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A B S T R A C T

Complexity pursuit (CP) has recently been proposed as an elegant and simple solution to blindly
(i.e. without measuring the inputs) separate the modal contributions in the vibration responses
of a structure. This potentially finds considerable interest in operational modal analysis and
related applications. This paper analyses the theoretical ins and outs of the method. It also
revises its physical interpretation in the modal analysis context. CP is found to separate
components which are the least dispersive (i.e. invariant under linear filtering), a property that
well characterizes the modal responses of lightly damped systems. However, it is also found to
suffer from the same limitations as other blind source separation methods used in the state-of-
the-art, namely the difficulty to separate strongly coupled modes and to identify complex mode
shapes. Finally a generalization of CP is proposed which intends to widen its applicability.
Interestingly, the generalized CreP happens to include the well-known SOBI algorithm as a
particular case.

1. Introduction

Complexity Pursuit (CP), a new blind source separation (BSS) technique, was recently introduced in [1–3] and demonstrated to
decompose the vibration responses of a structure into individual modal contributions. Such a technique is of particular interest
within the context of operational modal analysis (OMA) due to its ability to blindly (i.e. without measuring the inputs) decouple a
multiple-degree-of-freedom system into a set of single-degree-of-freedom components, as demonstrated in precursory works [5–
8,10–13] and in later developments [14]. In particular, it can greatly simplify the subsequent identification task required for
extracting the modal information from the system responses: the global modal parameters (natural frequencies and damping ratios)
can easily be identified by using single-degree-of-freedom methods and the mode shape estimated from the inverse of the separation
matrix. The BSS technique of [1] is an adaptation of the complexity pursuit (CP) principle initially formulated in [4] in a statistical
learning context (note that [15] independently formulated a BSS method based on a similar idea). Basically, it consists in finding a
modal filter intended to extracting an individual modal contribution by minimizing the energy ratio between two filtered versions of
the output signals. Namely, using the notations of [1], let the column vector
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denotes the observed vibration responses of a structure at time produced by a mixture of modal coordinates weighted by mode
shapes , (columns of the modal matrix ). The objective is to find a modal filter (a raw vector) such that

returns an estimate of up to a scaling factor, from which global modal parameters can be subsequently recovered, on the one
hand. One the other hand, the inverse of matrix made of the rows , is an estimate of the modal matrix that contains
information on the mode shapes. The principle of CP is to estimate such as to minimize the ratio

where stands for the time average operator and superscript symbolically represents two different filtered versions of the
same signals. In its original formulation, (resp. ) is the residual between the actual signals and a long-term predictor

(resp. short –term predictor )

[1–3] used and by default.
As stated in [1], the rationale beyond criterion (3) is to seek a separation vector that yields the “least complexity and thus

approaches the (simplest) source signal, where the complexity is robustly measured by temporal predictability”. Using the authors’
words, CP is “computational efficient, user-friendly, and automatic, requiring little expertise interactions for implementations”.
Indeed, the minimization of criterion (3) with respect to simply amounts to computing the generalized eigenvectors of the cross-
correlation matrices and (see Section 3.1).

A first objective of this paper is to provide the theoretical foundation and physical interpretation of the CP that are lacking in [1].
In view of its potential importance to OMA, it is imperative to establish at the onset whether it is capable of separating modal
contributions in the general scenario and, if not, to delineate its limits. In particular, the question arises as whether it can resolve
highly coupled modes (e.g. closely spaced frequencies and/or strongly damped modes) and complex mode shapes, two
configurations which are still challenging to cutting-edge BSS techniques [14]. Second, it is also compulsory to compare its
performance against SOBI [17], a state-of-the-art BSS technique used in OMA which has been standing as a point of reference since
a few years [7,8,10,14].

A second objective of the paper is to propose a generalization of CP that is shown to apply more widely and provides perspective
for the proposal of new BSS algorithms.

The main results of this paper are summarized hereafter:

1) The solutions of CP, as formulated by Eqs. (2)–(4), are pure sines. Strictly speaking, this generally precludes the exact recovery of
vibration modes as soon as damping is present in the system.

2) However, very good separation of lightly damped modes is to be expected provided the built-in filters of CP are smooth enough to
be considered as approximately constant across the mode bandwidths.

3) The original formulation of CP in terms of short and long-term predictors (Eq. (4)) can be generalized to the consideration of any
type of filters, provided they are smooth enough in the sense of point (2). This makes obsolete the interpretation of CP as seeking
for the least complex components that are “maximally predictable”.

4) The physical interpretation of the CP is to seek vibration components that remain invariant under arbitrary (linear) filtering. In
terms of waveforms, these are components which are as least dispersive as possible, that is nearly invariant under linear filtering.
Non-dispersion is an intrinsic property of pure sines, yet it can be approached remarkably well by lightly damped modes whose
modal coordinates resemble slowly modulated sinusoids. Least complexity in CP is therefore to be measured by “dispersion”
rather than by “predictability”.

5) CP is generally unable to recover complex mode shapes (e.g. in the case of non-proportional damping) since the generalized
eigenvectors of square real symmetric matrices and are real-valued, unless specific pre-processing is
used as suggested in [10].

6) CP presents a strong analogy with AMUSE, the two time-lag version of SOBI [18]. Some particular choices of the built-in filters
can make it identical to AMUSE.

7) Simulations show that CP is not superior to SOBI in the general case and that it suffers from the same difficulty to separate
strongly coupled modes and complex mode shapes.

8) A generalization of the original CP algorithm is proposed that involves an arbitrary number of filters. This involves an approximate
joint diagonalization of a set of cross-correlation matrices which is likely to improve the performance of the plain-vanilla CP
method. The generalization includes SOBI as a particular case.

9) Several sets of filters are tested on simulated and real data in order to demonstrate how to optimize the separation of vibration
components. One advantage of the generalized CP is to provide a versatile algorithm that is intended to shortcut this step.
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The proofs of these results are given in the rest of the paper. Section 2 first establishes the optimality condition under which
criterion (3) is minimized. Next, Section 3 investigates the behavior of the criterion when trying to separate modes of a dissipative (i.
e. non-zero damping) system and discusses the design of optimal filters. Section 4 then introduces the generalized version of CP.
Finally, Section 5 provides some comparisons of CP, its generalized version, and SOBI by means of numerical experiments, Section 6
experimentally addresses the optimization of filters, and Section 7 demonstrates the applicability of the generalized algorithm on real
data.

2. Optimality condition

The very first matter to investigate is which type of signals is a solution of the minimum of criterion (3). In order to do so, let us
use Parseval's identity in Eq. (3),

where , stands for the Fourier transform of and for the transfer function that relates the
filtered signal to its original version . For instance, according to Eq. (4), , .
Following the principles of variational calculus, let us assume that is close to its optimal solution , that is

where stands for a small perturbation. Thus

where symbol denotes the conjugate operator, constants U and V where defined in Eq. (5), and higher-order terms in have
been neglected (see proof in Appendix A). The optimality condition requires that whatever the perturbation , which
implies that the actual solution must verify the equation

Ignoring the trivial solution , one must have . But this cannot hold identically, for all frequencies,
otherwise ratio would be invariant whatever the value of . Thus, the only putative solution is in the form

where is a finite set of fixed frequencies. After insertion into Eq. (7), this implies

At the same time such a solution yields

Upon identification of Eqs. (8) and (9), one must have

which cannot be satisfied in general for arbitrary transfer functions (e.g. arbitrary values of and in Eq. (4)) unless all ’s are nil
but one. Therefore the pure sine (with arbitrary amplitude and frequency ) is the minimizer of the CP
criterion, a result which is consistent with other BSS criteria recently proposed in the field of modal analysis [19].

It is emphasized that this result has been established without any statistical assumption on the modal contributions. In
particular, they have not been assumed independent as is the current practice in BSS. Indeed, there is no physical reason why
independence should hold in modal analysis in general [14], the reason why it is not taken as a premise in this work.

Another remarkable implication of the optimality condition (7) is that it applies independently of a particular form of the transfer
functions, and , as long as they are not identical. Indeed, the conclusion that a pure sine is the only solution to the CP
principle has been arrived at without using the structure given in Eq. (4). Alternatively, assuming such a structure would have not
changed the conclusion. This makes obsolete the interpretation of CP as seeking for least complex components that are maximally
predictable, as given in [1–4]. Rather, complexity should be measured by the propensity of a component to be dispersive. This also
paves the way to the design of more efficient BSS algorithms based on different and optimized filters (see Section 4).

3. Identifiability of damped modes

The optimality condition found in the previous section states that if a sinusoid is present in a set of vibration responses, then it
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will be extracted by CP. Obviously, such a situation is quite unrealistic in OMA where the generation of pure sines would require the
system to be perfectly conservative (i.e. without damping). It is therefore compulsory to investigate the capability of CP to
(approximately) separate damped modes in a real-world scenario.

3.1. Inherent working assumptions of CP

The results of this subsection are established under the assumption of a steady state and stationary regime (they equally hold for
transient responses1). Without loss of generality, let us express the modal contributions of a dissipative structure as slowly
modulated sinusoids. Thus, the overall vibration responses read

where and are slow amplitude and phase modulation functions, respectively. Note that at this stage no additive noise is
assumed for the sake of simplicity; robustness of CP with respect to additive noise will be experimentally investigated in subsection
5.4. The next step is to filter these responses through transfer functions , . Provided that is smooth enough so
that it can be assumed nearly constant across the spectrum of and , then

holds to a very good approximation, where denotes the phase of the transfer function such that . The last

step is to compute the cross-correlation matrices of the filtered signals, , , as required in the CP criterion (3). This
involves cross-correlations

which are nearly zero provided that the distance between resonance frequencies and is greater than the spectral bandwidth of
and . Therefore, the cross-correlation matrix reads

with the modal matrix given in Eq. (1) and a diagonal matrix whose i-th element is returned by

with . Finally, the CP criterion reads

which is recognized as a Raleigh quotient, the minimum of which is returned by the smallest eigenvalue in the generalized eigenvalue
decomposition [16]. Repeating the procedure for all components (the first component achieves
the smallest minimum, the second one the next minimum and so on…), one obtains the matrix of generalized eigenvectors,

which, as well-known, makes diagonal and , the identity matrix (note in passing
that these steps provide a more efficient algorithm to find the separation matrix of CP than the gradient ascent method initially
proposed in [4]). Since and were found diagonal, this necessarily implies that

where stands for the diagonal matrix with i-th element . According to Eqs. (2) and (11), the separating matrix given by Eq.

(17) correctly returns an estimate

of the i-th modal coordinate up to an unknown scaling factor and up to the effect of additive noise. In passing, the inverse matrix
also returns an (unscaled) estimate of the modal matrix .

So far, it seems reassuring that damped modes can indeed be separated by CP to a certain degree of approximation, even though
they are not pure sines. The three assumptions which made this approximation valid are resumed hereafter:

1 The proofs are essentially the same after redefining all time averages by finite-length summations.
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1. The effect of additive measurement noise can be neglected at the resonance frequencies (an assumption that is common to most
BSS methods)

2. The frequency gains used in CP should be smooth enough to be nearly constant across the mode bandwidth (e.g. as defined by
the half-power width). In other words, the effective impulse response length of the filters should be much shorter than the
relaxation time of the system:

3. At the same time, the spectral separation of adjacent modes should be large enough so that they can be assumed nearly
uncoupled, which may be safely stated as having the modal overlap factor smaller than one

Under these assumptions, damped modes will actually mimic the behavior of the ideal pure sines that are minimizers of the CP
criterion – see Fig. 1. Any departure to conditions (19) and (20) will jeopardize the separation capability of CP. Alternatively, the
degree to which conditions (19) and (20) are satisfied directly reflects the approximation error made in using CP when trying to
separate damped modes.

Finally, a last necessary condition relates to the ability of CP to separate all damped modes active in a system. It requires that
matrices and have distinct generalized eigenvalues

3.2. Revising the interpretation of CP

The above results now make it clear that CP tries to separate components that are least invariant under arbitrary but smooth
linear filters. Strictly speaking, pure sines are the only waveforms which are exactly non-dispersive under linear filtering. However,
the property has been shown to hold approximately for damped modes provided dissipation is light enough in the sense of condition
(19). In other words, the least complex components extracted by CP are the least dispersive possible. This suggests that the concept
on “complexity” in CP should rather be measured by the propensity to dispersion rather than by predictability as originally
formulated in [4].

3.3. Connection with AMUSE

When generalized to an arbitrary pair of linear filters, it appears the CP includes AMUSE [18] as a particular case, an algorithm
which bears some historical reputation in BSS [9]. The connection is all the more important as it also suggests a link with SOBI [17]
– to be revealed in Section 4 – the evolution of AMUSE which currently stands as a point of reference in BSS.

Briefly stated, the principle of AMUSE is to seek that separation matrix which jointly diagonalizes a set of cross-correlation
matrices , , at two time-lags and . Specifically, it returns the rows of matrix that minimize

The resemblance with the CP criterion (5) is striking, where plays the role of the frequency gain , . Indeed,
strict equality holds if one designs filters ’s such that their squared magnitudes equal , which requires the use of

Fig. 1. Definition of the spectral separation and mode bandwidth B used in conditions (19) and (20).
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fractional time-lags such that in the frequency band . Another possibility is to set in Eq. (22) and

then to note that the maximization of is equivalent to that of . Thus,

which is identical to CP with and for any time-lag .
The above observations unveil an intimate relationship between AMUSE and CP. At the same time, it makes it clear that CP will

suffer from all the same limitations as AMUSE when used in OMA, in particular the difficulty to identify complex mode shapes and to
separate strongly coupled modes [10].

3.4. Optimal pair of filters

The previous discussions raise the question as whether there exists an optimal pair of filters to use in CP that maximizes the
separation between modes.

A sensible objective is to maximize the contrast between eigenvalues , . According to perturbation theory [16], this will
strengthen the stability of the algorithm in the presence of estimation errors due to finite-sample size of the measurements and
additive noise. Based on the results of subsection 3.1, a relevant measure of contrast between two adjacent modes is returned
by the ratio of eigenvalues and , which should be as large as possible. From Eq. (21), one finds

The ratio is maximized by choosing transfer functions, and , whose magnitudes are as different as possible at the
resonance frequencies and . This proves that the somewhat arbitrary filter weights initially suggested in [1,2,4] are by no means
optimal for all purposes (nor are bandpass filters designed around the resonance frequencies of the structural modes as one could
possibly think in a first place). Apart from maximizing the contrast between modes, the filters are so far not constrained to any
specific shape (e.g. high-pass, band-pass, etc.), which leaves quite a flexibility in the method. Section 6 will further investigate this
issue from an experimental point of view.

Noteworthy also is the antagonism between requests of having a strong contrast between filter gains at the resonance frequencies
and the smoothness constraint imposed by condition (19), especially in the presence of closely spaced modes.

4. A generalization of CP

The interpretation of CP as in terms of invariance with respect to linear filters suggests immediate generalizations. A first one is
to jointly diagonalize the cross-correlation matrices of several filtered versions of the signals instead of only two. This may be
advantageous to prevent situations where some predefined filters and would be poorly adapted to separate a specific
mixture of components (see Section 3.4). By multiplying the number of candidate filters an increased versatility of the algorithm is
therefore expected as well as better numerical stability and robustness against estimation noise. A second generalization is to allow
any type of filters with possibly complex coefficients, which will include SOBI as a particular case. This leads to a general algorithm
which is formulated hereafter in the frequency domain.

Specifically, let us introduce a set of smooth complex frequency gains , . The objective is to find that separation

matrix which jointly diagonalizes the set of cross-correlation matrices for all wherein stands for
the system response filtered with transfer function . Using Parseval's identity, the cross-correlation matrices may be

expressed as , where vector contains the Fourier transforms of the elements of

vector and symbol H stands for the conjugate transpose operator. Hence the following optimization problem

where stands for the operator which zeroes the diagonal elements of a matrix and for the Frobenius norm of that matrix. A
pseudo code to solve Eq. (25) is given in Appendix B.

Criterion (25) has several advantages.

• First it allows the inclusion of several different filters (not only two) with a greater chance that some of them will be optimally
adapted to separating an unknown mixture of modes as explained in subsection 3.4.

• Second, the frequency domain formulation offers easy and flexible design of the filters as well as a superior control on the
frequency bands of interest. Noteworthy is the fact that it applies equally well to stationary and transient responses, or mixtures of
both.
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• Third, the proposed generalization accepts several other BSS algorithms as particular cases. The connection with AMUSE has
already been established in subsection 3.3. The connection with SOBI – which is an extension of AMUSE seeking the
diagonalization of cross-correlation matrices for several (more than two) time lags – is now immediate with

(see Eq. (22)) where negative values of (and therefore complex values of ) are allowed.

The fact the generalized CP includes other BSS algorithms as particular cases is theoretically interesting in an effort towards
unification (see Table 1). It also necessarily places generalized CP at the same performance level of the BSS algorithms it embraces,
in particular SOBI which, as mentioned in the introduction, probably stands as the one of the most famous algorithms used in OMA
[7,8,10,14].

5. Numerical experiments

The aim of this section is to compare the behavior of the original CP algorithm, as introduced in [1–4], with some of its
generalizations addressed in the present paper as well as with the popular SOBI algorithm (a comprehensive analysis of SOBI in the
field of modal analysis is given in [14], for instance).

The objective here is not to so much identify the best algorithm (multiple criteria would have to be defined for this purpose and
tested on a much wider database), but rather to prove that all BSS algorithms falling in the generalization exposed in the present
paper have more or less a similar behavior.

The numerical examples detailed in [10] are reproduced here in an effort to comply with reproducible research. In all
experiments, three different versions of CP were implemented with constant parameters. The first one – hereafter denoted as CP1 –
follows the original derivation introduced in [1,4] and resumed by Eqs. (2) to (4). Values of and were set to and 0.5,
respectively, as advocated in [4]. This returned two transfer functions, and , whose squared magnitudes are displayed in
Fig. 2(a). The second CP algorithm – hereafter denoted as CP2 – was implemented by imposing the arbitrary transfer functions

displayed in Fig. 2(b), in order to demonstrate that the CP principle goes beyond the idea of predictability. The generalized CP
algorithm – hereafter denoted as GCP – was designed according to the formulation of Section 4 with a set of 10 smooth FIR filters
which are as different as possible, as shown in Fig. 2(c), in a hope to gain increased performance. The coefficients of the FIR filters
are listed in Table 2. The three CP algorithms were systematically compared with SOBI set with 10 times-lags .

5.1. First experiment

The first example is a 3 degree-of-freedom systems with mass, stiffness, and damping matrices given by

The system has closely spaced modes with natural frequencies at 0.104 Hz, 0.342 Hz, and 0.371 Hz. The corresponding damping
ratios are 4.0%, 2.0%, and 2.0%. The damping matrix was slightly modified as compared to [1] to make it exactly proportional in
order to force real modes. Although the system has closely spaced modes, one can check that condition (20) is verified. The 3 degrees
of freedom of the system were next driven with mutually uncorrelated white Gaussian noises in bandwidth [0;1 Hz] and the
responses computed with numerical integration with sampling frequency 4 Hz for a total number of samples per channel.

The experiment was repeated with increasing values of additive white Gaussian noise with noise-to-signal ratios (NSR) of −30,
−20,−10 and 0 dB. In each case, 1000 runs (i.e. independent realizations of the random excitation) were performed and the results
averaged together.

Table 1
Generalized CP and its particular cases.

Generalized CP

Original CP CP with other
pairs of filters

SOBI
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Fig. 3 displays the power spectra of the separated modal contributions (averaged over 100 runs) for the three CP and SOBI
algorithms in the noise-free case. Note that separated modes (identified by different colors) are returned in arbitrary order, as is
always the case in BSS. Excellent separation is observed for all candidates, although very small cross-talks are noticeable in some of
the separated spectra.

5.2. Second experiment

The same experiment was repeated after multiplying the damping matrix by a factor 10. This produced strong damping ratios of
19.8%, 19.5%, and 3.9%. As a consequence, condition (20) was slightly violated by about a factor 3. However, all algorithms could
still achieve a reasonable and comparable separation, at least qualitatively as seen in Fig. 4. Overall, this demonstrates a certain
robustness of CP to operate outside its theoretical range of applicability, when trying to separate heavily damped modes, just as it has
been recognized for SOBI [14].

5.3. Third experiment

The third experiment has structural properties given as follows:

which involves a non-proportional damping matrix not diagonalized by the normal modes. Thus, the difficulty will be to deal with
complex mode shapes, a situation where the “plain-vanilla” version of SOBI has been shown to fall short [10]. The system has natural
frequencies at 0.136 Hz, 0.247 Hz, and 0.500 Hz and corresponding damping ratios of 3.0%, 1.4%, and 1.7%.

Fig. 2. Squared magnitudes of transfer functions and used in a) CP1, b) CP2, and c) GCP (frequency axis normalized by the sampling frequency).

Table 2
Coefficients of FIR filters used in GCP.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

−0.00270176 0.00074839 0.00793082 −0.00806997 −0.00059523 0.00060147 0.00797567 −0.00796622 −0.00063695 0.00053202
−0.13447107 0.16656143 −0.02631705 −0.02635368 −0.02692993 0.02682634 −4.3467E−05 −0.00011371 −0.01751098 0.01753765
−0.00270004 0.0007479 0.17802799 −0.17811503 0.02569651 0.02689128 −0.02628817 −0.02628395 −0.00063534 0.00053071
0.76262007 0.56666309 0.65950143 0.65964058 −0.0927434 0.09263995 −4.3408E−05 −0.00011355 −0.00076176 0.05332482
−0.00270004 0.0007479 0.17802799 −0.17811503 −0.0005937 0.00059992 0.17797072 −0.17796129 −0.00063414 0.00052973
−0.13447107 0.16656143 −0.02631705 −0.02635368 0.14946082 −0.1495642 −4.3379E−05 −0.00011347 −0.09831987 0.09837106
−0.00270176 0.00074839 0.00793082 −0.00806997 0.65900912 0.66020236 0.65960524 0.65960945 −0.00063335 0.00052908
0 0 0 0 0.14946082 −0.1495642 −4.3379E−05 −0.00011347 0.13490052 −0.13494101
0 0 0 0 −0.0005937 0.00059992 0.17797072 −0.17796129 −0.00063295 0.00052875
0 0 0 0 −0.0927434 0.09263995 −4.3408E−05 −0.00011355 0.7342199 0.5848987
0 0 0 0 0.02569651 0.02689128 −0.02628817 −0.02628395 −0.00063295 0.00052875
0 0 0 0 −0.02692993 0.02682634 −4.3467E−05 −0.00011371 0.13490052 −0.13494101
0 0 0 0 −0.00059523 0.00060147 0.00797567 −0.00796622 −0.00063335 0.00052908
0 0 0 0 0 0 0 0 −0.09831987 0.09837106
0 0 0 0 0 0 0 0 −0.00063414 0.00052973
0 0 0 0 0 0 0 0 −0.00076176 0.05332482
0 0 0 0 0 0 0 0 −0.00063534 0.00053071
0 0 0 0 0 0 0 0 −0.01751098 0.01753765
0 0 0 0 0 0 0 0 −0.00063695 0.00053202
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Fig. 3. Column (a): power spectra of the vibration responses. Columns (b) to (e): power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI,
respectively. Light proportional damping. Red circles spot small residual cross-talks in the separated spectra. (dB ref 1 g2/Hz). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Column (a): power spectra of the vibration responses. Columns (b) to (e): power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI,
respectively. Strong proportional damping. (dB ref 1 g2/Hz).
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The separated components are displayed in Fig. 5. In agreement with the results of [10], SOBI is unable to separate the highest
mode, yet the same phenomenon is observed for all three CP algorithms.

5.4. Analysis of results

In order to obtain a quantitative means of comparison of the separation results, the following figure of merit is proposed,

which measures the relative logarithmic error between the actual spectra and the separated ones, , wherein
denotes frequency averaging (note that the subtraction of the logarithm average is to correct for the unknown

scale of the separated modal contributions). The relative error is averaged over 1000 independent runs. This figure of merit should
reflect very well the capacity of correctly identifying the natural frequencies and damping ratios of the structural modes in a
subsequent step following BSS. It is displayed in Fig. 6 for the three experiments reported in the previous subsections.

The first experiment with light proportional damping clearly returns very good separation results for all noise-to-signal-ratios
(NSR) less or equal to −10 dB and this independently of the BSS algorithm (Fig. 6(a)). The CP1 and the CP2 curves are
superimposed and show a relative error slightly superior to SOBI and GCP – also superimposed – for NSR≤−10 dB. Relative errors
for NSR=0 dB are quite high and therefore comparisons of performance are difficult in this range.

In the second experiment with strong proportional damping, GCP has the smallest relative error for NSR≤−10 dB and CP1 and
CP2 (again superimposed) have the highest (Fig. 6(b)). Although separation was still successful (see Fig. 4), the price to pay is a
notable reduction in the figure of merits. Again the high values of the relative errors for NSR=0 dB are not amenable to meaningful
comparisons.

The figures of merits of non-proportional damping with complex mode shapes are displayed in Fig. 6(c), where it is seen that all
algorithms fail equally in this difficult situation. This illustrates an important limit of the approach. This result seems in
disagreement with a conclusion of [1] where CP was claimed to be able to separate complex modes. It is believed that [1] applied CP
on the analytical signal and that the capability of separating complex modes then came from this pre-processing (as demonstrated in
[10]) rather than from the method itself.

In conclusion of this section, it is observed that:

Fig. 5. Column (a): power spectra of the vibration responses. Columns (b) to (e): power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI,
respectively. Non-proportional damping with complex mode shapes. (dB ref 1 g2/Hz).
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• CP1 and CP2 (with the specific choice of filters given in this section) perform identically, thus demonstrating that the CP principle
applies with any smooth filter.

• CP1 and CP2 both evidence poorer performance than SOBI in these examples.

• GCP is able to steer the performance of CP to the level of SOBI and even higher, thus demonstrating the advantage of using more
than 2 filters.

6. Experimental investigation of the optimality filters

Another experimental issue to investigate is the choice of the “best” set of filters for the application of CP in its generalized
versions. Previous tests were conducted by using arbitrary FIR filters, yet as shown in Section 3.4 the method can surely be optimized
by designing filters that are more adapted to the modal characteristics of a system. The corresponding frequency gains should be
reasonably smooth, nearly constant across the mode bandwidth, and at the same time as contrasted as possible (see Section 3).

This is first illustrated for the separation of two modes by means of two filters (method CP2). As discussed in subsection 3.4, for
an optimal separation the two filters should return frequency gains as different as possible, each one highlighting a particular mode
of the system. This is illustrated in Figs. 7 and 8 where a pair of high-pass filters has been used to test the spectral separation of
adjacent modes. In order to get an efficient separation, not only do the filters have to cut off the modes, but they should also magnify
them in a different manner. As seen in Fig. 9, the best results are obtained when the slope of the high-pass filters crosses a mode. On
the contrary, Figs. 7 and 8 illustrates two situations where the pair of filters locally put the same relative weights on the two modes (i.
e. the ratio in Eq. (24) is equal to its minimal value of one), which is clearly prone to failure.

Next the same experiment is repeated by using the generalized formulation of CP and spanning the frequency band of interest
with a bank of 8 high-pass filters (see Fig. 10). By construction, there is a better chance that some of the filters in the set will be close
to optimal. The good performance of the separation can be clearly seen in Fig. 10, together with a comparison with same-order SOBI
which fails in the identification of the two closely spaced modes.

Other interesting sets of filters which have been tested are octave bands and fractional octave bands. The rational beyond this
approach is that each filter will enhance a specific (narrow) band of frequencies and therefore magnify a prominent mode present in
that band (if any) while partially attenuating the “out-of-band” modes. The approach is illustrated in Fig. 11 where separation is
achieved correctly with GCP with 8 filters and not with the same-order SOBI.

7. Application to experimental data

The methodology is finally validated by analysis of experimental data. These come from a scale 5-story building located in
the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. The investigated structure, whose scheme is
shown in Fig. 12, is composed of five aluminum decks linked by thin steel beams; it might be reasonably considered as a 5-DOF
system as the plate stiffness is much higher than the flexural stiffness of the vertical beams. Its transient response is measured
and analyzed with the generalized version of CP by using sets of sinusoidal (GCP-S), octave-band (GCP-O) and high-pass (GCP-
H) filters in comparison to SOBI. Sampling frequency is normalized at 1 Hz and modes have been searched in the normalized
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Fig. 7. Application of CP by employing a pair of identical filters (dB ref 1 g2/Hz).
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Fig. 8. Application of CP by employing a filter outside the frequency band of interest (dB ref 1 g2/Hz).
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frequency interval [0 0.3] Hz. The same order (number of filters for GCP and number of time lags for SOBI) is used for all
techniques and it is set to 10.
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Fig. 9. Application of CP by employing a “good” pair of filters (dB ref 1 g2/Hz).
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Fig. 10. Generalized CP with a set of high-pass filters and comparison with SOBI (dB ref 1 g2/Hz).
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The modes separated by GCP using the different sets of filters and by SOBI are compared in Fig. 13. The four algorithms were
able to separate the modes of the structure, in particular the two pairs of adjacent modes at 0.022–0.024 Hz and 0.077–0.080 Hz.
SOBI proved slightly inferior in the identification of the mode at 0.101 Hz (some small cross-talks are noticeable on the fourth
separated spectrum).

8. Conclusion

This aim of this paper was to provide a theoretical analysis of the CP technique recently introduced in [1–3] within the context of
operational modal analysis. Since CP is claimed to blindly separate the individual modal contributions of a system from its vibration
responses only, its potential interest to practical applications is not to be underestimated. The main result of the paper is that CP, in
its original version, is not as versatile as it first appeared. It has been proved that the only modal contributions that it can separate
exactly (without resorting to the assumption of statistical independence) are made of pure sines: these are the responses of purely
conservative systems. The good news, however, is that CP is quite robust against this condition and that it works remarkably well in
separating damped modes, as long as the corresponding modal coordinates are slowly modulated sinusoids. This is actually
reminiscent to other BSS algorithms when applied to modal analysis. Robustness against additive noise has also been investigated.
Another result of the paper proves that CP can be generalized to the use of any smooth filters and not just those initially designed in
[4]. This conveys the technique a more general interpretation than it was initially given in terms of temporal predictability; namely,
CP tries to separate components which are as least dispersive (i.e. invariant under linear filtering) as possible. This indicates that
“complexity” is actually to be measured by a propensity of dispersion rather than by predictability. The same result also suggests a
generalization of CP which, in a similar spirit to SOBI, jointly diagonalizes the cross-correlation matrices of an arbitrary number of
filtered versions of the signals. Numerical simulations have shown that generalized CP is likely to improve the performances of the
plain-vanilla CP, similarly to SOBI which actually happens to be a particular case of the proposed generalization. Other
improvements are likely to result from the findings of this paper. One perspective is to use the first separation returned by a
general purpose family of filters and then iterate to design filters better optimized to the identified modes.
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Appendix A. : proof of Eq. (6)

Since is complex valued, the perturbation is sought by keeping constant. Therefore,
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Fig. 11. Generalized CP with a set of third-octave band filters and comparison with SOBI (dB ref 1 g2/Hz).
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Keeping only the first-order terms in the Taylor expansion,

Fig. 12. Scheme of the structure used in the experiment.
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Eq. (6) immediately follows after subtracting .

Appendix B. : pseudo code to solve Eq. (25)

Step 1: Compute the set of matrices , .

Step 2: Compute the eigenvalue decomposition of matrix , where and are diagonal and unitary matrices,
respectively.

Step 3: Compute the matrices

Step 4: Find which jointly diagonalizes the set of matrices , .

Any joint approximate diagonalization solver2 can be used in step 4 [20]; solvers dedicated to positive definite matrices [21] will
require in Eq. (25).
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