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Abstract 

Cyclic plastic behaviour of tempered martensitic tool steel 55NiCrMoV7 with four different initial hardness levels was studied under 
tensile-compress low cycle fatigue (LCF) in the temperature range from room temperature up to 873 K. Cyclic behavior tests and strain 
memory effect tests were performed in symmetrical tensile-compression strain loading with a triangular waveform. The results show that 
steel represents cyclic softening behaviour. The cyclic stress response generally shows an initial exponential softening for the first few cycles, 
followed by a gradual softening without saturation. Cyclic stress response depends on strain rate. The steel represents cyclic viscoplasticity. 
The steel shows the plastic strain memory effects at each test temperature, the cyclic stress and cumulated plastic strain depends on the 
history of cyclic loading. If strain amplitude increases after a previous linear softening is achieved, a new rapid non-linear cyclic softening 
appears. In the opposite, if strain amplitude decreases from higher one to lower, softening remains linear, and moreover σ-p curve goes along 
the previous way at the previous same strain loading level. It was discussed that the influences of initial hardness, fatigue temperature, strain 
rate and cyclic strain amplitude on cyclic plasticity of the steel. 
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1. Introduction

Hot-work tool steels are widely used at various heat-
treatment (i.e. tempering conditions) states to obtain the 
mechanical properties requested by the industrial application, 
like hot forging, hot-rolling, extrusion, where the steel en-
dures cyclic thermal and mechanical loads [1]. Most of the 
investigations indicate that fatigue is responsible, in parallel 
to wear and abrasion, of tool limit lifetime [2-4]. Neverthe-
less lifetime of steels not only depends upon its service con-
ditions such as temperature [4-6], frequency [7-10], stress 
ratio [11], strain amplitude [12-14] etc., but also upon cyclic 
plasticity [15-16] and microstructure [3-5,8-9] which can be 
controlled by means of heat treatment. The studies of the 
429EM steel in [17] and [18] revealed a memory effect of 
the plastic strain amplitude which can be also simulated by a 
constitutive model. It is important to understand well the cy-
clic plastic behaviour of steel under low cycle fatigue (LCF) 
for the aim to prolong the lifetime of hot-work tools. This 
paper reports on LCF experimental results and cyclic plastic 
behaviour of the steel 55NiCrMoV7 with different hardness 
tempered. 

2. Experimental

Isothermal fatigue behaviour of the steel was investigated
for each tempering state in the range from ambient to 873 K. 
All fatigue tests were carried out with a MTS 810 closed- 
loop servo-hydraulic testing machine. LCF test details could 
be found in the reference [19]. Two type tests were carried 
out as following: 

Cyclic behaviour test: total strain amplitude is fixed to Δεt = 
± 0.8% during all the tests at constant strain rate 1×10-2 s-1 
during a first phase. After cumulated plastic strain “p” close 
to 4 mm/mm, in other words, the material has reached the 
quasi-linear cyclic softening stage, three levels of strain rates 
from 1×10-2 s-1 to 1×10-3 s-1 and 1×10-4 s-1 were tested for 
only three cycles at each strain rate. This test is used to un-
derstand the effect of temperature and total strain rate on cy-
clic behaviour of steel. 

Strain memory effect test: total strain amplitude Δεt was 
changed in the following sequence: ± 0.6%, ± 0.7%, ± 0.8%, 
± 0.9%, and ± 0.7% at constant strain rate 10-2 s-1. The 
number of cycles performed at each strain amplitude level 
was selected to reach a cumulated plastic strain “p” close to 



1 mm/mm. This test is used for studying the cyclic plastic

strain memory behaviour. 

3. Results and discussion

3.1. Cyclic behaviour 

The typical cyclic behaviour of the 55NiCrMoV7 steel 
was showed in Fig. 1 by the Δσi/Δσ1-p curves. When the 
hardness of the steel and LCF test temperature were low, as 
showed in Fig. 1 (a) and (b), the steel manifests the behav-
iour of cyclic softening under the loading of cyclic strain. 
When the hardness of the steel and LCF test temperature 
were high, as showed in Fig. 1 (c) and (d), although the steel 
manifests a little cyclic hardening during only initial several 
cycles, but the steel manifests the behaviour of cyclic sof-
tening as a whole. Therefore, this cyclic softening of the 
steel could be divided into two phases, which are the rapid 
softening phase during the initial stage of cyclic strain (cu-
mulated plastic strain ≤ 1) and following the slow softening 
phase (cumulated plastic strain > 1) without cyclic saturation. 
The former is generally explained by the exponential change 
of the density and structure of dislocations. Generally 
speaking, the latter is related to the modification of disloca-
tion sub-structure and carbide in the steel by the action of 
cyclic load. 

Considering the second phase of the cyclic behaviour tests 

(three cycles at strain rates respectively equal to 10-2, 10-3 
and 10-4 s-1), stress-strain hysteresis loops showed, like as in 
Fig. 2 (a) for 42HRC at 873 K, that the cyclic stress re-
sponse increases with strain rate. It means that the cyclic 
behaviour of the steel is rate-dependant, or called viscoplas-
tic. To evaluate the effect of strain rate, an effect factor (F) 
of strain rate was proposed as Equation (1). 
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where σ means the maximum stress during a stress-strain 
hysteresis loop at each strain rate. Relation between the fac-
tor F and test temperature T was plotted in Fig. 2 (b). Obvi-
ously, the effect of strain rate is constant from ambient to 
673 K, but it becomes more and more important at higher 
test temperatures (T ≥ 773 K). Consequently, it is of primary 
importance to take into account the strain rate effect for 
usual industrial applications of hot-work tool steels. 

3.2. Strain memory effect 

Some experimental results of strain memory effect tests 
were plotted in Fig. 3. It is obvious that the steel showed the 
plastic strain memory effects at each test temperature, in 
other words, in spite of the hardness of the steel cyclic stress, 
the cumulated plastic strain depends on the history of cyclic 
loading. If strain amplitude is increased after a previous linear 

Fig. 1.  Δσi/Δσ1-p curves of steel: (a) 35HRC, (b) at ambient, (c) at 773 K, (d) 45.5HRC. 



 

Fig. 2.  (a) Stress-strain hysteresis loops at different strain 
rates, (b) F-T curves of the steel 55NiCrMoV7. 

Fig. 3.  Multi-levels σ-p curves of steel 55NiCrMoV7: (a) 
35HRC, (b) at room temperature. 

softening is achieved (for example from ± 0.6% to ± 0.7%, 
respectively, to ± 0.8% and ± 0.9%), a new rapid non-linear 
cyclic softening appears. In the opposite, if strain amplitude 
is decreased from ± 0.9% to ± 0.7%, softening remains lin-
ear, and moreover keeps the previous route of the linear sof-
tening curve obtained. 

This effect is due to that the cyclic stress response is the 
function of plastic strain, i.e. the function of cumulated plas-
tic strain. The cyclic behaviour of the steel 55NiCrMoV7 
could be described by a constitutive model developed in the 
framework of the thermodynamics of irreversible processes. 
The detailed constitutive model can be found in previous 
paper [20]. The strain memory effect of the steel can be well 
reproduced by the constitutive model, as showed in Fig. 4. 
That means the cyclic behaviour of the steel is dependant on 
its strain history. 

Fig. 4.  Experiment-simulation comparison: stress amplitude- 
cumulated plastic strain for a type two test on sample 45.5HRC 
tested at 573 K. 

4. Conclusion

The steel 55NiCrMoV7 represents cyclic softening be-
haviour which could be divided into rapid softening phase 
during the initial stage of LCF and following the gradual 
softening phase without cyclic saturation. Cyclic stress 
response was dependant on strain rate. The effect of strain 
rate becomes more and more important at higher test tem-
peratures (T ≥ 773 K). The steel showed the plastic strain 
memory effects at each test temperature. In despite of the 
hardness of the steel, cyclic stress and cumulated cyclic 
plastic strain depends on the history of cyclic loading. It is of 
primary importance to take into account the strain rate effect 
for usual industrial applications of hot-work tool steels. 
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