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Abstract

In this paper we study the interplay existing between completeness of financial mar-
kets with infinitely many risky assets and extremality of equivalent martingale measures.
In particular, we obtain a version of the Douglas-Naimark Theorem for a dual system
〈X, Y 〉 of locally convex topological real vector spaces equipped with the weak topology
σ(X, Y ), and we apply it to the space L∞ with the topology σ(L∞, Lp) for p ≥ 1.
Thanks to these results, we obtain a condition equivalent to the market completeness
and based on the notion of extremality of measures, which allows us to give new and
simpler proofs of the second fundamental theorems of asset pricing. Finally, we discuss
also the completeness of a slight generalization of the Artzner and Heath example.
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1 Introduction

Artzner and Heath (1995) constructed a market with an infinite number of equivalent mar-
tingale probability measures, which is complete under two of such measures, the extremal
ones. This market has the essential property that the set of risky assets is infinite, in other
words it is a large financial market. The existence of such an economy implies that the
equivalence between completeness and uniqueness of the equivalent martingale measure is
not verified in an infinite assets setting.

Bättig (1999), Jin, Jarrow and Madan (1999) and Jarrow and Madan (1999) adopted
a different notion of market completeness in order to extend this equivalence even to a
large financial market. They give a definition of completeness which is independent from
the notion of no-arbitrage, and show that if the market is complete, then there exists at
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partimento di Matematica Pura e Applicata, via Belzoni 7, 35131 Padova, Italy. E-Mail: campi@ccr.jussieu.fr

1



most one equivalent martingale signed measure and if the market is arbitrage-free, then this
signed measure is a true probability. In order to demonstrate them, these authors have to
verify the surjectivity of a certain operator and then the injectivity of its adjoint.

Here we will examine the interplay existing between the extremality of martingale prob-
ability measures and the various notions of market completeness introduced by Artzner and
Heath (1995) and Jin, Jarrow and Madan (1999). For this we will need two versions of
the Douglas-Naimark Theorem, which is a functional analysis result connecting the density
of the subsets of some space Lp with the extremality on a certain subset of measures of
the underlying probability. Now, we quote them without proofs, for which one can con-
sult Douglas (1964) (Theorem 1, p. 243) or Naimark (1947) for the first and Yor (1976)
(Proposition 4 of the Appendice, p. 306) for the second.

Theorem 1 Let (Ω,F , P ) be a probability space and let F be a subspace of L1(P ) such that
1 ∈ F . The following three assertions are equivalent:

1. F is dense in (L1(P ), ‖ · ‖1);

2. if g ∈ L∞(P ) satisfies
∫

fgdP = 0 for each f ∈ F , then g = 0 P -a.s.;

3. P is an extremal point of the set

Ξ̃1 (P ) =
{
Q ∈ P : for each f ∈ F , f ∈ L1 (Q) and EQ (f) = EP (f)

}
,

where P is the space of all probability measures over (Ω,F).

We denote ba(Ω,F), or simply ba, the space of all additive bounded measures on the
measurable space (Ω,F). It is well known that one can identify ba with the topological dual
of the space L∞(P ) equipped with the strong topology. Finally, with an obvious notation,
one has the decomposition ba = ba+ − ba+. For further information on ba, one can consult
Dunford and Schwartz (1957).

Theorem 2 Let ba+(P ) = {ν ∈ ba+; ν � P}, and let F be a subspace of L∞(P ) such that
1 ∈ F . The following two assertions are equivalent:

1. F is dense in (L∞(P ), ‖ · ‖∞);

2. every additive measure ν ∈ ba+(P ) is an extremal point of the set

Ξba (ν) =
{
λ ∈ ba+ (ν) : for each f ∈ F , λ (f) = ν (f)

}
.

We observe that the spaces Lp considered in the previous theorems are equipped with
their respective strong topologies.

In Section 2 we obtain a version of the Douglas-Naimark Theorem for a dual system
〈X, Y 〉 of ordered locally convex topological real vector spaces, and we apply it to the special
case 〈X, Y 〉 = 〈L∞, Lp〉 for p ≥ 1. In Subsection 2.3 we obtain also a Douglas-Naimark
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Theorem for L∞ with Lp-norm topologies for p ≥ 1, which we will use for the discussion of
the completeness of the AH-market.

In Section 3, we apply these results to mathematical finance. In particular, in subsections
3.2 and 3.3 we give new proofs of the versions of the Second Fundamental Theorems of Asset
Pricing (abbr. SFTAP) obtained by Jarrow, Jin and Madan (1999) and Bättig (1999),
based on the notion of extremality of measures thanks to the results established in Section
2. The advantage of this approach is that it permits to work directly on the equivalent
martingale measures set of the market, using only some elementary geometrical argument.
In Subsection 3.4 we discuss the completeness of the Artzner and Heath market with respect
to several topologies and we obtain a more general construction of it.

2 A weak version of the Douglas-Naimark Theorem

2.1 Weak Douglas-Naimark Theorem for a dual system

We recall some basic facts about duality for a locally convex topological real vector space
(abbr. LCS). Let X, Y be a pair of real vector spaces, and let f be a bilinear form on X×Y ,
satisfying the separation axioms:

f (x0, y) = 0 for each y ∈ Y implies x0 = 0,

f (x, y0) = 0 for each x ∈ X implies y0 = 0.

The triple (X, Y, f) is called a dual system or duality (over R). To distinguish f from other
bilinear forms on X×Y , f is called the canonical bilinear form of the duality, and is usually
denoted by (x, y) 7→ 〈x, y〉. The triple (X, Y, f) is more conveniently denoted by 〈X, Y 〉.

If 〈X, Y 〉 is a duality, the mapping x 7→ 〈x, y〉 is, for each y ∈ Y , a linear form fy on
X. Since y 7→ fy is linear and, by virtue of the second axiom of separation, biunivocal, it
is an isomorphism of Y into the algebraic dual X∗ of X; thus Y can be identified with a
subspace of X∗. Note that under this identification, the canonical bilinear form of 〈X, Y 〉
is induced by the canonical bilinear form of 〈X, X∗〉.

We recall that the weak topology σ(X, Y ) is the coarsest topology on X for which the
linear forms fy, y ∈ Y , are continuous; by the first axiom of separation, X is a LCS under
σ(X, Y ).

Let 〈X, Y 〉 be a duality between LCS’s and let K ⊂ X be a cone, which introduce in X
a natural order ≤, which we call K-order, i.e. x ≤ x′ if x′ − x ∈ K. Now, we set

HK = {y ∈ Y : 〈x, y〉 ≥ 0 for each x ∈ K}

and we observe that it is a cone contained in Y . If there is no ambiguity about the cone K
we will consider, we will simply write H instead of HK .

We assume that Y is a vector lattice. We recall that a vector lattice is an ordered vector
space Y over R such that for each pair (y1, y2) ∈ Y , sup(y1, y2) and inf(y1, y2) exist. Thus,
we can define the positive and the negative part of each y ∈ Y by

y+ = sup (0, y)
y− = sup (0,−y)
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and its absolute value |y| = sup(y,−y) which satisfies |y| = y+ + y−. Finally, we have
y = y+ − y−.

We need some additional notation. If y ∈ Y and F ⊂ X, we set

Ξy,F = {z ∈ HK : 〈x, z〉 = 〈x, y〉 for every x ∈ F} .

If there is no confusion about the subset F , we will simply write Ξy. Finally, we set
K0 = K\{0} and H0 = H\{0}.

For more information on topological vector spaces, see e.g. Schaefer (1966) or Narici
and Berenstein (1985).

Theorem 3 Let F be a subspace of X.The following assertions are equivalent:

1. F is dense in (X, σ(X, Y ));

2. every y ∈ H0 is extremal in Ξy.

Proof. Firstly, we show that 1. implies 2.. It is known (e.g. exercise 9.108(a) in Narici
and Berenstein (1985), p.222) that F is dense in (X, σ(X, Y )) if and only if, for every y ∈ Y ,
〈x, y〉 = 0 for each x ∈ F implies y = 0. Now, we proceed by contradiction and we assume
that there exists y ∈ H0 not extremal in Ξy, i.e. we can write y = αy1 + (1 − α)y2 where
α ∈ (0, 1) and yi ∈ Ξy for i = 1, 2. Then, we have

〈x, y1〉 = 〈x, y2〉 = 〈x, y〉 ,

which implies
〈x, y1 − y2〉 = 0.

Then y1 = y2 = y.
In order to prove the other direction of the equivalence, we note that it is sufficient to

show, for every y ∈ Y , that if 〈x, y〉 = 0 for each x ∈ F , then y = 0. We assume that there
exist y0 ∈ Y and x0 ∈ X\F such that 〈x, y0〉 = 0 for every x ∈ F and 〈x0, y0〉 6= 0. Since Y
is a vector lattice, we can write y0 = y+

0 − y−0 and |y0| = y+
0 + y−0 ∈ H0, where y+

0 , y−0 ∈ H0.
Now, we observe that

|y0| =
1
2

(
2y+

0 + 2y−0
)

and, since 2y+
0 , 2y−0 ∈ Ξ|y0|, we have, by the extremality hypothesis, that |y0| = 2y+

0 = 2y−0 ,
which implies y0 = 0. �

We note that we have used the assumption that Y is a lattice only in the second part
of the proof. Then, even if Y is not a lattice, 1. still implies 2..
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2.2 The space L∞ equipped with weak topologies

Let (Ω,F , µ) be a measure space, where µ is a positive finite measure.
Now, we want to apply Theorem 3 to the special case X = L∞(µ) equipped with a

family of weak topologies. In this case, the order we consider is the usual one, i.e. for each
f, g ∈ L∞(µ), f ≥ g if f(ω) ≥ g(ω) for every x ∈ Ω. In other words, we choose K = L∞

+ (µ).

Corollary 4 Let F be a subspace of L∞(µ), where µ is a non null finite positive measure
and let p ≥ 1. The following assertions are equivalent:

1. F is dense in (L∞(µ), σ(L∞, Lp));

2. every g ∈ Lp(µ), such that g ≥ 0 and µ({g > 0}) > 0, is extremal in

Ξp (g) =
{

h ∈ Lp (µ) : h ≥ 0 and
∫

fhdµ =
∫

fgdµ for each f ∈ F

}
;

3. every non null finite positive measure ν � µ, such that dν
dµ ∈ Lp(µ), is extremal in

Ξp (ν) =
{

ρ ∈Mp (ν) :
∫

fdρ =
∫

fdν for each f ∈ F

}
where Mp(ν) is the space of finite positive measures ρ absolutely continuous with
respect to ν and such that dρ

dν ∈ Lp(ν).

Proof. It is an immediate application of Theorem 3. �

Corollary 5 Under the same assumptions of Corollary 4, if µ is a probability measure and
1 ∈ F , the following two assertions are equivalent:

1. F is dense in (L∞(µ), σ(L∞, Lp));

2. every probability measure ν � µ, such that dν
dµ ∈ Lp(µ), is extremal in

Ξ̃p (ν) =
{

ρ ∈ Pp (ν) :
∫

fdρ =
∫

fdν for each f ∈ F

}
where

Pp (ν) = {ρ ∈Mp (ν) : ρ (1) = 1} .

Proof. If F is dense in (L∞(µ), σ(L∞, Lp)), then, by Corollary 4, every probability
measure ν � µ such that dν

dµ ∈ Lp(µ) is extremal in Ξp(ν) ⊃ Ξ̃p(ν) and it follows that ν is

extremal in Ξ̃p(ν). Then, 1. implies 2..
Now, we assume that there exists a positive finite measure ν � µ, such that dν

dµ ∈ Lp(µ),
which satisfies ν = αρ1 + (1 − α)ρ2 with α ∈ (0, 1) and ρi ∈ Ξp(ν) for i = 1, 2. By setting
ν = ν

ν(1) , we have

ν = α
ρ1

ν (1)
+ (1− α)

ρ2

ν (1)
,

and, since 1 ∈ F , ρ1(1) = ρ2(1) = ν(1) and so ρi = ρi

ν(1) ∈ Ξ̃p(ν) for i = 1, 2. �
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2.3 The space L∞ equipped with Lp-norm topologies

In this subsection, we obtain a Douglas-Naimark Theorem for L∞(µ) equipped with Lp-
norm topologies, i.e. the topologies induced by the norms ‖ · ‖p for p ≥ 1. In the proof we
will essentially use the same argument as in the proof of Theorem 3.

Theorem 6 Let F be a subspace of L∞(µ) such that 1 ∈ F and let p, q > 1 such that
1
p + 1

q = 1. The following assertions are equivalent

1. F is dense in (L∞(µ), ‖ · ‖p);

2. for each g ∈ Lq such that g ≥ 0 and
∫

gdµ = 1, the probability ν = g ·µ is extremal in
Ξ̃q(ν).

Proof. We first show that 1. implies 2.. The Hölder inequality shows that if F is dense
in L∞(µ) for the Lp(µ)-topology, then it is dense even for the σ(L∞, Lq)-topology. So
Corollary 5 applies and the thesis follows.

In order to show that 2. implies 1. it is sufficient to show that if h ∈ Lq(µ) verify∫
fhdµ = 0 for each f ∈ F , then h = 0 µ-a.s.. We assume, without loss of generality, that

ν = |h| · µ is a probability. As usually, we denote by h+ and h− the positive and negative
parts, respectively, of h. Hence, we have∫

fh+dµ =
∫

fh−dµ

for every f ∈ F . Hence

ν = |h| · µ =
1
2

[
(2h)+ · µ + (2h)− · µ

]
is a middle-sum of two points of the set Ξ̃q(ν). But, by assumption, ν is an extremal point
of Ξ̃q(ν) and then |h| = 2h+ = 2h− µ-a.s., which implies h = 0 µ-a.s.. �

An immediate consequence of Corollary 5 and Theorem 6 is the following

Corollary 7 Let F ⊂ L∞(µ) be a subspace such that 1 ∈ F and let p, q > 1 such that
1
p + 1

q = 1. F is dense in (L∞(µ), σ(L∞, Lp)) if and only if it is dense in (L∞(µ), ‖ · ‖q).1

Remark 8 For the case p = 1, being L∞(µ) dense in (L1(µ), ‖ · ‖1), we have the same
equivalence as in Theorem 1: let F be a linear subspace of L∞(µ) containing 1, then F is
dense in (L∞(µ), ‖ · ‖1) if and only if µ is an extremal point of the set Ξ1(µ). Indeed, if F
is a subspace of L∞(µ) containing 1 and dense in (L∞(µ), ‖ · ‖1), then it is also dense in
(L1(µ), ‖ · ‖1) and so item 3. of Theorem 1 holds. On the other hand, if the latter holds
then F is dense in (L1(µ), ‖ · ‖1) and obviously in (L∞(µ), ‖ · ‖1) too.

1As pointed out by an anonymous referee, the previous equivalence can be directly proved by using Hölder
inequality and the duality (Lp, Lq) without assuming 1 ∈ F .
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3 Applications to finance

3.1 The model

Let (Ω,F , P ) be a probability space. We consider a financial market where the set of
trading dates is given by T ⊆ [0, 1], with T ={0, 1} or T =[0, 1], and we denote S the set of
discounted price processes of this economy, i.e. S is a family of stochastic processes indexed
by T and adapted to the filtration F =(Ft)t∈T , where F0 is the trivial σ-field and F1 = F .
For simplicity, we assume that, for each S = (St)t∈T ∈ S, S0 = 1. We note that the set
S may be infinite. In the continuous-time case, we will always suppose that F satisfies the
usual conditions and each price process S ∈ S is càdlàg.

Following Jin, Jarrow and Madan (1999) and Bättig and Jarrow (1999), we identify
the set of contingent claims with the space of all essentially bounded random variables
L∞ = L∞(Ω,F , P ) equipped with some topology τ . We call P the true probability of the
market.

Finally, throughout the sequel, R will be the set of real numbers and, if A is an arbitrary
subset of L∞, v.s.(A) will denote the vector space generated by A.

Now, we give two notions of market completeness for the discrete and the continuous-
time cases.

Definition 9 (discrete-time case) Let T = {0, 1}. The market S is said to be τ -complete
if the set

Yd = v.s. ((S1 ∪ R) ∩ L∞)

where S1 = {S1;S ∈ S}, is total in L∞ for the topology τ .

Definition 10 (continuous-time case) Let T = [0, 1]. The market S is said to be τ -complete
if the set

Yc = v.s. ((I ∪ R) ∩ L∞)

is dense in L∞ for the topology τ , where

I = {Y (Sτ − Sσ) : σ ≤ τ F-stopping times, Y ∈ L∞ (Fσ, P ) , S ∈ S} .

We observe that the spaces Yc and Yd are not empty, both containing 0. The space
L∞ will be equipped with the strong topology, i.e. the topology induced by the supremum
norm ‖ · ‖∞, and the weak topologies σ(L∞, Lp) for p ≥ 1. If the market is τ -complete
with τ = ‖ · ‖∞ or τ = σ(L∞, L1), we will say that it is strongly complete or, respectively,
weakly* complete.

A detailed discussion of the economic interpretation of the topology σ(L∞, L1) can be
found in Bättig and Jarrow (1999).

If we apply Corollary 4 to these notions of market completeness, we obtain immediately
the following equivalence.
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Theorem 11 Let p ≥ 1. The following two assertions are equivalent:

1. The market is σ(L∞, Lp)-complete;

2. every probability measure Q�P such that dQ
dP ∈ Lp(P ) is extremal in Ξ̃p(Q).

Proof. Choose F = Yd for the discrete time case and F = Yc for the continuous time
one. �

3.2 The second fundamental theorem of asset pricing: the discrete-time
case

In this subsection we will treat the case T = {0, 1}. Finally, we denote by M the set of all
martingale probability measures for S and we set

Ma = {Q ∈M : Q � P}

and
Me = {Q ∈M : Q ∼ P} .

In this case a process S ∈ S is a Q-martingale if S1 ∈ L1(Q) and EQ(S1) = 1.
Thanks to Theorem 11, we can re-demonstrate, using only some geometrical argument

based on the notion of extremality, two results which have been initially obtained by Jarrow,
Jin and Madan (1999).

Theorem 12 Let p ≥ 1 and let the market be σ(L∞, Lp)-complete. Then, there exists at
most one Q∈Me such that dQ

dP ∈ Lp(P ).

Proof. We assume that there exist two equivalent martingale probability measures Q1

and Q2 for S. Since Me is a convex set, for each α ∈ [0, 1], Qα = αQ1 + (1 − α)Q2 is
an equivalent martingale probability measure for S. But, since the market is σ(L∞, Lp)-
complete, by Theorem 11, every Qα must be extremal in Ξ̃p(Qα) = M⊇ [Q1, Q2], which is
a contradiction if we choose α ∈ (0, 1). �

Let ν be a finite signed measure over the measurable space (Ω,F). We will say that
S = (1, S1) ∈ S is a ν-martingale if S1 is |ν|-integrable and ν(S1) =

∫
S1dν = 1.

We denote by Ms the space of all finite signed measures ν which are absolutely contin-
uous with respect to P , such that ν(Ω) = 1 and each S ∈ S is a ν-martingale.

Theorem 13 Let Ms be nonempty. The following two assertions are equivalent:

1. the market is weakly*-complete;

2. Ms is a singleton.
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Proof. Firstly, we show that 2. implies 1.. We fix ν ∈ Ms, which exists by assumption,
and assume that the market is not weakly*-complete, i.e. by Theorem 11 there exists a
probability Q � P such that

Q = αQ1 + (1− α) Q2

where α ∈ (0, 1) and Qi ∈ Ξ̃1(Q) for each i = 1, 2. Now, we set

νi = Qi −Q+ν

for i = 1, 2. Then, since νi(S1) = EQi(S1) − EQ(S1) + ν(S1) = 1, for each i = 1, 2, νi is
martingale signed measure for S. Furthermore, since Q1 ≤ 1

αQ and Q2 ≤ 1
1−αQ, we have

Qi � Q � P for every i = 1, 2... Then, since |νi| ≤ Qi + Q + |ν|, we have |νi| � P for each
i = 1, 2. This shows that ν is not unique in Ms and so 2. implies 1..

To show that 1. implies 2., proceed by contradiction and suppose that Ms ⊇ {ν1, ν2},
with ν1 6= ν2. Observe now that, by the definition of Ms, ν1(S1) = ν2(S1) = 1 and
ν1(Ω) = ν2(Ω) = 1, that is

ν+
1 (S1)− ν−1 (S1) = ν+

2 (S1)− ν−2 (S1) = 1 (1)

and
ν+
1 (Ω)− ν−1 (Ω) = ν+

2 (Ω)− ν−2 (Ω) = 1, (2)

where ν+
i and ν−i (i = 1, 2) are, respectively, the positive and the negative part of νi in its

Hahn-Jordan decomposition. This implies

ν+
1 (S1) + ν−2 (S1) = ν+

2 (S1) + ν−1 (S1) (3)

and
ν+
1 (Ω) + ν−2 (Ω) = ν+

2 (Ω) + ν−1 (Ω) := k > 0. (4)

Thus, define the two probability measures Q1 and Q2 as follows:

Q1 =
ν+
1 + ν−2

k
, Q2 =

ν+
2 + ν−1

k
. (5)

Observe that Q1 = Q2 on Yd and define Q := αQ1 + (1 − α)Q2 for some real α ∈ (0, 1).
It is straightforward to verify that Q � P (since |νi| � P , for i = 1, 2) and that Q1 and
Q2 are absolutely continuous to Q, which implies that Q1, Q2 ∈ Ξ̃1(Q). We have so built a
probability measure Q absolutely continuous to P that is not extremal in Ξ̃1(Q). Finally,
Theorem 11 applies and gives that 1. ⇒ 2. �

We recall that a necessary and sufficient condition for the existence of an equivalent
martingale probability measure (resp. finite signed measure) for S is the absence of free
lunch with free disposal (resp. free lunch). For the precise definition of these two conditions,
see Jin, Jarrow and Madan (1999). Here, we note only that, under the absence of free lunch,
there could exist arbitrage opportunities.
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3.3 The second fundamental theorem of asset pricing: the continuous-
time case

Here we pass to the continuous-time case, i.e. we take T = [0, 1], for which our main
reference is Bättig (1999). We suppose that the filtration F satisfies the usual conditions
and that each price process S ∈ S is càdlàg (right continuous with left limit).

We denote Mloc the set of all local martingale probability measures for S and we set

Ma
loc = {Q ∈Mloc : Q � P}

and
Me

loc = {Q ∈Mloc : Q ∼ P} .

If we use exactly the same argument as in the proof of Theorem 12, we obtain its
analogue in the continuous-time case. In order to avoid repetitions, we omit its proof.

Theorem 14 Let p ≥ 1 and let the market be σ(L∞, Lp)-complete. Then, there exists at
most one Q ∈Me

loc such that dQ
dP ∈ Lp(P ).

Now, let ν be a signed finite measure over (Ω,F) such that ν(Ω) = 1. We will say that
S ∈ S is a ν-local martingale if ν(f) = 0 for all f ∈ I and ν-integrable. We let Ms

loc denote
the space of all finite signed measures ν which are absolutely continuous to P and such that
ν(Ω) = 1 and each S ∈ S is a ν-local martingale .

Remark 15 For a complete treatment of martingales under a finite signed measure but
with a definition slightly different from ours, one can consult Beghdadi-Sakrani (2003); for
a striking extension to signed measures of Lévy’s martingale characterization of Brownian
Motion, see Ruiz de Chavez (1984).

Theorem 16 Let Ms
loc be nonempty. The following two assertions are equivalent:

1. the market is weakly*-complete;

2. Ms
loc is a singleton.

Proof. One may proceed exactly as in the proof of Theorem 13. �

3.4 The Artzner-Heath example

In this subsection, we study the τ -completeness of an Artzner-Heath market (abbr. AH-
market), which is a slight generalization of the pathological economy constructed by Artzner
and Heath (1995). Now we give its precise definition. We use the same notation as in the
previous section.

Definition 17 We say that a financial market S is of the AH-type or that it is an AH-
market if, P0 and P1 being two different equivalent probability measures,

M = [P0, P1] = {Pα = αP0 + (1− α) P1;α ∈ [0, 1]} .
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In this market we can choose P0 as the true probability measure. So, applying the
different versions of Douglas-Naimark Theorem, one has the following result.

Proposition 18 An AH-market satisfies the following three properties:

1. it is ‖ · ‖1-complete under Pα if and only if α ∈ {0, 1};

2. it is not strongly complete under Pα for each α ∈ [0, 1];

3. it is not weakly* complete under Pα for each α ∈ [0, 1].

Proof. The first and the third property are simple consequences of, respectively, Theorem
1 and Theorem 11. In order to prove the second property, we assume that there exists
α ∈ [0, 1] such that the market is complete w.r.t. Pα. By Theorem 2, this is equivalent to
the extremality of every ν ∈ ba+(Pα) in Ξba(ν). But, if we choose ν = Pβ for β ∈ (0, 1), Pβ

has to be extremal in Ξba(Pβ) ⊃ [P0, P1], which is obviously absurd. �

Remark 19 The previous proposition is a generalization of Proposition 4.1 of Artzner and
Heath (1995) and of the content of Section 6 of Jarrow, Jin and Madan (1999).

Now, we give a little more general construction of an AH-market than the original one
contained in Artzner and Heath (1995).

Firstly, we set (Ω,F) = (Z∗,P(Z∗)), where Z∗ is the set of integers different from zero,
and S = {Sn : n ∈ Z}. Now, we assume that every random variable Sn

1 has a two-points
support, i.e.

suppSn
1 = {n, n + 1} for n > 0 (6)

Sn
1 (k) = S−n

1 (−k) for n < 0

S0
1 =

1
K (p1 + q1)

(
1{1} + 1{−1}

)
.

Remark 20 The hypothesis on the support of the price processes is not restrictive at all.
Actually, thanks to Lemme A of Dellacherie (1968), we know that the extremality of a
probability P in the set of martingale probabilities for a process S = (1, S1) ∈ S, implies
S ≡ 1 or that the support of the law of S1 is a two-points set. In financial terms the result
of Dellacherie means that, in a two-period setting, the only market model which is both
arbitrage-free and complete is the binomial one.

Then, we fix two different equivalent probabilities P0 and P1 over (Ω,F) and we denote,
for every n ∈ Z∗, p0

n = P0({n}) and p1
n = P1({n}).

Every process S ∈ S has to be a martingale under P0 and P1. Then, we have

Q ({n}) Sn
1 (n) + Q ({n + 1}) Sn

1 (n + 1) = 1 for every n > 0, (7)

11



for Q ∈ {P0, P1}, i.e. for every n > 0

p0
nSn

1 (n) + p0
n+1S

n
1 (n + 1) = 1, (8)

p1
nSn

1 (n) + p1
n+1S

n
1 (n + 1) = 1.

We solve (8) with respect to Sn
1 and we found for each n > 0

Sn
1 =

(
p0

n+1 − p1
n+1

)
1{n} −

(
p0

n − p1
n

)
1{n+1}

p1
np0

n+1 − p0
np1

n+1

. (9)

Hence, we have constructed a class S of processes, which are martingales under both P0

and P1, i.e.
[P0, P1] ⊂M.

Now, we fix Sn
1 and interpret (8) as an equation with respect to the vector Q and we found

that its solutions are of the form Pλ = λP0 + (1 − λ)P1 for λ ∈ R. This implies, for this
kind of market,

M⊂ {Pλ;λ ∈ R} .

Now, we look for some conditions on P0 and P1 such that Pλ is not a probability when
λ /∈ [0, 1].

Lemma 21 Let P0 and P1 be two different equivalent probabilities over an arbitrary mea-
surable space (Ω,F). The following two properties are equivalent:

1. Pλ = λP0 + (1− λ)P1 is a probability if and only if λ ∈ [0, 1];

2. dP0
dP1

and dP1
dP0

are not bounded.

Proof. Firstly, we assume that the Radon-Nikodym derivative dP1
dP0

is bounded, i.e. there
exists a constant M > 1 such that dP1

dP0
≤ M almost surely. Let f : Ω → R be a measurable,

positive and bounded function. If λ > 1, we have∫
fdPλ =

∫
f

(
λ + (1− λ)

dP1

dP0

)
dP0

≥
∫

f (λ + (1− λ) M) dP0.

Then, if one chooses λ > 1 such that λ + (1− λ)M ≥ 0, i.e. λ ≤ M
M−1 , Pλ is a probability

measure. If we assume that the other Radon-Nikodym derivative is bounded, then we found
that there exists λ < 0 such that Pλ is a probability.

Now, let dP1
dP0

be unbounded, i.e. for every M > 0

Pα

(
dP1

dP0
≥ M

)
> 0 for α = 0, 1.

12



Let f = 1{ dP1
dP0

≥M} and λ > 1. Then, we have

∫
fdPλ =

∫
{

dP1
dP0

≥M
}

(
λ + (1− λ)

dP1

dP0

)
dP0

≤ (λ + (1− λ) M) P0

(
dP1

dP0
≥ M

)
< 0

for M sufficiently large. For the case λ < 0, we proceed exactly in the same way, using the
fact that dP1

dP0
is supposed unbounded. �

Finally, thanks to Lemma 20, we have the following result, which is a generalization of
the construction contained in Section 3 of Artzner and Heath (1995).

Proposition 22 Let P0 and P1 two different equivalent probability measures on (Z∗,P(Z∗))
which satisfy condition 2 of Lemma 21. Then the class S defined by (6) and (9) is an AH-
market, i.e.

M = [P0, P1] .

Example 23 (Artzner and Heath (1995)) Let 0 < p < q < 1 be two real numbers. We set,
for every n > 0,

P0 ({n}) = Kpn1{n>0} + Kq−n1{n<0}

P1 ({n}) = P0 ({−n}) for every n ∈ Z∗,

where K is a renormalizing constant. In this case, it is obvious that

lim
n→+∞

dP1

dP0
(n) = lim

n→+∞

(
q

p

)n

= +∞

and

lim
n→−∞

dP0

dP1
(n) = lim

n→−∞

(
p

q

)n

= +∞.

So the previous proposition applies, and we find that for

Sn
1 =

(
qn+1 − pn+1

)
1{n} + (qn − pn)1{n+1}

Kpnqn (q − p)
(10)

the set of all equivalent martingale probabilities for S is equal to the segment [P0, P1].
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4 Conclusions

In this paper, we have established in a very easy way a weak version of the Douglas-Naimark
theorem, which relates the density (with respect to the weak topology) of a subspace of a
vector topological locally convex space with the extremality of a certain family of linear func-
tionals. Then, in Subsection 2.2, we have applied this result to the space L∞(µ) equipped
with the topologies σ(L∞, Lp) for p ≥ 1, where µ is a probability measure, and in Subsec-
tion 2.3 we have shown an analogue result for the spaces (L∞(µ), ‖ · ‖p), p ≥ 1. Finally,
thanks to these results, we have obtained, in Section 3, a condition equivalent to the market
completeness and based on the notion of extremality of measures, which has permitted us
to give new elementary proofs of the second fundamental theorem of asset pricing and to
discuss the completeness of a more general construction of the Artzner-Heath example.
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