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ABSTRACT

This article focuses on liquefaction of saturated gran-
ular soils, triggered by earthquakes. Liquefaction is de-
fined here as the transition from a rigid state, in which
the granular soil layer supports structures placed on its
surface, to a fluid-like state, in which structures placed
initially on the surface sink to their isostatic depth within
the granular layer. We suggest a simple theoretical model
for soil liquefaction and show that buoyancy caused by
the presence of water inside a granular medium has a
dramatic influence on the stability of an intruder resting
at the surface of the medium. We confirm this hypothesis
by comparison with laboratory experiments and Discrete
Elements numerical simulations. The external excitation
representing ground motion during earthquakes is simu-
lated via horizontal sinusoidal oscillations of controlled
frequency and amplitude. In the experiments, we use
particles only slightly denser than water, which as pre-
dicted theoretically, increases the effect of liquefaction
and allows clear depth-of-sinking measurements. In the
simulations, a micromechanical model simulates grains
using molecular dynamics with friction between neigh-
bours. The effect of the fluid is captured by taking into
account buoyancy effects on the grains when they are im-
mersed. We show that the motion of an intruder inside
a granular medium is mainly dependent on the peak ac-
celeration of the ground motion, and establish a phase
diagram for the conditions under which liquefaction hap-
pens, depending on the soil bulk density, friction prop-
erties, presence of water, and on the peak acceleration
of the imposed large-scale soil vibrations. We establish
that in liquefaction conditions, most cases relax towards
an equilibrium position following an exponential in time.
We also show that the equilibrium position itself, for most
liquefaction regimes, corresponds to the isostatic equilib-
rium of the intruder inside a medium of effective density.
The characteristic time to relaxation is shown to be es-
sentially a function of the peak ground velocity.

∗ renaud.toussaint@unistra.fr

INTRODUCTION

Under usual conditions, natural and artificial soils
(used as geotechnical foundations or construction ma-
terials) support the weight of infrastructure placed on
their surface, and the stresses exerted on their surface are
transmitted to the underlying grains along force chains
[1]. However contacts between grains may be weakened
during shaking, and/or by addition of a liquid phase,
which in general exerts an additional fluid pressure on
the grains. When these contacts break or slide, the sys-
tem is not stable anymore, so that the granular medium
loses its ability to support shear stress and flows as a liq-
uid, which is referred to as liquefaction [2]. In such cases
debris flows, avalanches, quicksands or liquefaction can
occur. Buildings on liquefied soils may sink or tilt, and
pipelines are displaced or float to the surface. All of the
above phenomena may lead to significant damage.

In this paper we focus on soil liquefaction associated
with earthquakes [2–4]. Some areas are well known to
be prone to soil liquefaction, like the New Madrid Seis-
mic Zone in the central United States or Mexico city in
Mexico [2, 5]. The last main earthquakes which have
been followed by severe liquefaction effects - listed in [4]
- are the 1964 Alaska Earthquake, magnitude Mw 9.2 [6],
the 1964 Niigata Earthquake, magnitude Mw 7.5 [7, 8],
Japan, and the 2011 Christchurch Earthquake, magni-
tude Mw 6.3 [9], New-Zealand.

Liquefaction was historically first explained by Terza-
ghi [10], relating liquefaction occurrence to the effective
stress in the material. Further geotechnical work [11, 12]
improved the principe of Terzaghi in order to explain as
many liquefaction cases as possible. The current under-
standing of liquefaction, which underlies the construction
principles for foundations and roads, can be summed up
as follows: During earthquakes, seismic waves disturb
the grain-grain contacts, and some weight initially car-
ried by the sediments are then shifted to the interstitial
pore water [2]. The consolidation of the saturated sed-
iment occurs in effectively undrained conditions (due to
the short timescale of earthquakes), and pore pressure
builds up as the granular pack compacts. As a result,

mailto:renaud.toussaint@unistra.fr


2

the effective stress carried by the sediments decreases.
If the pore pressure rises more, the solid weight can be
entirely borne by pore water and the sediments become
fluid-like, i.e. they cannot sustain shear stress in a static
configuration. This accepted mechanism thus assumes
that the granular media must lose its strength completely
to produce liquefied behavior.

The above-described pore-pressure theory of
earthquake-induced soil liquefaction and its recent
advances indeed explain many natural instances of
observed liquefaction [12–14], yet it fails to explain
many other field observations of earthquake-induced
liquefaction. Examples of types of field occurrences of
liquefaction that are not explained by the pore-pressure
theory [15] include far-field liquefaction triggered at
low energy density [16, 17], liquefaction under fully
drained conditions [18–20], repeated liquefaction [21]
and liquefaction in pre-compacted soils [22].

In fact, elevated pore-pressure is not the only path for
granular material liquefaction. The phenomenon of solid-
liquid transition of granular materials is known in a more
general framework as fluidisation. Fluidisation of a gran-
ular medium occurs when an initially rigid medium looses
its cohesion and starts behaving like a fluid. One of its
most famous examples is quicksand - a granular medium
which can support a body on its surface until the said
body is not moving, whereas if it is moving, the body
sinks into the quicksand [23, 24].

A compact, dense granular medium at rest behaves like
a solid. The grains experience friction due to the normal
stress they apply to each other, traditionally coming from
the gravitational loading. The friction enables the grains
to resist external forces without flowing [25] and sustain
weight by redistributing it along force chains [1]. The im-
portance of normal stresses for the rigidity of a granular
medium can be illustrated with some recent penetration
experiments. Lohse et al. in [26] and Brizinski et al. in
[27] used a homogeneous air injection to loosen the gran-
ular medium and unload some of the gravitational force
on grains. After the injection was stopped, the granu-
lar medium could not carry the weight it was carrying
before, and any objects placed on its surface sank. In a
more extreme situation, where the grains are loose and
also have a very low density (expanded polystyrene), the
penetration of the intruder is infinite, just like the pen-
etration of a dense object in a liquid [28]. The external
energy required for fluidisation can be of different nature.
It can come, for example, from gravity forces [29–31],
shear stress [32], vibrations [24, 33–36] or the flow of an
interstitial fluid [37, 38], and produce granular flows that
can exhibit fluid-like behavior such as buoyancy [34] or
anti-buoyancy [39] force, waves on their surface [33, 40],
flow instabilities [41–46] and size segregation [35, 36].

Granular media start to behave as fluids when global
contact sliding initiates throughout the media. The force
needed to initiate sliding depends on the strength of the
grain contacts - for an easy fluidisation, one needs to un-
load some of the normal stress, hence reducing the fric-
tion forces. For example, the shear stress necessary to

make a granular layer flow decreases when the granular
medium is vibrated [47], the vibrations weakening the
granular contacts. The presence of an interstitial fluid
can play a similar role. When the grains are immersed,
the effective normal stress they are subjected to is low-
ered by the pore pressure of the fluid, hence reducing
the friction forces between grains. If the pore pressure
is high enough, the friction forces between grains can
be completely suppressed and the medium can not resist
shear anymore [19]. Considerations on granular media
have been used to generalise these liquefaction conditions
on the heterogeneous pore pressure distribution in disor-
dered granular media [48]. In another study, Geromicha-
los et al. [49] show that the addition of water (more
than 1% of the total volume) decreases the segregation
effect inside granular media subjected to horizontal shak-
ing, and attribute this to the fact that water makes the
particles slide easier on each other. It is important to
note that it is not necessary to unload all of the normal
stress on contacts (with the prime example being pore
pressure reaching the normal stress value) in order to
initiate liquefaction. Instead, causing sliding of contacts
throughout the media is sufficient to produce features of
liquefaction.

In this present study we will consider the effects of both
water presence and vibrations, on the behavior of a gran-
ular medium. The situation is very similar to the one in
[50], where a dry granular medium was fluidised by vi-
bration, and the sinking of an intruder initially placed on
the granular surface was observed. By shaking the granu-
lar medium to reproduce earthquakes we can observe that
objects originally resting on the surface partly or entirely
sink in this medium. The grain-grain contacts are dis-
turbed by the shaking, which allows some grains to slide
on each other. This effect is shown to be promoted by
the presence of water, but does not require elevated pore
pressure beyond the hydrostatic value. Our aim is to first
highlight how liquefaction in such drained conditions can
be explained by friction and sliding inside the medium,
and to characterise the liquefaction state according to
the parameters of the shaking. The first section presents
the research questions, the experimental material and a
simple theoretical model for the phenomenon. Section
II presents the methods for the experiments and simula-
tions, and the detailed characterisation of the liquefaction
regimes. Section III presents the different results, about
the classification of deformation regimes as function of
the applied shaking, and about the characteristic sinking
velocity and equilibrium depth. Discussion of results and
their consequences is presented in section IV.

I. THE PHYSICS OF LIQUEFACTION

The following section will provide an overview of the
problem. We will qualitatively describe some of the ex-
perimental results in order to illustrate the different be-
havioral regimes that we observed. We will then explain
the mechanisms behind these behaviors and the transi-
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tion between them, and identify the link with soil lique-
faction.

A. Description of the observed deformation
regimes

Our experiment is a simplified model of a building rest-
ing on a soil during the passage of a seismic wave. The
soil is simplified to a granular medium made of nonex-
panded polystyrene spheres of density ρs = 1050 kg m−3

[51] and mean diameter of 140 µm. It can be completely
dry or completely saturated. The granular medium is
in a test cell, a transparent PMMA box of dimensions
12.8 cm × 12.8cm cm × 12.5 cm. A hollow sphere of 40
mm diameter, and of effective density of 1030±5 kg m−3

initially rests on the top of the layer (Fig. 1), representing
an analogue building. To reproduce the effect of an earth-

FIG. 1. Initial state at mechanical equilibrium. The intruder
diameter is 40 millimeters, its density is 1030 ± 5 kg m−3,
close to the one of the grains composing the granular medium.
The medium is either dry or fully saturated with water. This
example shows a dry medium.

quake we shake the different media horizontally with
a controlled frequency and amplitude. The frequency
ranges from 0.15 Hz to 50 Hz, and the peak ground
acceleration (PGA) from 10−2 m s−2 to 100 m s−2, cor-
responding to conditions met during earthquakes with
macroseismic intensity of II to V-VI [52].

We observed that the behavior of the system depends
on the PGA applied to it. In the dry case, at small im-
posed accelerations the intruder and the particles follow
the cell movement, but are almost immobile with respect
to each-other. For larger PGA, convection cells appear
inside the granular medium: the particles on the top of
the medium can be seen moving toward the sides. The
intruder stays at the surface, see Fig. 2, and can even-
tually roll from side to side if the acceleration is large
enough.

With an initially saturated medium, still no significant
motion is observed at low shaking accelerations. How-
ever, when the acceleration is increased, the intruder
sinks rapidly into the medium, until an equilibrium is
reached, which can be close to a total immersion, as

FIG. 2. Dry medium, initial state on the left and final state
on the right. The intruder sinks a few percent of its diameter.
The initial position is represented on the final picture by a
white horizontal line. The bulk densities of the intruder and
the grains composing the medium are equal.

shown on Fig. 3. At the equilibrium the intruder re-
mains almost immobile, and the rearrangements of the
particles on the surface of the medium are too small to
be observed. For even larger imposed accelerations, a
similar sinking of the intruder is observed, but accompa-
nied by motion of the surrounding grains. In this case the
motion of the intruder and medium never ceases totally
during the imposed oscillations.

FIG. 3. Saturated medium, initial state on the left and final
state on the right. The intruder is eventually almost entirely
immersed. The bulk densities of the intruder and of the grains
composing the medium are equal.

For the saturated media, we can therefore identify
three behaviors, occurring at different peak ground ac-
celerations.

Low PGA : Rigid behavior
If the acceleration of the medium is low, the system os-
cillates like a solid, following the cell’s movement. The
intruder stays at the surface and only a small descent
of a few millimeters can sometimes be observed.

Intermediate PGA : Heterogeneous Liquefaction
behavior (H.L.)
When the acceleration is increased beyond some crit-
ical level, the intruder rapidly sinks in the saturated
medium until attaining an equilibrium position where
it stops moving. The medium on the surface shows
only little rearrangements. As will be seen later in the
simulations, the grains in the intruder vicinity, under-
neath it, are in this case locked (not sliding on each
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other), the contact normal stresses rising due to the
intruder weight. They accompany the motion of the
intruder. In contrast, further from the intruder, the
grains sometimes slide on each other - hence the term
heterogeneous liquefaction, to reflect the difference be-
tween these two zones, i.e. the fact that the liquid-like
behavior is heterogeneously distributed. This behavior
is only observed for a saturated granular medium. In
the dry case, at equal PGA the intruder stays on the
surface of the granular medium.

High PGA : Global Excitation Liquefaction behav-
ior (G.E.L.)
For even higher accelerations, we can observe a total
and continuous rearrangement of the medium, present-
ing convection cells. The intruder stays at the surface
of the medium for dry cases, or sinks in saturated con-
ditions. We call this behavior Global Excitation Liq-
uefaction because (as will be illustrated in the simu-
lations) the whole medium rearranges, sliding between
grains can happen in the whole cell, and deformation
never stops.

In our experiments, the solid behavior at low PGA
corresponds to "regular" solid soil, sustaining the weight
above it. The G.E.L. behavior at high acceleration is
not a phenomenon that is observed during earthquakes
in Nature, because it requires a very high acceleration,
and can only be reached during artificial excitation of
granular material. In this case the fact that the intruder
stays at the surface of dry granular media is related to the
Brazil nuts effect [35, 39, 49, 53, 54]. Finally, the H.L. be-
havior observed at intermediate PGA corresponds to soil
liquefaction during an earthquake. In these experiments,
it is the addition of water that enables the medium to
liquefy. Indeed, it is only when the medium is saturated
that we observe a regime where an intruder can penetrate
into it. The shape of the intruder also affects this behav-
ior in dry grains, since with similar densities, cylindrical
objects can sink or tilt in dry granular media [55].

B. Problem definition and a simple model

The observations described above highlight so far un-
reported aspects of liquefaction. In our experiments, the
presence of water is crucial for observing liquefaction-like
sinking of the intruder. We explain the physics of the liq-
uefaction appearing in these experiments using a simple
theoretical soil consisting of a (saturated or dry) grain
pack, as in Fig. 4. This soil is composed of spherical
particles and water filling the poral space between them.
A large sphere on top of the granular soil represents a
building built on it. We assume that the situation is ini-
tially at mechanical equilibrium. Here we will determine
under which conditions this equilibrium can be broken,
and the large sphere could start to sink into the medium.
We first focus on the saturated cases, as represented on
Fig. 4.

FIG. 4. Theoretical model of saturated soil with a spheri-
cal intruder on the top. The weight of particle i applied on
particle j is reduced by the buoyancy whereas the weight of
particle B (the intruder), whose center sits at height h, is
entirely transmitted to particle k.

1. With saturated medium

To define the sliding condition we will distinguish the
case of a contact between two grains (Pi and Pj on Fig.
4), or between the intruder and a grain (PB and Pk).
First consider two particles inside the saturated soil Pi
and Pj placed on top of each other. The normal force
at the contact ij acting on the lower sphere Pj is the
effective weight of the column above it resulting from
gravity and buoyancy force.

F ij
n = Mabove(1−

ρw
ρs

)g, (1)

where Mabove is the mass of the grains inside the column
above Pj , ρs the particle density, ρw the water density
and g is the gravitational acceleration. Next, consider
the intruder PB- "B" for building- and the particle of
the soil right under it (or the set of grains under it and
in contact with it) Pk. The normal force that PB applies
on Pk is

FBk
n = MBg, (2)

with MB the mass of PB . There is no buoyancy term in
this case, since no part of the intruder is submerged under
water. We apply to this soil a horizontal oscillation with
a lateral displacement of the form A sin(ωt). The peak
ground acceleration due to this movement is therefore
Aω2. We consider that the medium and intruder follow
the imposed external motion, in order to check whether
the contacts reach a sliding threshold, and use this as a
sign of possible deformation. At small acceleration, the
contact ij is rigid and experiences a tangential force of
the form

F ij
t = MaboveAω

2. (3)

We assume that each contact follows a Coulomb friction
law, where µ is the internal friction coefficient equal to
the tangent of the repose angle of the considered granu-
lar material. Thus if the tangential force on the contact
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exceeds the criterion set by the Coulomb friction law, the
contact ij slides and Eq. (3) becomes F ij

t = µF ij
n . Thus

the medium remains rigid if

|MaboveAω
2| < |µF ij

n |

i.e. while

MaboveAω
2 < µMabove(1−

ρw
ρs

)g.

Now, if we introduce a dimensionless peak ground ac-
celeration, normalized by the gravitational acceleration,

Γ =
Aω2

g
, the previous equation becomes:

Γ < µ
ρs − ρw
ρs

. (4)

While Γ is low enough to satisfy Eq. (4), the particles
inside the saturated soil don’t slide on each other, and
the medium acts like a rigid body.

The condition for sliding of the contact between the
intruder PB and particle under it Pk is different: The
horizontal oscillation induces a tangential force on PB ,
which will slide on Pk if and only if

MBAω
2 > |µFBk

n | = MBµg.

In other words, the emerged particle PB will stick on Pk
while

Γ < µ. (5)

If Γ > µ the intruder can slide on the particle below it.
We can see in Eq. (5) that the acceleration Γ required
for the intruder to slide is higher than the one needed
to make the immersed particles of the soil slide, Eq. (4).
This is due to the presence of water which carries a non
negligible part of the particles weight through the buoy-
ancy, so that the solid pressure between them is reduced
and they can slide more easily. The emerged intruder is
not partially carried by water and its contact on parti-
cle Pk is stronger. Depending on Γ and according to the
previous results, three different regimes can be defined
for the granular system:

Low Γ: Γ < µ
ρs − ρw
ρs

(6)

Intermediate Γ: µ
ρs − ρw
ρs

< Γ < µ (7)

High Γ: µ < Γ (8)

For low accelerations, the tangential force resulting on
the particles contacts is too low to make any particle
slide; the medium can not rearrange, and will behave
like a solid. Hence, this regime corresponds to the solid
behavior of the system observed during our experiments.
For intermediate Γ, many of the small particles can slide
on each-other, while the intruder cannot slide on the par-
ticles beneath it. Hence, we can reasonably assume that

the intruder will sink downwards because the medium
is rearranging around it, and that this regime corre-
sponds to the Heterogeneous Liquefaction case (H.L.).
Finally, for Γ > µ, the intruder can also slide on the
particles beneath it, hence it behaves like the other par-
ticles. One can reasonably suppose that it will not con-
tinuously sink in the medium, because of the Brazil nut
effect [35, 39, 49, 53, 54]. If Γ gets even larger, until
satisfying Γ > 1, the medium gets decompacted. The
acceleration is then large enough to defy gravity and the
particles can make short jumps (short ballistic trajecto-
ries above the connected medium). The case of Γ > µ
corresponds to the Global Excitation Liquefaction case
(G.E.L.).

Even though our model of the liquefaction system is
very simple, it predicts three distinct regimes which may
be identified experimentally. The rest of our work will
focus on experimental and numerical verification of these
predictions. We will systematically vary Γ in order to
explore the three regimes defined by this model. The
case we are mostly interested in for its representativity
of natural liquefaction during earthquakes is the case of
Intermediate Γ, where the submerged small particles can
slide around a static intruder, making the intruder sink
in the medium.

In the following we will refer to the theoretical bound-
ary between the three regimes by

ΓH.L. = µ
ρs − ρw
ρs

and ΓG.E.L. = µ. (9)

2. With dry medium

Inside dry granular media, the buoyancy forces disap-
pear. Since we initially considered an intruder emerged
above the saturated granular medium, Eq. (5) remains
correct for dry media. Eq. (4), which gives the accelera-
tion at which two particles of the soil can slide on each
other, becomes

Γ < µ
ρs − 0

ρs
= µ, (10)

which is identical to Eq. (5). Hence, in the case of a dry
granular medium, the sliding conditions are the same for
the particles of the medium and for the intruder, provided
that the friction coefficient µ is the same for grain-grain
contacts and for intruder-grain contacts. The Intermedi-
ate acceleration case given by Eq. (7) disappears for dry
media. With an increase of Γ, this theory predicts that
dry media will change their behaviors from the Rigid case
to the G.E.L. case around

ΓH.L. = ΓG.E.L. = µ. (11)

3. Final intruder position in a saturated medium

Let us consider next the final equilibrium state reached
by the intruder in the saturated medium during lique-
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faction regimes. Assuming that vertical friction forces
average to zero, and only buoyancy forces and grav-
ity dictate the final depth, the final position of the in-
truder can be estimated as the isostatic depth of the
intruder inside a fluid of effective density ρeff, taking
into account the particle density, the fluid density and
the porosity Φ. We define the effective medium den-
sity ρeff as ρeff = Φρw + (1 − Φ)ρs. We measure Φ in
our experiments to be between 0.345 and 0.365, which
is close to a close random pack density [56], so that
ρeff = 1032.2± 0.4 kg m−3. If the final pressure profile in
the granular medium is identical to a simple hydrostatic
fluid situation, and if the medium acts as an effective
viscous fluid, the motion of the intruder is ruled by the
following equation:

VBρBg − VB.im(z)ρeffg − α(z)ż = VBρBgz̈, (12)

where z is the downwards pointing vertical coordinate
of the center of the intruder, VB.im(z) is the immersed
volume of the intruder (depending on its elevation), ρB
is the intruder density and VB its total volume. The
first term of Eq. (12) refers to the weight of the intruder,
and the second term refers to the buoyancy force. Fi-
nally, αż is a dissipative term due to forces exerted by
the particles on the intruder, slowing down its motion.
In the case of an effective medium of density ρeff < ρB
the intruder is supposed to sink continuously because it
is denser than the effective medium, while if ρeff > ρB
it reaches an equilibrium set by isostasy. Since the in-
truder density is chosen as 1030 kg m−3 in experiments,
a macroscale equilibrium state exists with these simple
assumptions, and the intruder is expected to sink until it
is nearly entirely immersed. If this state is reached, we
name V equilibrium

B.im the immersed volume of the intruder
under isostatic equilibrium, corresponding to:

VBρBg − V equilibrium
B.im ρeffg = 0,

giving

V equilibrium
B.im = VB

ρB
ρeff

. (13)

This value will be used as a theoretical reference and
compared to the final immersed volume observed in our
experiments and simulations.

II. EXPERIMENTAL AND SIMULATION
METHODS FOR TRACKING LIQUEFACTION

A. Presentation of the experiments

Our experiments consist of following the movement of
an intruder as it sinks into a liquefied granular medium.
The intruder is a spherical ball, 4 cm in diameter. We
used the 123D R© Design software in order to design the
ball and printed it with a MakerBot R© Replicator2X 3D
printer. The sphere is made of heated polymeric ma-
terial: an Acrylonitrile butadienestyrene (ABS) filament

(type "color true yellow"). Designing our own balls, we
are able to control their effective density by adjusting the
thickness of the shell layer, leaving a concentric empty
sphere in the center – without adding any extra weight
in the spherical shell, which allows to keep the spherical
symmetry of the intruder density. The granular medium
is made of water and monodisperse spherical polystyrene
beads, with a diameter of 140 µm (DYNOSEEDS R© TS
[51]) and density of 1050 kg m−3. The friction coefficient
of this material µexp is estimated at µexp = 0.48 by mea-
suring the angle at which a thick homogeneous layer of
the material starts to slide.

The experiments shown in this paper used an intruder
of density 1030 ± 5 kg m−3. The experimental protocol
is as follows: first we introduce water in a transparent
PMMA cubical box of dimensions 12.8 cm × 12.8 cm ×
12.8 cm. We roughly fill the box up to a third of the de-
sired final height. We next let the polystyrene beads rain
down from random positions into the water, using a sieve,
until the top of the beads piling up at the bottom of the
container reaches the surface of the water. Two versions

FIG. 5. Experimental setups. The mechanical part on the
right exerts a horizontal movement on the box, guided by the
rails. A: Home-developed vibrator, using a Phidget R© 1063
PhidgetStepper Bipolar 1 and Matlab R© controls. This
stepmotor provides an oscillation with an amplitude range
(mm) [5; 30] and a frequency range (Hz) [0.15; 2.8]. B:
TIRA R© TV51120 shaker, that we used with an amplitude
range (mm) [0.2; 1.5] and frequency range (Hz) [4; 100].

of the setup are shown in figure 5, using two different vi-
brators reaching different powers and frequency ranges:
A. a home made vibrator, using a Phidget R© 1063 Phid-
getStepper Bipolar 1 and Matlab R© controls, and B. a
TIRA R© TV51120 shaker, type S51120, for higher fre-
quencies and larger power. After 3 minutes of relaxation
time, sufficient for the granular matter to settle in the
wet medium, we gently depose the intruder on the sur-
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face of the medium. After another minute of relaxation,
the box is horizontally shaken with a sinusoidal move-
ment of controlled amplitude and frequency. A camera
records the experiments. In setup A of figure 5 we use a
Nikon R© Digital Camera D5100 with a 80 mm objective
recording at 25 frames per second. In setup B we use a
fast camera Photron R© SA5 with a similar objective at
20000 frames per second. The setup is illuminated by a
flickerfree HMI 400 W Dedolight R© spotlight in front of
the experimental cell, next to the camera. The videos
are cut into series of snapshots using the free software
FFmpeg R©. Figure 6 presents six snapshots, correspond-
ing to the different positions of the intruder from the
beginning to the end of the shaking. We can follow the

FIG. 6. Series of snapshots of an experiment. Read from the
left to the right and from the top to the bottom.

position of the intruder inside the medium through im-
age analysis. We use Matlab R© algorithms and based on
the color of each pixel of each picture, we access the po-
sition of the pixel of the highest point of the ball. Using
these data and geometrical considerations to correct for
perspective effects, we obtain the height of the ball above
the granular medium surface.

B. Numerical simulations

1. Modelling principles

Our simulations are two dimensional (2D) representa-
tions of the experimental setup, based on discrete element
method (DEM) of molecular dynamics [57]. We use the
soft-particles approach originally developed by Cundall
and Strack [58] where we add a buoyancy force to ac-
count for the presence of water [45]. The simulations
give access to the trajectory and transient forces acting
on individual cylindrical particles immersed in a fluid in-
side a finite space. In order to model a 2D space of size
comparable to the experiments, we need to use larger
grains than the experimental ones, since the experiments
performed include roughly 108 particles, which is beyond
numerical capabilities of the model described here. The
behavior of each particle of mass m and moment of in-
ertia I is governed by the second law of Newton and the

angular momentum theorem:∑
F ext = mz̈(t) (14)∑

M(F ext) = I
dθ̇
dt

(t),

where
∑

Fext and
∑
M(F ext) are the sum of external

forces and sum of external torques acting on the particle,
repectively. z̈(t) is the particle acceleration and θ̇(t) is
its angular velocity. Our particles are cylinders because
our simulation is in 2D, thus for a particle of radius r
the inertial momentum is I = mr2/2, and the mass is
m = ρsπr

2l where l is the size of the medium in the
third direction. To reproduce the experimental setup, the
numerical media are enclosed between walls, two vertical
ones on each side and a horizontal one on the bottom
(Fig. 7).

We compute the forces in the Galilean laboratory ref-
erence frame. The forces implemented on each particle
are the gravity, the buoyancy force of the liquid, and the
contact forces. We assume the movement of the fluid
with respect to the grains to be slow enough to neglect
the viscosity of the fluid. Thus, the fluid only inter-
venes in this model via buoyancy forces. For a parti-
cle of density ρs, volume V and immersed volume Vim,
the gravity and buoyancy forces are given respectively by
F gravity = V ρsgez and F buoyancy = −Vimρwgez where
g = 9.81 m s−2 and ez is the downwards vertical unit
vector. We model the contacts between two particles
with a linear spring-dashpot model [58]. For each con-
tact we take into account a visco-elastic reaction with
two springs-dashpots, one in the normal direction and
one in the tangential direction in the local frame of the
contact. The springs exert a linear elastic repulsion, with
k the elastic constant, while the dashpot models exert a
dissipative force during contact as a solid viscosity, i.e.
viscous damping during the shocks, with ν the viscosity.
The particles can rotate due to friction on contacts. We
implement a Coulomb friction law for each contact. If
the tangential force exceeds the Coulomb criterion, we
let the particle contact slide and set the tangential force
equal to the normal force times the friction coefficient.
The interactions between particles and the three walls
are the same as between two particles, meaning that the
walls have similar mechanical and contact properties as
the particles. Once we have computed the sum of exter-
nal forces for each particle, we deduce their acceleration
and use a leap-frog form of the Verlet algorithm [57] to
get the velocity and position for the next timestep. The
particles positions and velocity are updated and we com-
pute the new forces.

For a realistic model, the grains need to be hard and
the overlaps small. According to the differential equa-
tions governing the system, the duration of a contact is
approximately given by

√
m
k , so harder grains correspond

to higher k and to shorter collision durations. The time
step needs to be smaller than the collision duration, hence
implementing harder grains means shorter time steps and
longer computation times. We need a time step at least
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10 times smaller than this impact duration, and we are
interested in having the largest time step possible to re-
duce computational time, which means a small enough k.
Simultaneously the elasticity parameter k has to be large
enough to avoid large deformations of the particles them-
selves. Here we require these deformations not to exceed
1%, which physically translates in the contact force (solid
stress times cross-section) being lower than k 0.01 rmean.
The solid stress has a static and a dynamic component,
the later appearing during impact only. The static stress
evolves in the medium as ρeffgz with z the particle depth,
and the dynamic one evolves like ρsv2 with v the veloc-
ity of the particles. In our system the maximum value
of solid stress is attained during high-velocity collisions,
when the static stress (ρeffgz with z the particle depth)
becomes negligible compared to the dynamic stress (ρsv2
with v the velocity of the particles). The maximal ve-
locity of the particles is attained during the preparation
stage and is around 1 m/s. Eventually we need to choose
a value for k such that (ρeffgz+ρsv

2)rmeanl < k 0.01 rmean
with rmean the mean radius of the set of particles. We
choose an elasticity coefficient of k = 20000 kg s−2 and
a timestep of 1.10−6 s, which suits all our simulations.
We checked that the value of the elasticity constant k
does not affect the behavior of the media by doubling
and quadrupling its value.

2. Our numerical granular media

The first step is the creation of initial configurations.
We define NMAX the maximal number of particles of
radius rmean which can fit in the width of the box wBOX :

NMAX =
wBOX
2 rmean

. (15)

We create horizontal lines of particles by making
100NMAX particles with random horizontal positions, at
exactly 2 rmean above the lowest altitude free of parti-
cles, and then remove overlapping ones. The particles
radii follow a normal law centered around rmean with a
standard deviation of 8% of rmean. The line is set free
to fall and reach mechanical equilibrium. This procedure
goes on until the desired number of particles is reached.
The final porosity is between 0.196 and 0.199 which is
characteristic of a random loose pack for a 2D granular
medium [59, 60]. Once this initial soil skeleton is in place,
we measure the final height of the granular medium by
computing the mean of the vertical position of the last
layer of beads. We fix the water level at that height in
order to have a saturated medium. This configuration of
granular media is representative of a soil saturated with
water which is the typical soil where liquefaction and
quicksands occur [2, 3, 23]. We fix the height of an in-
truder at the surface of this new saturated medium, and
release it. The size of the intruder is chosen as 6 times the
linear size of the small particles, so that it is significantly
larger than them, and remains small enough compared

to the size of the box, to avoid finite size effects. The pa-
rameters used for the simulations presented in this paper
are summarized on Table I. A representation of the dif-
ferent steps to create the final medium is given in Fig. 7,
where rmean = 2 mm and wBOX = 30 cm.

FIG. 7. The different steps to create the initial state: (a)
First a granular medium of 2000 particles is created. (b)
Next, water is added in the porous volume (blue part). (c)
Further, an intruder (of radius 12 mm here) is hung on the
top of the medium and released. (d) Eventually the intruder
relaxes to a state of mechanical equilibrium with the medium.

The next stage is the main part of the simulations.
Here we impose a horizontal movement on the two lat-
eral walls of the box. Both sides move synchronously,
following a sinusoid. We record the positions and the
velocities of all particles every hundred timesteps.

C. Thresholds delimiting flow types

1. Variables which quantify the intruder movement

In both the computer simulations and experiments, we
record the temporal evolution of the height of the in-
truder. From this height and the height of the granular
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Radius of particles rmean ± 8% 2± 0.16 mm
Density of particles ρs 1.05 g L−1

Elastic constant (during shocks) k 20000 kg s−2

Viscosity constant (during shocks) ν 0.3 N s m−1

Friction coefficient µ 0.6
Cohesion c 0.0
Number of particles N 2000
Time step dt 10−6 s
Box size wBOX × L 30 cm× 30 cm
Radius of the intruder rB 12 mm
Density of the intruder ρB 1.0 g L−1

TABLE I. Parameters used for the simulations.

medium we compute the immersed depth of the intruder
h(t) as the distance between the surface of the medium
and the bottom of the intruder. The immersed volume of
the intruder VB.im is related in 3D to h(t) by the following
relation:

VB.im(t) =
π

3
(3rh2(t)− h3(t)) (16)

To compare our results with other sizes or shapes of in-
truder, we will express our computation in term of Xin(t),
the intruder’s emerged volume VB.em(t) normalized by
its initial emerged volume VB.em(0) and its final emerged
volume VB.em(∞). Xin(t) is defined as follows:

Xin(t) =
VB.em(t)− VB.em(∞)

VB.em(0)− VB.em(∞)

=
VB − VB.im(t)− VB + VB.im(∞)

VB − VB.im(0)− VB + VB.im(∞)

=
VB.im(∞)− π/3(3rh2(t)− h3(t))

VB.im(∞)− VB.im(0)
(17)

The term VB.im(0) is the immersed volume of the in-
truder during the initial state, when it is at rest on the
medium. Here we assume VB.im(∞) to be the theoreti-
cal isostatic immersed volume of the intruder V equilibrium

B.im ,
computed for an immersion in a fluid of density ρeff, ac-
cording to Eq. (13). For all simulations and experiments
Xin(t) starts at 1 and decreases as the intruder sinks.
If the intruder reaches the isostatic equilibrium given in
Eq. (13), then Xin(t) reaches 0.

We show on Fig. 8 the evolution of Xin for three sim-
ulations and three experiments showing the typical be-
haviors of the three deformation regimes, rigid, H.L. and
G.E.L.. In the rigid cases (blue curves), Xin stays close to
1. A small descent exists anyway but it can be attributed
to the compaction of the medium. In the H.L. cases (or-
ange curves), Xin slowly decreases from 1 to a final value
between 0.2 and 0. The G.E.L. behavior is characterised
by an irregular descent of the intruder, with relatively
high fluctuations around the main trend of the curve,

FIG. 8. Normalized emerged volume of the intruder Xin as
a function of time for the three different regimes described
in the first section, in the case of (a) simulations and (b)
experiments. The experiments and simulations are done in a
saturated granular medium. For simulations the frequencies
used are 12 Hz for the rigid and G.E.L. cases, and 7 Hz for
the H.L. case. For experiments the frequencies used are 0.8 Hz
for the rigid case, 1.6 Hz for the H.L. case and 50 Hz for the
G.E.L. case.

continuously perturbing the equilibrium state. During
experiments, the use of the fast camera is required to see
that the intruder is continuously oscillating with high fre-
quencies during G.E.L. states (see zoom on Fig. 8). Even
without the fast camera, one can observe with the naked
eye that G.E.L. states exhibit convection cells character-
ized by particles at the surface going from the middle of
the box toward its sides.

In the previous well-selected cases the behavioral
regimes of the system were obvious. Nevertheless this
is not always the case, and especially not when the ex-
citation is on the limit between two regimes. Hence, we
need to specify quantitative criteria to automatically dif-
ferentiate the three regimes among all the experiments
and simulations. In the following paragraph we precise
the exact criteria and thresholds that we use in practice.

2. Thresholds between rigid and heterogeneous liquefaction
(H.L.) states

The medium is categorised to be in the rigid state when
the intruder does not move significantly downwards. Ac-
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tually, the intruder usually sinks slightly because the
medium compacts during shaking. In simulations, the
medium compacts less, possibly due to the fact that the
movement takes place in 2D, and there are less degrees of
freedom for rearrangements in 2D than in three dimen-
sions (3D). According to the observations we categorize
as rigid the experiments where Xin decreases in total less
than 10% from its initial value, and in the simulations
where it decreases less than 5% from its initial value.
The exact choice of these threshold values does not af-
fect significantly the phase diagram we will obtain.

3. Thresholds between heterogeneous liquefaction (H.L.)
and global excitation liquefaction (G.E.L.) states

When Xin decreases by more than 10% during experi-
ments, or more than 5% during simulations, we categorize
the medium state either as the heterogeneous liquefac-
tion (H.L.) case, or as the global excitation liquefaction
(G.E.L.) case. The distinction between these two cases is
done as follows: From a macromechanical point of view,
the G.E.L. state starts when the intruder keeps oscillating
around a final position without reaching a final equilib-
rium. Depending on the frequency these oscillations can
be small and fast or large and slow. A good criterion to
determine the category is to base the distinction on the
measure of the acceleration of these oscillations. This
method allows to catch the G.E.L. cases at both small
and high frequencies. When the standard deviation of
the acceleration of the intruder is greater than 0.6 m s−2,
the simulations and experiments are classified as G.E.L.
cases.

III. RESULTS

A. Water influence on soil liquefaction

The first interesting result is the strong effect of the
presence of water on the behavior displayed by the
medium. To highlight the role of water in soil liquefac-
tion, we compare the behavior of saturated and dry gran-
ular media. We first focus on laboratory experiments.
We compare Xin for experimental media fully saturated
to the top of the grains, (Fig. 9 (b)), and dry experi-
mental media (Fig. 9(a)), shaken by the same force. For
the saturated medium the transition between the rigid
behavior and heterogenous liquefaction is obvious: the
intruder remains on the surface for the lowest accelera-
tion (Γ = 0.01, rigid), but for accelerations larger than
Γ ≥ 0.04, the intruder sinks quickly into the medium
(liquefaction). On the contrary, in the dry case, for any
acceleration between Γ = 0.01 to Γ = 0.07 the intruder
does not sink. We did not observe the G.E.L. behavior in
neither the dry or saturated cases, since the results shown
in Fig. 9 were obtained using the setup of Fig. 5 A, and
the accelerations reached with this setup were too low.

FIG. 9. Normalized emerged volume χin(t) as function of
time during several experiments (a) in a dry medium and
(b) in a saturated medium. For the dry cases the horizontal
shaking has an amplitude of 7 mm and its frequency varies
from 1.5 to 3.5 Hz. For the saturated the shaking has an
amplitude of 3.5 mm and its frequency varies from 0.8 to 2.5
Hz.

G.E.L. was observed for different cases where Γ > 1 both
in dry and saturated media, using the setup of Fig. 5 B.

The same feature is observed in simulations, as shown
in Fig. 10. The medium remains rigid for Γ = 0.01 in
both cases of dry and saturated media. An important
sinking due to H.L. is observed for Γ ∈ [0.05; 0.1] in
the case of saturated media only. Eventually the G.E.L.
behavior can be observed on Fig. 10 for Γ ∈ [0.3; 1].
While for the saturated medium, Fig. 10(b) shows the
transition between the three described regimes: rigid,
H.L. and G.E.L. , the case of a dry granular medium,
Fig. 10(a), shows a direct transition from the rigid case
(Γ ∈ [0.01; 0.1]) to G.E.L. (Γ = 0.3), without passing
through the H.L. regime. There is no value of Γ where
the intruder descends further beyond 5% (for χin) and
where the standard deviation of its acceleration remains
lower than 0.6 m s−2 at the same time.

These initial results confirm that the presence of water
strongly promotes liquefaction, and is required to pro-
duce liquefaction at moderate shaking accelerations [15].
They are qualitatively consistent with the predictions of
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FIG. 10. Normalized emerged volume χin(t) as function of
time during several simulations ran in (a): a dry medium,
and (b): a saturated medium. The horizontal shaking has
a frequency of 12 Hz for the four first curves, its amplitude
varies from 0.02 mm to 0.5 mm. For the curve Γ = 1 we used
a frequency of 7 Hz and an amplitude of 5 mm.

the simple model summed up in Eqs. (6, 7) and (8) for
saturated cases and in Eq. (11) for dry cases. Both in the
experiments and in the simulations, the shaken granular
medium liquefies easily when water is added to the gran-
ular medium. In our simulations the presence of water is
represented by local buoyancy without any compressibil-
ity or viscosity effects. Note that the pore pressure is thus
increased in the saturated case with respect to the dry
case, since it is hydrostatic, but it is not increased further
during the simulations (it always stays hydrostatic): the
rheology change of the saturated granular media is thus
not attributabe to dynamic pore pressure rise. Liquefac-
tion is triggered in our experiments and simulations by
external shaking, with a top drained boundary condition
where the water is not confined – i.e. where water can
flow in and out of the surface. Inside the granular sys-
tem the water acts solely through a buoyancy force and
reduces the effective weight of the particles. The effec-
tive stress is reduced and consequently, grains can slide
more easily on each other in presence of these buoyancy
forces. The sliding motion allows liquefied deformation
of the granular media. The importance of buoyancy is

in enlarging the range for this sliding onset, allowing it
to occur under rather low accelerations, and, more im-
portantly, in inducing a crucial difference between the
grains and the intruder: the later being only partially
immersed, the intruder-grains contacts are stronger than
grain-grain contacts.

B. Micromechanical point of view

To better understand what governs the sinking of the
intruder during our experiments and simulations, we fo-
cus on the deformations inside the granular medium and
will here adopt a micromechanical point of view. The
simulations allow us to follow in detail every particle in-
side the medium, and to investigate the physics of liq-
uefaction. The explanation of liquefaction proposed in
subsection IB is based on the possibility or not for the
intruder to slide on the particles beneath it. Hence, veri-
fying its validity necessitates considering the relative ve-
locity between the intruder and the grains beneath. For
this purpose we define the “deviation velocity" as the ve-
locity of the grains in the reference frame of the intruder,
i.e. the grain velocities minus the velocity of the intruder.
The deviation velocity of the particles is represented in
Figs. 11, for three simulations carried out in a saturated
medium shaken at a frequency of 12 Hz, at three dif-
ferent values of the normalized PGA, Γ. Each snapshot
shows the state of the system at a given time, with the
arrows pointing in the direction of the deviation velocity,
and the particles’ color corresponding to the deviation
velocity module.

One can observe that for Γ = 0.01, i.e. the rigid state
shown on Fig. 11(a), the deviation velocity is almost zero
in the whole medium, and the intruder follows the move-
ment of the surrounding particles. Every particle follows
the imposed movement of the box, and the medium does
not deform. Only few particles move or roll because of
local compaction, or because they are free at the surface
of the medium. For Γ = 0.28 the system is in the H.L.
case, where we expect that the intruder cannot slide on
the particles beneath it (Γ < µ), but particles can slide
on each other (Γ > ρS−ρW

ρS
µ). Hence, the object is not di-

rectly sliding on the surrounding particles and stays fixed
to them, while the whole granular medium, far from the
intruder, is able to undergo sliding and to deform eas-
ily - leading to the subsidence of the intruder and of the
granular medium under it. The analysis of the deviation
velocity shows that this is indeed the case: Figure 11(b)
shows that the deviation velocity around the intruder is
weak (under 2.5 mm s−1). Hence, there is no sliding be-
tween these particles and the intruder - the intruder and
its neighbours move together. However, the particles fur-
ther away from the intruder (a few intruder diameters)
are in motion with respect to the intruder. This shows
that the medium is rearranging, and as a result, the in-
truder and its surrounding particles sink as a whole with
respect to this farfield.
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FIG. 11. Micromechanics of (a) a rigid case, (b) a H.L. case
and (c) a G.E.L. case: snapshots of the system configuration
and velocity field. The arrows represent the deviation velocity
of the particles (velocity with respect to the intruder) and the
color of the particles represent this deviation velocity norm in
m s−1. The blue line is the water level. The straight dark line
on the top right represents the trajectory of the moving box
(arbitrary scale), and the red dot the position of the box in the
cycle at the time of the snapshot - the time elapsed since the
start of the shaking is indicated above the line. The deviation
velocity is not represented for particles close to the borders,
since their behavior is dominated by the shocks agains the
walls and not the liquefaction process.

Finally, for Γ = 0.7 (Fig. 11(c)) the system is in the
G.E.L. regime, which can be charachterized by the sliding
of the intruder on the surrounding particles (Γ > µ). In
this case the velocity deviation inside the G.E.L. media is
roughly 10 times larger than in the H.L. case. Under the
intruder the velocity deviation of the particles is between
2.5 mm s−1 and 10 mm s−1 (Fig. 11(c)). This non-zero
relative velocity between the intruder and its neighbors
shows that, indeed, the intruder slides on the particles
beneath it, hence it behaves like any other particle of the
medium. It is during this behavior that we may observe
convection cells which drag the particles along cells con-
necting the bottom and the top of the medium. This is

the case in the example of Fig. 11(c).

C. Phase diagram controlling liquefaction
occurence and type

Three general types of behavior have been identified
and analyzed from both a macromechanical and a mi-
cromechanical point of view. We will now examine under
which conditions these different behaviors occur, derive
a phase diagram as function of the control parameters,
and check using experiments and simulations the theory
derived in subsection IB for the transition between these
three behaviors. For this purpose, we make a systematic
series of experiments and simulations at various frequen-
cies and amplitudes. The frequencies range from 7 Hz to
24 Hz for simulations and from 0.15 Hz to 50 Hz for ex-
periments and the acceleration range from 0.01 m s−2 to
1 m s−2 for simulations and from 0.001 m s−2 to 4 m s−2

for experiments. We link each experimental and sim-
ulation run to one of the three behaviors, rigid, H.L. or
G.E.L., according to the categorization criteria explained
in subsections II C 2 and IIC 3. On the phase diagram,
Fig. 12, we show the results of this systematic study for
the numerical simulations (a) and the experiments (b). Γ
is represented on the horizontal axis and the frequency of
shaking is on the vertical axis. Each simulation and ex-
periment is plotted with a particular symbol representing
the associated behavior: blue squares for rigid states, or-
ange discs for H.L. states and red triangles pointing down
for G.E.L. states, according to the thresholds defined in
section IIC. A particular liquefaction behavior, repre-
sented by purple triangles pointing up and called slow
liquefaction, will be further discussed in the next section.
It is related to a few experiments and simulations which
don’t follow the same master curve as all other experi-
ments and simulations. As predicted by the theory and
confirmed by figure 12 both for simulations and experi-
ments, the main control parameter determining whether
liquefaction happens, and what type of liquefaction, is
the value of the normalized peak ground acceleration Γ.

Two possibilities are shown for ΓG.E.L.: ΓG.E.L.2
corresponding to the theoretical sliding threshold of
an initialy emerged intruder (Eq. (9) of section IB)
and ΓG.E.L.1 corresponding to the sliding threshold
of an intruder which is initially partially immersed.
ΓG.E.L.1 is calculated as ΓG.E.L.1 = µ(1 − VB.im(0)ρw

VBρB
),

with the initial immersed volume VB.im(0) of 50% for
the simulations and 12% for experiments. ΓG.E.L.1 is
smaller than ΓG.E.L.2 because the buoyancy applied
on the intruder immersed volume reduces the acceler-
ation needed to make it slide on the particles underneath.

Let us examine, from Fig. 12, the deviation between
the phase boundaries derived experimentally or numer-
ically, and those obtained with the simple analytical
model, considering ΓG.E.L.1 the threshold corrected for
the initial partial immersion of the intruder. The bound-
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FIG. 12. Phase diagram of the numerical simulations (a) and
of the experiments (b). Each simulation or experiment is plot-
ted according to its reduced acceleration Γ and its frequency.
The behaviors are determined following the thresholds de-
fined in subsections II C 2 and IIC 3. Squares correspond to
an observed rigid behavior, circles and triangles pointing up
to H.L. behavior, and triangles pointing down to G.E.L. be-
havior. The boundaries theoretically derived in section IB be-
tween these three regimes are the vertical lines: Γ = ΓH.L. for
the rigid/H.L. boundary, and Γ = ΓG.E.L.1 or Γ = ΓG.E.L.2 are
two possibilities for the H.L./G.E.L. boundary. These bound-
aries match well with the observed symbol changes, both in
experiments and in simulations.

ary between rigid and H.L. state is very well reproduced
by both the simulations and the experiments. Concern-
ing the boundary between H.L. and G.E.L. the phase
diagram of the simulations shows again a very good fit
beween theory and experiments. For the experiments,
the setup limitations do not allow too many experiments
at very large accelerations. A dispersion of the behavior
results is observed, with a gradual transition from H.L. to
G.E.L.. The transition nonetheless happens at a central
value around the one predicted by theory. At first order,
the two theoretical boundaries ΓH.L. and ΓG.E.L. capture
very well the location of the different behaviors observed

with numerical simulations and experiments. The sim-
ilarity found in the results between simulations, experi-
ments and theory are thus satisfactory, and validate the
explanation proposed for the physics of liquefaction.

D. Comparison of the final position and the
isostatic position

In the previous paragraph we show that the behavior
of the intruder above the shaken granular media can be
sorted into three cases according to the imposed acceler-
ation, as we expected given the theoretical analysis. We
will now study what is the final position of the intruder
during H.L. and the velocity at which it approaches it.
During the H.L. regime, as a first approximation, if the
vertical friction forces on the intruder average to zero
after penetration, the intruder will approximately ap-
proach the theoretical isostatic position dictated by its
weight and the buoyancy (section IB 3). The experimen-
tal and numerical setup enables to test whether this ap-
proximation holds or fails, by measuring precisely the
final vertical position of the intruder for a comparison
with the isostatic position. For each simulation the ratio
of the final position of the intruder to its isostatic po-
sition, h(∞)/hISO, is represented on Fig. 13. Different
symbols correspond to different behaviors observed fo the
simulations: rigid, slow liquefaction, H.L. or G.E.L.. We

FIG. 13. Final depth of the intruder scaled by its isostatic
depth, h(∞)/hISO, as function of the dimensionless imposed
peak ground acceleration Γ. The markers correspond to the
behavior of the medium, rigid, slow liquefaction, H.L. or
G.E.L.

see that when Γ rises, the ratio rises towards 1, i.e. the
intruder approaches its isostatic depth. The ratio is 0.2
for the slow liquefaction case, and between 0.5 and 1 for
most H.L. cases. When Γ exceeds 0.2 to 0.3 the media
displays G.E.L. behavior, and this ratio lies between 0.7
and 1 for most cases, but decreases below 0 for some cases
of intense shaking, which means that instead of sinking,
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the intruder rises above the grains. These particular re-
sults are a demonstration of the Brazil nuts effect where
the intense shaking and the friction between grains result
in a vertical force opposed to the weight of the intruder.
This graph demonstartes that the isostatic position is a
relatively good approximation for the final position dur-
ing H.L., although the results are somewhat dispersed,
especially at relatively low acceleration.

E. Penetration dynamics in liquefied cases

1. Data collapse and master curve

To understand further the phenomenon of sinking of an
object inside a liquefied granular medium, we investigate
the dynamics of the intruder, and how it penetrates to-
wards its equilibrium position in the liquefactions cases.
For simulations made at different amplitudes and fre-
quencies but at the same peak ground velocity (PGV),
one can observe that all the curves align together, see
Fig. 14. This observation guides us to collapse the im-

FIG. 14. Normalized emerged volume χin(t) as function of
time in simulations at different amplitudes and frequencies,
but with an approximatively constant PGV of 0.012 m/s. It
can be seen that simualtions ran with the same PGV follow
the same master curve. The theoretical relaxation of the in-
truder for a PGV of 0.012 m/s, calculated in part III F, is
plotted in a thick gray curve.

mersed volume vs time curves, and establish a master
curve followed by all the simulations. Considering sim-
ulations made with any amplitude and frequency, whose
sinking vs time curves are shown on Fig. 15 on top, we
are able to collapse all curves of evolution of the sink-
ing depth by plotting it as function of a reduced time
corresponding to the cumulated strain imposed by the
oscillations, i.e. the time multiplied by the PGV: see
Fig. 15(b). This shows that the speed of penetration of
the intruder mainly depends on the peak velocity of the
shaking.

FIG. 15. (a) Normalized emerged volume of the intruder as
function of time χin(t) in a set of simulations; (b) Normalized
emerged volume as function of a normalized time, multiplied
by the PGV of each respective run, for the same set of sim-
ulations. The curves show a reasonable collapse on a master
curve. In thick grey we add the theoretical relaxation of the
intruder. The calculation is made in part III F.

2. Exponential relaxation and characteristic time

Concerning the shape of the sinking curves, a natu-
rally expected shape is an exponentially or a logarithmic
decreasing function. Indeed, on one hand linear systems
relax towards equilibrium following an exponential evo-
lution. On the other hand, in non linear systems close to
jamming or pinning, slow relaxation or creep dynamics
often lead during long time to a deformation logarith-
mic in time. This is for example the case for dry grain
packings compacting under vibrations, [61, 62], for creep
in fracture propagation [63] or for deforming rocks [64].
We use semi-logarithmic representations to verify if the
sinking results reveal one of these behaviors. Fig. 16 dis-
plays the sinking of our intruder during one simulation
– characteristic of the majority of the simulation cases.
Fig. 16 (a) shows an attempt to a logarithm fit to the
sinking of the intruder, and Fig. 16 (b) shown an expo-
nentially decreasing fit attempt to the same data. For
both cases we presented the result first with a semiloga-
rithmic scale, where an exponential behavior would corre-
spond to a straight line, and then with a linear scale. The
exponentially decreasing function fits the vast majority
of the liquefied simulations whereas the logarithmically
decreasing ones fit only few simulations whose behavior
was hard to distinguish between rigid and liquefied - these
correspond to the few slow liquefaction cases that will be
developed in further detail in Sec. IIIG. When the gran-
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FIG. 16. Descent laws for intruders: fitting the normalized
emerged height of the intruder H(t) as function of time. We
apply a logarithmic fit to the simulation data (dark blue
curve) in (a), (b) and an exponential fit in (c), (d). Fits are
shown in light gray. Sinking of the intruder is best modelled
by an exponential decrease of the height.

ular medium is well liquefied we can then assume that
the intruder follows an exponential sinking toward its
equilibrium position. This will be confirmed by a phys-
ical explanation later on. We apply the exponential fit
to every simulation categorized as liquefied and system-
atically compute the half-life times. The procedure is
semi-automatic. We compute the intruder normalized
emerged height H defined as follows: H(t) = h(∞)−h(t))

h(∞)−h(0)
with h(t) the immersed height previously introduced and
h(∞) the immersed height at isostatic position. H is
defined by the same principle as Xin (equation 17), i.e.
as a normalized height which starts at 1 for every case
and goes to 0 if the final immersed height of the intruder
reaches h(∞), the isostatic position. We plot H with a
logarithmic y-axis, as on Fig 16(c), and we pick manually
the duration corresponding to a straight line (orange line
on the plot). This duration should not be smaller than 3
seconds. We then apply a linear regression to the normal-
ized emerged height H, using the selected duration and
a logarithmic y-axis, for different values of h(∞): the
linear regression is applied to 15 values of h(∞) equally
spaced between the isostatic position minus 15% and the

isostatic position plus 15%. We keep the result which
gives the largest correlation coefficient. Eventually, from
the slope of the linear regression λ, we obtain the half
life time as t1/2 = ln(2)/λ.

FIG. 17. (a) Half-life time for sinking of intruders in sim-
ulations, as a function of the peak ground velocity (PGV).
The shapes of the markers correspond to the shaking fre-
quency. The thick grey line plots theoretical values for the
half-life time according to the calculation made in part III F,
i.e. t1/2 = 0.02m/PGV. (b) PGV × t1/2, product of the Half-
life time by the PGV, as a function of the PGV. Part III F
predicts that this product is a constant.

We are now able to plot the half-life time of the simu-
lations according to the PGV of the imposed shaking, see
Fig. 17. Different markers are used for different frequen-
cies. It is clear from the collapse of Fig. 15 and from the
half-life time dependency of Fig. 17 that the half-life time
is proportional to the inverse of the PGV as all the points
follow the same master curve regardless of the frequency.
At first order the master curve is the inverse function.
We can now present a physical explanation for the expo-
nential sinking and for the half-life times dependence on
the PGV.

F. Theoretical point of view

The exponential descent of intruders into granular me-
dia has already been reported in a related study by [14].
They used real sand and a steel cylinder as an intruder.
To understand the origin of this exponential behavior,
we will make an approximate mechanical analysis of the
granular medium rheology. There are mainly two forces
acting on the intruder, apart from its weight: A buoyancy
force coming from the fluid and a frictional force exerted
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by the solid contacts with the granular medium. A recent
study [27] shows that in dry granular media shaken hori-
zontally, the frictional force opposing the intruders sink-
ing, acts locally normal to the intruder surface. Following
the authors of that study, we assume that this stays valid
in the saturated case, and since the penetration speed is
low, we assume that the frictional force is proportional
to the speed of the intruder in the medium. Newton’s
second law applied to the intruder and projected on the
vertical axis can be phrased as:

ρBV
d2u

dt2
= −ρBV g + ρeffVim(u)g − αdu

dt
, (18)

where u is the vertical displacement of the intruder, ρB its
density V its volume, and ρeff the effective density of the
saturated granular medium. We checked that ρBV d2u

dt2 is
very small relative to the other forces. In this case, the
equation of motion can be simplified as:

du

dt
=

1

α
(−ρBV g + ρeffVim(u)g). (19)

One solution of equilibrium exists when ρB < ρeff. When
this solution, called ueq, is reached, the term du

dt is equal
to 0. Thus

ρeffVim(ueq) = ρBV.

We focus on the dynamics near the equilibrium state, in
which case:

Vim(u) = Vim(ueq) +
dVim
du
|ueq(u− ueq)

The term dVim
du |ueq is linked to a characteristic surface of

the intruder. It represents the disc of intersection be-
tween the intruder at equilibrium position and the effec-
tive fluid surface. As the equilibrium position is close
to total immersion, the intersection between the intruder
and the effective fluid surface decreases when the intruder
approaches its equilibrium, and so dVim

du |ueq is a negative
term. Thus we will write β = −dVimdu |ueq , where β is
positive. Eq. (19) becomes:

du

dt
=

1

α
(−ρBV g + ρeff(Vim(ueq)− β(u− ueq))g) .

Thanks to the expression of the equilibrium solution
Vim(ueq), this becomes:

du

dt
=
βgρeff
α

(ueq − u).

We finally reach a linear differential equation. Using u0 =
u(t = 0), the initial position, we obtain the following
solution for u:

u(t) = (u0 − ueq)e
−βgρeff

α t + ueq. (20)

So finally, after having assumed a negligible acceleration
for the intruder and a frictional force proportional to the

velocity of the intruder, we find that the movement of
the intruder around its equilibrium position follows an
exponentially decreasing law.

Concerning the half-life time of penetration, our results
allow to provide an expression for α. In Eq. (20), we have
an expression for the half-life time t1/2:

t1/2 =
ln(2)α

βgρeff
. (21)

We can measure a particular half-life time with figure
14. The simulations plotted in this figure have a PGV of
V0 = 0.012 m/s and the half-life time is equal to T0 = 1.7
s. We can assume that

t1/2 = T0 F (A 2πf) (22)

where F is a function of ( 2πAf) the PGV of the simula-
tions with F (V0) = 1. Then we use the observation made
in figure 15 and 17, namely that for simulations having
different PGV, the alignement is obtained by multiplying
the time axis by the PGV. The interpretation is that the
caracteristic time of the decreasing of Xin, the half-life
time in the case of an exponential decrease, is a function
of the form

t1/2 =
C

A 2πf
(23)

where C is a constant. We can equate the two expres-
sions 22 and 23 in order to find C = T0V0 = 0.02 m. In
figures 15 and 14, we have drawn the theoretical lines
corresponding to an exponential decrease from 1 to 0
with the caracteristic time defined by the half-time t1/2
of this last Eq. (23). The agreement with the halftimes
extracted from the simulations demonstrates the consis-
tency of this expression. Combining expressions 21 and
23 provides an expression for α, which determines the
prefactor of the friction law for the penetration of the
intruder in the shaken granular medium, as function of
β, the cross section of the intruder close to the isostatic
position, the density of the medium and the PGV A2πf :

α =
βgρeff
ln(2)

T0V0
A 2πf

α may be viewed as an effective viscosity coefficient.

G. Particular case of slow liquefaction following
logarithm penetration

The dynamics of the intruder described above predicts
the behavior of most of the liquefied (H.L.) simulations
and experiments, yet fails to reproduce the behavior in
a few cases. Indeed among the simulations classified as
liquefaction state, there are some few cases where the
sinking of the intruder does not follow the same trend as
described above. When the intruder movement is com-
pared to other simulations ran at the same PGV, the
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FIG. 18. Normalized height as function of time in simulations
with identical peak ground velocity. The simulation made at
the frequency 7Hz does not align with the two other. It is a
case of slow liquefaction.

curve does not align with the other ones although they
all have a liquefaction behavior, see Fig.18.

We call these particular cases slow liquefaction. Ob-
serving the dynamics of penetration of the intruders in
these slow liquefaction cases, we find that a logarithmic
law fits better than the exponential one, as shown on
Fig.19. This is in contrast with most cases of liquefac-
tion where the exponential decrease fits better. With the
numerical simulations we found out that when the size
of the numerical box is increased, these cases get less fre-
quent. With 2000 particles, the area in the phase diagram
where slow liquefaction appears is very narrow. This be-
havior agrees with recent studies on granular compaction
[62], where under small excitation, granular systems get
"jammed" and "aging" phenomena are observed. The
stationarity of these systems is typically not reached and
logarithmic relaxation is found. Our explanation for this
logarithmic dynamic is that the system needs to explore
rearrangement of larger and larger amount of particles.
This can be compared to the glassy dynamic behavior
and the parking lot model [65].

IV. DISCUSSION AND CONCLUSIONS

Using a model of granular soil and a sphere represent-
ing a structure built on the top of this soil, we are able to
reproduce soil liquefaction by shaking the medium. In-
deed, with sufficiently strong shaking, the sphere, origi-
nally positioned on top of the medium, sinks quickly into
it. Using basic physics equations taking into account
buoyancy and friction between the grains, we construct
a theoretical model which predicts under which imposed
shaking accelerations the sphere will sink and what will
be its final position. This theoretical model predicts three
different regimes for the shaken medium, depending on
the friction coefficient of the material, the presence of
water and the density of the grains. When increasing
the imposed acceleration, we expect subsequently, a rigid
regime, a heterogeneous liquefaction regime allowing the

FIG. 19. Descent laws for intruders: fitting the normalized
emerged height of the intruder H(t) as function of time. We
apply a logarithmic fit of the data in (a), (b) and an expo-
nential fit in (c), (d). Fits are in light gray, data is in dark
blue. We find that in some (less common) cases the emerged
height follows a logarithmic decrease.

sphere to sink (representative of the conditions during
seismically triggered liquefaction in nature), and a global
excitation liquefaction regime where the whole medium
strongly deforms. Our theoretical model to explain lique-
faction has been validated by numerical simulations and
experiments. Our experiments consist of 3D granular
media, composed of light monodisperse beads, horizon-
tally shaken by regular oscillations. Our simulations im-
plement a molecular dynamics code in 2D with gravity,
buoyancy and contact forces. In our systems, liquefaction
is controlled by the competition between the buoyancy
and the gravitational forces. Because the buoyancy isn’t
applied everywhere but only on the immersed grains, it
enables the grains of the basic medium to slide on each
other, while the intruder doesn’t slide on the surround-
ing grains, which is at the origin of the heterogeneous
liquefaction behavior we observe. We explored a broad
range of accelerations and frequencies. The main con-
clusion is that only the peak ground acceleration of the
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shaking and material parameters (friction, density, satu-
ration) determine the behavior of the saturated granular
medium. Next, we show that in the case of heterogeneous
liquefaction, a spherical intruder lying on top of a granu-
lar medium sinks down to a position close to the one set
by isotasy in this medium. Another conclusion relates to
the dynamics of the intruder penetration. We first show
a clear data collapse in time among the sinking of the
sphere with simulations, using a normalization by the in-
verse of the peak ground velocity. We then show that
the intruder displays usually an exponential relaxation
towards equilibrium. We give a theoretical interpreta-
tion of this relaxation, and find a relationship between
the effective viscosity of the fluidized medium and the
shape of the immersed volume of the intruder near to its
isostatic position.

In a more general way, the experiments we performed
show that liquefaction is possible under drained condi-
tions. This is in agreement with recent studies [18–20].
Our simulations and experiments in effect suggest an al-
ternative to the common view (e.g. [11, 12]) that fluid
pressure in pores between grains must rise beyond the
hydrostatic value in order to produce soil liquefaction.

Our model is valid in the case of small compaction and
permeable media. Indeed for systems with large com-
paction and low permeability, such as clay, the dynamic
pressure in pores will not be negligible any more and vis-
cous forces need to be added in our model as in [66] and
[67].

All the experiments and simulations that we show are
made using light particles of bulk density 1050 kg ·m−3,
and in a non cohesive saturated medium, which increases
the effect of liquefaction and allows clear depth-of-sinking
measurements. Some adaptations are needed to evaluate
the liquefaction potential of a real soil. The range of
accelerations for which liquefaction occurs will decrease
with the use of characteristic soil particle density, and the
isostatic position of an intruder in a denser medium will
be more emerged than in our experimental (and numeri-
cal) media. The presence of cohesion between the parti-
cles and the fact that water often does not saturate soils

up to the surface will also increase the critical accelera-
tion needed to liquefy a soil. Moreover the monodisperse
spherical particles of our media is a chosen simplification
of the setup to improve the reproducibility, but is very
simplified with respect to the diversity of shapes, sizes
and densities of the particles composing a natural soil -
which will certainly affect the friction parameter, and can
give rise to additional complexities. Our work is meant to
give an insight to the physical phenomenon by which soil
liquefaction is triggered during an earthquake, and many
perspectives are open in order to explore widely the ex-
tensions of this model - notably, by varying saturation,
polydispersity, and variable densities.

As a perspective, we suggest to study the impact of the
presence of a second intruder nearby on the intruder’s
penetration. Indeed during some liquefaction events, one
can notice that a building can sink or tilt while the neigh-
boring buildings remain stable. An assumption is that
the weight of one building may stabilize the surround-
ing soil. Another interesting line of work would be to
confront our model with a broad range of grain densi-
ties, and to systematically vary the level of fluid in the
medium, to check the fluid level impact on liquefaction.
Eventually, it would be interesting to use a finite time
of shaking which corresponds to the typical time of an
earthquake.
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