(n− a− b)n
((n− a)(n− b)−

√
ab(n− a)(n− b)) if a+ b < n (5)

and
α =

1
(n− a− b)n

((n− a)(n− b) +
√
ab(n− a)(n− b)) if a+ b > n. (6)

Moreover, since 0 ≤ κ1 ≤ κ2 ≤ . . . ≤ κn−1 ≤ 1, it follows that, for any s ≤ a, κs = 0 and for any
t ≥ b, κt = 1.

If b = a + 1, then we are done, since κ = p. If b > a + 1, then by assumption, any pj with
j ∈ {a, . . . ,b} ∩ {1, . . . ,n− 1} satisfies pj ∈ (0,1). Then, given that q and α are given by (1), it is

enough to suitably select η such that for any j ∈ {a, . . . ,b}∩{1, . . . ,n−1}, pj = η−1(α(nq+j)−(n−j)q
(n−j)−α(n−2j) )

which ensures that κ = p as wanted. Q.E.D.

Finally, we discuss some examples that show the usefulness of the analysis above. The first
one is concerned with the implementation of the Condorcet winner. The second attempts to
illustrate how to implement GMRs with interior phantoms.

Example 1: Implementing the Condorcet winner. Let N = {1,2,3} be the set of players
with t1 < t2 < t3 and set q = 1, α = 1/2 and η(x) = x. Namely, each player is endowed with a
weight of 1 + bi − bi and the outcome selected corresponds to the median of the distribution

14To ensure that α ∈ (0,1), when p1 = 0 and pn−1 < 1, we consider that b = n− 1
2 and when p1 > 0 and pn−1 = 1,

we consider that a = 1
2 .
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generated by b. For short, we let θ(b) denote the mechanism outcome and φ(b,z) the cumu-
lative distribution associated to any profile b. The unique equilibrium outcome of this game
is the selection of t2, the median of the peaks and the Condorcet winner policy.

We first prove that t2 is an equilibrium outcome and then show that it is the unique one.
Let b = (bi ,b−i) be a strategy profile with θ(b) = t2 for any t2 ∈ (0,1). If b is an equilibrium,
Lemma 3 implies that b1 = [0, t2] and b3 = [t2,1]. Thus, in order to prove that there is an equi-
librium with outcome t2, it suffices to show that there is some b2 with b = ([0, t2],b2, [t2,1])

satisfying θ(b) = t2. If b2 = [0, t2], φ(b, t2) =
∫ t2

0

2+ 2
t2

3+2t2+1−t2dx >
1
2 so that θ(b) < t2, whereas,

if b2 = [t2,1], φ(b, t2) =
∫ t2

0

1+ 1
t2

3+t2+2(1−t2)dx <
1
2 which implies that θ(b) > t2. Therefore, player

2 can change smoothly her strategy from [0, t2] to [t2,1] and find a strategy b2 which leads
to φ(b, t2) = 1/2 –that is, to the implementation of t2. The precise strategy of player 2 de-
pends on the value of t2. For each t ∈ (0,1), let w(t) =

√
1− 2t + 4t2 + 2t − 1. If t2 ≤ 1/2,

then b2 = [0,w(t2)] ensures that θ(b) = t2, whereas, when t2 ≥ 1/2, then b2 = [1−w(1− t2),1]
ensures that t2 is the outcome.

Now, in order to prove that there is no other possible equilibrium outcome, assume by
contradiction that there is some z , t2 elected at some equilibrium b. Assume that z < t2, the
case with z > t2 being symmetric. If z ∈ (t1, t2), then, due to Lemma 3, b = ([0, z], [z,1], [z,1])

since t1 < z < t2 < t3. But then φ(b,z) =
∫ z

0
1+ 1

z
5−z dx so that φ(b,z) < 1

2 for any z ∈ (t1, t2). In other
words, it is not possible that such a strategy profile is an equilibrium. If z ∈ [0, t1), then
b must be such that the three players play [z,1] which leads to an outcome larger than z.
Finally, if z = t1, then in any equilibrium b, players 2 and 3 play b2 = b3 = [t1,1]. However, if
player 1 plays [0, t1], then φ(([0, t1],b2,b3), t1) < 1

2 for any t1 ∈ [0,1]. Thus, θ([0, t1],b2,b3) > t1.
Yet, since [0, t1] is the best response of any player with peak to the left of t1, it follows that
[0, t1] ∈ argminb1∈B θ(b1,b2,b3). Therefore, θ(b1,b2,b3) > t1 for any b1 ∈B so that there is no
equilibrium with outcome t1. All in all, the unique equilibrium outcome associated with θ
is t2.

To see how the previous argument extends to any number of players, consider that the
number of players is odd.15 We let n = 2k + 1 for some non-negative integer k and let t∗

denote the median peak of the n players. It follows that there are exactly k players with
a peak smaller than t∗ and k players with a peak larger than t∗. We now set q = k, α =
1/2 and η(x) = x. In other words, each player is now endowed with a weight of k + bi − bi
and the outcome selected corresponds to the median of the distribution generated by b.
Using the equalities (3) and (4) in the proof of Theorem 1, the previous specifications ensure
that half of the phantoms are located at zero and half of them at one, which leads to the
implementation of the median. In equilibrium, the k players with a peak smaller than t∗

approve of [0, t∗] whereas the k ones with a peak larger than t∗ approve of [t∗,1]. The player

15This ensures the existence of a unique median player (or Condorcet Winner). When n = 2k for some k > 1,
there are two median players: player k and player k + 1. Setting a = k and b = k + 1 and replacing these values

in equalities (3) and (6) leads to the GAM with parameters q =
√
k2−1
2 + k−1

2 and α = q
2q+1 and η(x) = x for any

x ∈ [0,1]. This GAM implements the peak of the leftist median. Conversely, setting a = k − 1 and b = k in the

equalities (3) and (5) leads to the GAM with parameters q =
√
k2−1
2 + k−1

2 and α = kq+q
2kq+k−1 and η(x) = x for any

x ∈ [0,1]. This GAM implements the peak of the rightist median player.
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with peak at t∗ just needs to play some strategy b∗i that ensures that the median of the profile
equals t∗. As in the case with just three players, one can prove by continuity that such
strategy exists since the median of the score distribution is smaller than t∗ when he plays
[0, t∗] and larger than t∗ when he plays [t∗,1].

Example 2: A GAM with interior phantoms. If we set q = 0, α = 1
2 and η(x) = x, we get

the Median Approval mechanism discussed in Section 3. The phantoms of this Approval
mechanism must satisfy, for any j ∈ {1,2, . . . ,n − 1}, η(κj) = j+q(2j−n)

n ⇐⇒ κj = j
n (as already

shown in Section 3, when N = {1,2,3} we have κ1 = 1
3 and κ2 = 2

3 ). The equilibria with this
mechanism in the case in whichm(t1, t2, t3,

1
3 ,

2
3 ) equals one of the peaks is similar to the ones

of the Approval mechanism that implements the Condorcet winner.
However, in the precise case in which m(t1, t2, t3,

1
3 ,

2
3 ) = 1

3 (the case m(t1, t2, t3,
1
3 ,

2
3 ) = 2

3
being symmetric), the logic is different. Indeed, the mechanism admits a unique equilibrium
b∗ with b∗1 = b∗2 = [0, 1

3 ] and b∗3 = [1
3 ,1]. In general, if the equilibrium outcome coincides with

a phantom and not with a type, there is a unique equilibrium (all players playing either to
the left or to the right of the outcome) whereas this is not the case when a player’s peak is
the equilibrium outcome (this player can play in several ways, while the rest of the players
play either to the left or to the right of the outcome).
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Figure 1. Equilibrium outcome as a function of t2.
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Figure 2. An equilibrium strategy profile that implements the ideal policy of
the median voter.


