AF 9590, a Yellow Coffin from the Egyptian Antiquities Department of the Louvre Museum: analytical methodology developed in the C2RMF within the Vatican Coffin Project

Lucile Brunel-Duverger, V Asensi Amoros, Laurent Binet, Hélène Guichard, Elsa Lambert, Juliette Langlois, Anne Maigret, Patricia Rigault-Déon, Nancy Brodie-Linder, Sandrine Pagès-Camagna

To cite this version:

Lucile Brunel-Duverger, V Asensi Amoros, Laurent Binet, Hélène Guichard, Elsa Lambert, et al.. AF 9590, a Yellow Coffin from the Egyptian Antiquities Department of the Louvre Museum: analytical methodology developed in the C2RMF within the Vatican Coffin Project . ICOM-CC, Sep 2017, Copenhagen, Denmark. 2017. hal-01715060

HAL Id: hal-01715060
https://hal.science/hal-01715060
Submitted on 23 Feb 2018
AF 9590, a Yellow Coffin from the Egyptian Antiquities Department of the Louvre Museum: analytical methodology developed within the Vatican Coffin Project

Laboratoire de Chimie Biologique, Université Cergy-Pontoise 1, Centre de Recherche et de Restauration des Musées de France 2, PCMH – IRCP – PSL UMR 8247 CNRS 3, Musée du Louvre 4, Laboratoire Léon Brillon, Iramis, CEA Saclay 1, Xylodata 1.

The Vatican Coffin Project is a collaboration between European museums and laboratories for the study of the Theban “yellow coffins”. The objective of the project is to understand this Egyptian production from the 21st dynasty, with the ultimate aim of defining workshops, priests family practices and/or chronological evolution. These huge artefacts are three-dimensional composite objects; they are hard to handle as they have abundant colors and are partially varnished. It was therefore necessary to develop a specific, mainly non-invasive, methodology to understand the manufacturing process. AF 9590, a coffin from the Louvre Museum that is part of a 15-set corpus, illustrates the development of a multi-scale methodology at the Centre de Recherche et de Restauration des Musées de France (C2RMF).

Organic materials

- X-Ray Radiography
- UV Imaging
- In-situ analysis
- XRF

Varnish GC/MS analysis

- Sampling study
- X-ray Fluorescence
- Microscope

Colour materials

- IR Imaging
- IRF Imaging
- VIL Imaging

Materials analysis data

- Materials analysis data

XRF

- Elements X-ray Fluorescence

Copper green pigments

- In-situ analysis
- Green pigments
- Synthetic copper chlorides materials

Arsenic sulfure materials

- Two main problems with arsenic sulfures: Identify the material used
- 2 natural yellow arsenic sulfures exist: Orpiment (As₂S₃) and Pararalgar (As₄S₆)
- Know the precise position of the arsenic inside the stratigraphy

Egyptian Blue

- Presence of orpiment (As₂S₃) in the varnish and Pararalgar (As₄S₆) in the yellow layer of varnish is confirmed.

Structural analysis EDS

- SEM
- Raman
- FTIR
- XRD
- TRL

Development methodologies

- Methodology, techniques
- RBS
- ESR

© C2RMF

A particular thanks to the AGLAE Team, E. Lavall, Q. Lemasson, C. Pacheco. These research studies have been developed by a PhD program, funded by the Patrimo Fondation.