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ABSTRACT. In this paper, a study of failure in geomaterials is proposed through the analysis of
the second order work criterion. The analysis is restricted to the material point scale. Then
a phenomenological approach based on “macroscopic” constitutive models is adopted. In a
first part, an analytical investigation of this criterion is proposed. General 3D equation of
instability cones as well as of the 3D bifurcation domain limit are given for every incrementally
piece-wise linear constitutive model. In the second part, these instability cones and bifurcation
domain are displayed for constitutive models of Darve. Then a physical interpretation of these
results is proposed. Noticeably, it is proved that, when the second order work vanishes along
a given loading path, an extension of the notions of failure limit condition as well as of flow
rule can be defined for proper conjugated variables. It is also shown, that the Lode’s angle
(and not only the mean pressure associated with a deviatoric level) is also important according
to bifurcation. Finally we conclude that this approach constitutes a good starting point when
investigating bifurcation in geomaterials, and opens new horizons in experimental testing.

RÉSUMÉ. Dans cet article, une étude de la rupture dans les géomatériaux est proposée par
l’analyse du critère du travail du second ordre. Cette analyse se limite à l’échelle du point
matériel. Une approche phénoménologique basée sur des lois de comportement “macrosco-
piques” est adoptée. Dans une première partie, ce critère est étudié analytiquement. L’équation
générale à 3 dimensions dans l’espace des contraintes principales des cônes d’instabilités ainsi
que celle de la limite du domaine de bifurcation sont données pour toute loi incrémentalement
linéaire par morceaux. Dans la seconde partie, les cônes d’instabilités ainsi que le domaine
de bifurcation pour les lois de comportement de Darve sont présentés dans cet espace. Puis
une interprétation physique de ces résultats est proposée. Il est notemment prouvé, que lorsque
le travail du second ordre s’annule le long d’un chemin de chargement donné, une extension
des notions de la condition limite de rupture ainsi que celle de règle d’écoulement peuvent être
définis pour un certain jeu de variables conjuguées. Il est aussi montré que l’angle de Lode (et
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pas uniquement la pression hydrostatique associé au déviateur) est aussi important concernant
la bifurcation. Finalement, nous concluons que cette approche est bien appropriée à l’étude de
la bifurcation dans les géomatériaux, et ouvre de nouveaux horizons pour les expérimentateurs.

KEYWORDS: granular materials; bifurcation; second order work criterion; constitutive equations

MOTS-CLÉS : matétriaux granulaires, bifurcation, travail du second ordre, loi de comportement
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1. Introduction

The aim of this paper is to study failures in rate independent geomaterials. It is now
widely recognized, that different failure modes can develop strictly inside the plastic-
ity limit condition for such materials (soils, concrete, granular media) (Lade, 1992),
(Nova, 1991), (Darve et al., 1987), (Darve et al., 2004b). One of the most impor-
tant feature of these materials according to the failure, is their non associativeness.
Normality rule is not fulfilled, and as a consequence, the constitutive tensor looses
its symmetry (Hill, 1967), (Mandel, 1966), (Mróz, 1963), (Mróz, 1966). Because of
this feature, strain localisation in shear bands (Desrues et al., 2004), (Vardoulakis et
al., 1995), as well as diffuse mode of failure (Darve et al., 2004a),(Khoa et al., 2006),
(Darve et al., 2007), can develop before reaching Mohr-Coulomb criterion.

Methods which allow to analyse such kind of failures, are generally based on loss
of uniqueness of particular constitutive equation solutions. In that sense, criteria issue
from these analyses are particular type of bifurcation criteria by opposition to stability
criteria. Motions equations are not investigated, and as a consequence, stability of an
equilibrium state (or even of a trajectory of a solid) is not studied. Nevertheless, loss
of uniqueness of such equation solutions characterize the occurrence of a discontinu-
ity in the response mode by keeping continuous loading parameters. This is the basic
feature of a bifurcation.

Limit of plasticity and localization criterion of Rice (Rice, 1976), (Rudnicki et
al., 1975), are the most common bifurcation criteria used by engineers. Nevertheless,
as already written above, strain localization can appear before the plasticity limit con-
dition, but in addition, diffuse failure modes which are neither described by the plas-
ticity condition, nor by the Rice criterion can occur. The Hill’s sufficient condition
of stability seems describing accurately these different failure modes. Furthermore,
Bigoni and Hueckel (Bigoni et al., 1991) have proved that this condition is reached
before Rice condition and limit plasticity one.

This condition, stated by Hill (Hill, 1958), reads the following expression:
∫

V
δsi j d

(
∂u j

∂xi

)
dV > 0 [1]

with V the volume of the body at stage t, si j the transpose of the first Piola-Kirchoff
tensor, and d

(
∂u j
∂xi

)
the deformation velocity. In the following of this paper, the anal-

ysis is performed only at the material point scale. Moreover, small strain assumption
is done and the geometrical effects are neglected. Thus the following condition is
derived:

d2W = dσi j dεi j > 0 ∀ ‖dε‖ � 0 [2]

This is the so called second order work criterion. σi j and εi j denotes respectively, the
components of the Cauchy stress tensor, and of the small strain tensor. It is worth
noting that those quantities are linked by their constitutive relation. In the following
of the paper, bifurcation in geomaterials is investigated through this criterion.

In a first part, some analytical developments and results about the second order
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work are proposed for the class of incrementally piece-wise linear constitutive models.
In fact, this class of models covers the majority of those proposed in the literature
for rate independent materials. Secondly, a physical interpretation of these results is
given, and numerical illustrations are presented with the constitutive models of Darve
(Darve et al., 1995).

2. Some analytical results

In this section, an analytical analysis of relation [2] is proposed. To do so, follow-
ing notations are used. M is the constitutive matrix which links dσ to dε

(
dσ = Mdε

)
.

N is the one which links dε to dσ. If M is invertible, N = M−1. Finally, we define
du, dv the vectors of mixed linear combinations of dσ and dε and S the constitutive
matrix (built with the help of M, orN) which links du and dv. This formulation allows
the description of any loading path on an homogeneous sample. For example, if we
want to describe an undrained triaxial compression test 1 driven with the axial force,
the following problem can be built:[

dq
dεv

]
= S .

[
dε1
dσ3

]
[3]

with dq = dσ1 − dσ3, and dεv = (dε1 + 2dε3). In that way, du = t [dq, dεv
]
, and

dv = t [dε1, dσ3] are conjugated variables according the second order work. By split-
ting matrices M and N in a symmetrical part Ms and Ns and a skew symmetrical part,
the second order work takes the following expression :

d2W = tdu.dv = tdσ.dε = tdσNsdσ = tdεMsdε [4]

Thus, the sign of the second order work is strongly linked to the positiveness of
det

(
Ns

)
or det

(
Ms

)
. Positiveness of the quadratic form tdσNsdσ gives a geomet-

rical representation of the positiveness of d2W in the stress rate space, while tdεMsdε
in the strain rate space. Let us now analyse the condition :

tdσNsdσ = 0 [5]

For any incrementally piece-wise linear constitutive relation, N can take the following
form in a given tensorial zone2 and in principal axes:

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
E1

−
ν21
E2
−
ν31
E3

−
ν12
E1

1
E2

−
ν32
E3

−
ν13
E1
−
ν23
E2

1
E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [6]

1. assuming the fact that the pore water and each grain of the skeleton are incompressible, which
is the case for the considered pressures
2. A tensorial zone is a domain of the loading space in which the incremental constitutive rela-
tion is linear. A classical elasto-plastic model has two tensorial zones: one for plastic loading
and the second one for elastic unloading.
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Hence, equation [5] reads :

dσ21
E1
+

dσ22
E2
+

dσ23
E3
−

(
ν12

E1
+
ν21

E2

)
dσ1 dσ2

−

(
ν32

E3
+
ν23

E2

)
dσ3 dσ2 −

(
ν13

E1
+
ν31

E3

)
dσ1 dσ3 = 0 [7]

This equation, is the one of an elliptical cone in the stress rate space. Nevertheless,
some degenerated form can exist depending on the positiveness of the Ns eigenvalues.
If we assume that all eigenvalues are positive at the virgin state, and are evolving
continuously with the loading parameter, four cases have to be taken into account.
Let us denote (λ1, λ2, λ3) the three eigenvalues of Ns, with the additional condition:
λ1 < λ2 < λ3. The four possibilities are the following :

1) λ1 > 0 : det
(
Ns

)
> 0. As a result, excepted the trivial solution

(dσ1 = dσ2 = dσ3 = 0), equation [7] is not fulfilled. The stress-strain state is “sta-
ble”.

2) λ1 = 0, λ2 > 0 : det
(
Ns

)
= 0. Then, equation [7] admits a straight line (in the

direction of the eigenvector of λ1) as solution. Second order work vanishes according
to this loading direction.

3) λ1 < 0, λ2 > 0 : det
(
Ns

)
< 0. Equation [7] admits an elliptical cone as

solution. Second order work vanishes for loading directions upon the cone, is already
negative for loading directions included inside the cone and positive elsewhere.

4) λ1 < 0, λ2 = 0, λ3 > 0 : det
(
Ns

)
= 0. Equation [7] admits two secant

planes as solution. Second order work vanishes on these planes, is positive in two of
the subdivisions of the stress rate space, and negative in the two others. However, this
solution has never been reached with constitutive models used by co-authors.

The Figure 1 illustrates the previous discussion. Thus, the directional feature of this
criterion observed by Darve and Laouafa (Darve et al., 2000), (Laouafa et al., 2002)
is proved here. This means that, as det

(
Ns

)
≤ 0 or conversely det

(
Ms

)
≤ 0, it exists

some loading directions for which bifurcation occurs. As a remark, this directional
feature is stronger for non elastic behaviour. In fact, real solutions are the ones (or
part of ones) of conditions (2) to (4) which are fulfilled in the proper tensorial zone.
If we call the limit of the bifurcation domain, the set of stress-strain states for which
a unique unstable loading direction exists, this limit can be describe by the following
condition :

min
i=1...,n

(
det

(
Ns

)
i

)
= 0 with ui ⊂ Zi [8]

with n, the number of tensorial zones (of the constitutive model), ui the eigenvector
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Figure 1. Solutions of equation : λ1X2 + λ2Y2 + λ3Z2 = 0.

corresponding to the vanishing eigenvalue, and Zi the tensorial zone considered.
To conclude with this section, we will prove that :

det
(
Ms

)
= 0 ⇔ det

(
Ns

)
= 0 [9]

as equation [4] impose it. In fact, we have stated that :

det
(
Ms

)
=

det
(
Ns

)
(
det

(
N
))2 , [10]

which is equivalent to :

det
(
N · Ms

)
= det

(
N−1 · Ns

)
[11]

Nicot (Nicot, 2008) proposed the following proof of relation [11]. Considering the
left hand side of equation [11], we have:

N · Ms =
1
2

(
I + N · tN−1

)
[12]

6



and by considering the right hand side of equation [11], it follows:

N−1 · Ns =
1
2

(
I + N−1 · tN

)
[13]

thus, as det
(
A
)
= det

(
tA

)
for any matrix A, it follows :

det
(
N · Ms

)
= det

(
1
2

(
I + N−1 · tN

))
= det

(
N−1 · Ns

)
[14]

This result means that bifurcation analysis can be performed without any restriction
on the use of the constitutive relation, whereas it is not the case for the plasticity limit
condition. det

(
M

)
= 0 is not equivalent to det

(
N
)
= 0. In the case of associated

material, relation [10] is still valid, but condition [9] not any more, because in this
case the bifurcation limit coincides with the plasticity limit condition.

3. Physical interpretation

In this section, numerical results, as well as a physical interpretation of analytical
developments presented in the previous part are given.

Numerical results, are displayed with the constitutive models of Darve (Darve et
al., 1995). Without going into details of these models, we just recall that they are not
based on the classical concepts of the elasto-plasticity. Decomposition of the strain
in an elastic and plastic part is not assumed, and no plastic potentials are defined.
According to the first model, the non linear relation which links strain rate to stress
rate is directly described by an incrementally non-linear relation. The second model
is a simplification of the first one, and becomes incrementally piece-wise linear with
eight tensorial zones. In principal axes, these models are written as follows :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dε1
dε2
dε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2

[
N+ + N−

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dσ1
dσ2
dσ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1

2 ‖dσ‖
[
N+ − N−

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dσ21
dσ22
dσ23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ [15]

and
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dε1
dε2
dε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2

[
N+ + N−

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dσ1
dσ2
dσ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1
2

[
N+ − N−

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|dσ1|
|dσ2|
|dσ3|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ [16]

with

N± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E±1

−
ν±21
E±2
−
ν±31
E±3

−
ν±12
E±1

1
E±2

−
ν±32
E±3

−
ν±13
E±1
−
ν±23
E±2

1
E±3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [17]
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Limit of the bifurcation domain given by equation [8], are displayed on Figure 2 for
both models. As a remark, the incrementally non-linear model can be seen as incre-
mentally piece-wise linear with an infinity of tensorial zones. Thus, with a numerical
effort, an approximation of the bifurcation limit has been displayed. Then, Figure 3
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Figure 2. Limit of the bifurcation domain plotted in the 3D stress space for constitu-
tive models of Darve.

presents some instability cones for stress-strain states situated beyond the bifurcation
limit according to both models. These stress-strain states have been obtained along
the simulation of a drained triaxial test.

Now a physical interpretation is given with the formalism proposed by Nova
(Nova, 1994), (Nova, 2004). In fact, what happens when d2W vanishes along a given
loading path is presented. As the positiveness of d2W depends on the loading rate,
stress proportional loading paths are introduced as follows :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dσ1 = constant constant ∈ �
dσ1 + R dσ3 = 0 R ∈ � − {0}
dσ2 − R′ dσ3 = 0 R′ ∈ �

[18]

These paths allow to prospect every loading directions from a given stress-strain state.
Thus, we are able to prospect some particular stress paths where the second order work
vanishes. The response of such paths is displayed on Figure 4. In fact, a previous
drained triaxial compression is performed until a stress-strain state situated outside of
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Figure 3. 3D cones of unstable stress direction for a dense sand of Hostun. Fig-
ure 3.(a) presents the cones obtained with the octo-linear model. The planes represent
the limit between the 8 tensorial zones, the meshes correspond to the analytical so-
lution of Equation [7] and the point clouds the solution obtained with the numerical
method. Figure 3.(b) shows results obtained with the non-linear model using the nu-
merical method. po is the initial confining pressure, q = σ1 − σ3, η = q

p

the bifurcation domain, then one of the proportional loading (going inside the bifurca-
tion domain) path is followed. To simulate these loading paths, some of the variables
have to be controlled. One of the possibilities is as follows :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dε1 − dε3

R −
R′
R dε2

dσ1 + R dσ3
dσ2 − R′ dσ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dσ1

dε3
R +

R′
R dε2

dε2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ [19]

For proportional loading paths which show a peak in the
(
ε1 −

ε3
R −

R′
R ε2

)
versus (σ1)

plane, following observations can be derived. At this peak, due to the statical condi-
tions imposed by equation [18], we obtain :

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dσ1

dε3
R +

R′
R dε2

dε2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ [20]

Equation [20] has no trivial solutions if det
(
S
)
= 0. Then this equation constitutes

a generalized failure rule, and the eigenvector corresponding to the vanishing eigen-
value constitutes a generalized flow rule. Furthermore, at this state, d2W vanishes also.
Then it can be concluded that this stress-strain state is situated inside the bifurcation
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Figure 4. Response of proportional stress loading paths obtained with the octo-
linear model after a triaxial compression at po = 600 kPa and q = 640 kPa.
R ∈ [−3.5;−2.5] and R′ ∈ [0.8; 1.2]. 4 (a), displays the loading paths. On 4 (b),
the response path related to the triaxial compression is not displayed. p = 1

3 tr
(
σ

)
,

q =
√

3
2 ‖dev

(
σ

)
‖,

(
dev

(
σ

)
= σ − pI

)
.

domain, and that the loading direction belongs to one of the cone presented above (or
to the only one unstable loading direction, if the stress-strain state is situated strictly
on the bifurcation domain limit).

With such analysis, concept of controllability introduced by Nova (Nova, 1991),
(Nova, 1994) is easily understandable. Considering previous loading path which show
a peak in

(
ε1 −

ε3
R −

R′
R ε2

)
, if dσ1 is controlled, this peak can be passed continuously,

whereas if
(
dε1 − dε3

R −
R′
R dε2

)
is controlled, effective collapse of the sample occurs

at this peak. More classically, considering a drained triaxial test on dense sample,
when axial strain is controlled going through the peak of q is possible, while when
axial stress is controlled, effective collapse is noticed at this peak. Furthermore, at
such bifurcation point (state for which d2W vanishes on the considered loading path),
Sibille and co-authors (Sibille et al., 2007) have proved with a discrete element model
that a “small” mechanical perturbation on the sample induces the effective collapse.
Thus, as the second order work vanishes on a given loading path, an unstable state is
reached. Effective collapse occurs if particular controlled parameters are used, or if a
“small” perturbation is imposed.

To conclude with this section, we present others instability cones on Figure 5 and
Figure 6 for both models of Darve. In this case, loading paths considered are not
any more drained triaxial compressions. In fact, a set of loading paths going towards
some given directions located in a stress deviatoric plane are considered. Then, at an
arbitrary deviatoric level (situated inside the bifurcation domain), 3D instability cones
are plotted. Because, in these conditions, the mean pressure and the second stress
invariant are fixed, the influence of the Lode’s angle on instability cones can be ob-
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served. These figures are 3D, but the point of view is turned along the hydrostatic
axis. That’s why the representation seems to be done in the deviatoric plane. Ac-
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σ2 (kPa)σ3 (kPa)

σ 1 (k
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)

Figure 5. 3D cones of unstable stress direction for paths in the deviatoric stress plane
with the octo-linear model: po = 600 kPa,

∥∥∥∥∥dev
(
σ

)∥∥∥∥∥ = 350 kPa or q = 428.6 kPa,(
q =

√
3
2

∥∥∥∥∥dev
(
σ

)∥∥∥∥∥
)
. Continuous line represents the bifurcation limit

cording to the Lode’s angle, it can be verified that results are 120◦ periodic. Then,
the angle 60◦ modulo 120◦ constitutes an axis of symmetry. What is quite interesting
on these figures, is to observe that angle 30◦ modulo 120◦ seems to show a discon-
tinuity according to instability cones. This angle of 30◦ corresponds to plane stress
conditions. It can be observed for both models that opening of cones are noticeably
larger for Lodes angle varying from 30◦ and 60◦ than for ones varying from 0◦ and
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30◦. Thus, the three stress invariants plays an important role according to bifurcation,
and not only the mean pressure and the deviatoric level.
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4. Concluding remarks

In this paper, a bifurcation analysis based on the second order work criterion has
been performed to analyse failure in geomaterials. The analysis was restricted to the
material point scale. In introduction it has been reminded that this criterion constitutes
a lower bound according to the plasticity limit and the localization criterion of Rice.
In some particular cases, like the modelling of landslides under very gentle slope, this
criterion is necessary in predicting failure. For example, at Petacciato in Italy, a land-
slide occurs under a mean slope of 6◦ without any localisation pattern. The modelling
using this criterion has proved to be satisfactory (LESSLOSS-Report, 2004), (Lignon
et al., 2008).

In the first part, analytical results valid for any incrementally piece-wise linear
model, have been stated. Existence of instability cones has been proved, and their
equation given in the 3D space of stress principal axes. Then the limit of the bifur-
cation domain has been derived and its equation, which can be solved numerically,
has been established. Finally, it has also been proved that the equation of the bifur-
cation domain limit is not changed when the constitutive tensor M is considered or
conversely its inverse N in a dual formalism.

In the second part, 3D representation of instability cones as well as of the bifur-
cation domain limit have been given for Darve constitutive models. Then a physical
interpretation of this criterion has been proposed. Noticeably, it has been proved that,
as the second order work vanishes along a given loading path, an extension of the plas-
tic limit criterion and of the flow rule can be defined for proper conjugated variables.
Eventually, the influence of the Lode’s angle on the opening of instability cones has
been shown. Thus the third stress invariant plays also an important role when investi-
gating bifurcation in geomaterials.

According to these results, second order work criterion constitutes a good tool to
investigate bifurcation in geomaterials. Noticeably, it opens new perspectives for ex-
perimental testing. All proportional stress loading paths presented in this paper should
be reproducible experimentally. Further more proportional strain loading paths can
also be defined in the same way. Daouadji and co-authors (Darve et al., 2007) have
already investigated some of these paths experimentally. One of the exciting challenge
would be proposing an experimental set-up allowing the description of the bifurcation
domain limit.
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