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Hybrid architecture for autonomous navigation robots is presented in this paper. The principal future aim of this architecture is to achieve multi-robot convoy which must navigate in urban background, where autonomous vehicles have to track the desired trajectory while avoiding possible obstacles (walkers, other robots, etc.). Currently, we consider only the case of fixed obstacles. We propose to coordinate two continuous controllers (trajectory tracking and obstacle avoidance) by discrete events. However, hard switch from obstacle avoidance to trajectory following controller, may cause collision or undesired effects due to nonholonomic constraint or switching effects. Therefore, we introduce a third controller to overcome these drawbacks.

Introduction

Controlling a nonholonomic mobile robot to follow a desired trajectory is treated since a long time (see [START_REF] Samson | Control of chained systems : application to path following and time-varying point-stabilization[END_REF], [START_REF] Divelbiss | Trajectory tracking control of a car-trailer system[END_REF] for instance) and is still current as the case of trajectory tracking with sliding [START_REF] Lenain | High accuracy path tracking for vehicles in presence of sliding: Application to farm vehicle automatic guidance for agricultural tasks[END_REF]. If controllers [START_REF] D'andrea-Novel | Control of nonholonomic wheeled mobile robots by state feedback linearization[END_REF] were developed to solve it, the environment of robots navigation is subject to a lot of variations. Indeed, it's obvious that these controllers become easily useless and lead to collision when an obstacle appears on the robot's way since they were only designed to track trajectory.

However, the obstacle avoidance is not a problem anymore since it is widely investigated in the literature: Khatib [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF] used the potential fields to give a real time method adapted to the obstacle avoidance problem. He assumes that the robot moves in a potential field considering the objective to reach as an attractive point whereas the obstacle surfaces are repulsive fields. Since the robot's action is accomplished by the sum of individual gradients at the robot's location, this method suffers from the local minima problem when for instance, this sum is null. To overcome this undesirable situation, circular potential fields were used in the direction of avoidance [START_REF] Slack | Navigation template: mediating qualitative guidance and quantitative control in mobile robots[END_REF], [START_REF] Gat | Navigation templates: enhancements, extensions and experiments[END_REF]. However, Kim and al [START_REF] Kim | A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer[END_REF] say that these fields type cannot adjust how far the robot avoids the obstacle and propose the limit cycle navigation as a new method. Zapata and al [START_REF] Zapata | Reactive behaviors of fast mobile robots[END_REF] use a virtual deformable zone (DVZ) surrounding the robot thanks to proximity sensors: if an obstacle is detected, it will deform the DVZ and the approach is to minimize this deformation by modifying the control vector.

The unknown nature of the robot's environment in the most of cases, leads up to develop control architectures which guarantee a desired and mostly a safe navigation for the robot. In fact, the intuitive idea to make a mobile robot able to avoid obstacles while tracking the desired trajectory is to have two simple controllers and to switch from one to another according to the robot's relative position to the obstacle (figure 1). It forms what we call hybrid systems where discrete events allow switching between continuous behaviours.

However, Branicky, in [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], shows that random switches between two stable systems lead easily to instability of the control. He consequently imposes restrictions on switching to guarantee a global stability which has been proven via multiple Lyapunov functions [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF]. Moreover, hard switches may lead to the Zeno phenomenon [START_REF] Johansson | On the regularization of Zeno hybrid automata[END_REF] that exhibits an infinite number of discrete transitions between controllers in finite time. In robotics, it potentially appears when the robot is on the boundary where the discrete event becomes true causing switch between nodes which represent individual controllers. Chattering effects caused by this phenomenon were shown by Egerstedt [START_REF] Egerstedt | A hybrid control approach to action coordination for mobile robots[END_REF]. Adouane in [START_REF] Adouane | Adaptive Multi-Controller Architecture for the Navigation of Mobile Robot[END_REF], proposes to avoid this hard chattering between controllers' commands while introducing a specific adaptation of each controller law. In [START_REF] Egerstedt | A hybrid control approach to action coordination for mobile robots[END_REF] Egerstedt regularizes its automaton by adding a node to overcome these undesirable effects: this node contains the sliding dynamics that is defined on the boundary between the two controllers.

In the proposed paper, we apply an hybrid architecture for autonomous mobile robot using mainly two classical behaviours for an autonomous mobile robot: trajectory tracking and obstacle avoidance. We propose to guarantee restrictions on switching via multiple Lyapunov functions by introducing an other controller which leads the robot on its trajectory after the obstacle avoidance step. Simulation shows that our proposition insures global stability for the robot control.

The rest of this paper is organized as follows. In section 2, we give the proposed control architecture and give some details on the multiple Lyapunov function. Stability of individual controllers is studied in section 3. Simulation results are presented in section 4. We conclude and give some prospects in section 5.

Architecture of control

The proposed hybrid architecture is supposed to be applied to a mobile robot using basic perceptual and decisional capabilities. Therefore, according to the robot's sensors information, decision to apply the convenient controller is made. 

Mobile robot

However, as we saw in section 1, hard switches lead to instability or cause chattering effects even if each controller is individually stable. Therefore, more restrictions are needed to control these switches.

Multiple Lyapunov function method [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF] gives sufficient conditions to guarantee stability of the overall system. Based on this method, the following theorem which has been demonstrated in [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF] will be used.

Theorem

Given N dynamical systems, Σ 1 , …, Σ N , each with equilibrium point at the origin, and N candidate Lyapunov functions, V 1 , …, V N .

If {V i decreases when Σ i is active} and {V i (at the time when Σ i switched in) ≤ V i (at the last time when Σ i switched in)} Then the hybrid system is Lyapunov stable (figure 2).

In our case, it is possible to use this theorem to guarantee stability of the robot during all its navigation. Since we use controllers that stability is proven by the simple Lyapunov theorem, we have only the second condition of the above method to satisfy. Moreover, we have to satisfy this condition for the trajectory tracking only. Indeed, obstacles that the robot meets are independents, and the obstacle avoidance controller is normally activated only one time for each obstacle. Therefore, our idea is to use a specific "go-to-goal" controller (cf. subsection 3.4). This one is stable and is activated once the obstacle is avoided. Its role is to lead the robot toward the reference trajectory until the Lyapunov function of the trajectory tracking controller becomes less than the last time this one is switched in. The proposed control architecture is given in figure 3.
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The proposed control structure

Figure 4 shows the possible undesired robot behaviours according to the robot position. This is due to inappropriate switches between obstacle avoidance controller and the trajectory tracking one. This is what motivate us to search for a regularized automaton that insures safety and stable navigation to the robot.

On the left, switching occurs soon enough. Therefore, converging to the trajectory lead the robot to the obstacle zone which activates the obstacle avoidance controller again and so forth. On the right, the undesired effects are due to the nonholonomic constraint. Indeed, switching to trajectory tracking occurs only when the robot is on (or too close) to the reference trajectory.

Figure 5 shows an automaton where switch transitions are only guided by geometric conditions overlooking other constraints. Note that D robot-obstacle is the Euclidian distance between the obstacle center and the axle center of the robot and R v is the obstacle radius plus a safety distance δ considering the robot dimension and a safety margin. 
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To avoid this, we introduce the "go-to-goal" controller to regularize hard switches due to the only distance criterion (figure 6). This controller leads the robot to a virtual target that we define on the reference trajectory which keep it away from the risk of oscillation zone (cf. figure 7). The virtual target point "P t " corresponds to the intersection of a circle of radius (R v + ε) where ε> 0. We define also P e (x end , y end ) as the end point where the obstacle is considered as already avoided. It is also the intersection of the tangent of the detection zone (circle of radius R v ) passing by the virtual target.

D robot-obstacle > R v D robot-obstacle ≤ R v
The position P e in the case where the robot avoids the obstacle clockwise can be calculated by
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Note: The choice of the way of avoidance (clockwise or counter-clockwise) is indicated in subsection 3.3.

The second condition of the multiple Lyapunov function is then satisfied for trajectory tracking controller by leading the robot on the virtual target once the obstacle is avoided. Indeed, the chosen Lyapunov function (subsection 3.2) depends on the lateral and angular errors. Since we can correct the robot position and heading by go-to-goal controller once the obstacle is avoided and the virtual target is reached. Therefore, we minimize this Lyapunov function (figure 8) before switching in trajectory tracking controller again. 

Robot model

Consider the unicycle mobile robot (figure 9). Let x, y and θ be the state variables where x ∈ IR and y ∈ IR are the Cartesian coordinates, θ ∈ ]-π, π] is the robot's orientation with respect to the X-axis. We note respectively v and u the linear and the angular velocity of the robot. The kinematics model of the robot can be described by 

Trajectory tracking controller

Considering the lateral and the angular errors of the robot (figure 10): The following controller based on the Lyapunov stability is developed in [START_REF] Canudas De Wit | Theory of Robot Control[END_REF] and is given by
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To prove the stability of this controller, we take V= 2
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≤ 0. Then, we can conclude that the controller is stable.

Obstacle avoidance controller

We saw in section 1, that the limit cycle navigation method seems overcome the drawbacks of the other obstacle avoidance methods. Moreover, it allows deciding in which direction and how far the robot avoids the obstacle. We reintroduce briefly the limit cycle navigation algorithm proposed in [START_REF] Kim | A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer[END_REF] that we use in the avoidance obstacle controller. Consider a mobile robot which must reach the target whose global coordinates are (G x , G y ) while avoiding the circular obstacle of global coordinates (Q x , Q y ) and a radius R v (corresponding to the real radius of the obstacle plus a distance including the robot size and a safe margin) (figure 11). The steps of the limit-cycle method are as follows:

The line l has a.x+b.y+c = 0 as equation.

1) The distance d from the center of the obstacle to the line l is calculated as
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2) The desired direction of the robot is calculated at each position by
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Where x and y are relative values of the robot position according to the obstacle. In these equations, if d is positive, the robot avoids the obstacle clockwise. Otherwise, it is avoided in a counter-clockwise direction. To prove stability along the trajectory, the Lyapunov function candidate is given by V = x²+ y²
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Which is negative for V(x)>r v ². Therefore, we can adjust the radius and consequently control the distance that the robot keeps with respect to the obstacle.

Go-to-goal controller

The task to accomplish by the robot is simply to reach a desired position ) , ( ~) must tends to (0, 0) (figure 12).

Developed in [START_REF] Secchi | Design of stable algorithms for mobile robots control with obstacle avoidance[END_REF], the following controller allows the robot to reach a desired position without guaranteeing the orientation: 
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We saw that this controller allows the robot to reach a destination without final orientation. However, it is easy to notice that the same controller can control the heading. Indeed, when v = 0, the controller is still stable and only u controls the desired heading. Stability when switching to v = 0 in order to control final heading is immediate since the same Lyapunov function is kept. Detailed proof is available in [START_REF] Toibero | Switching control of mobile robots for autonomous navigation in unknown environments[END_REF].

Simulation

To estimate the relevance of the proposed hybrid architecture, we compare it with results given by hard switches between the two controllers: trajectory tracking and obstacle avoidance. Indeed, we use MATLAB to simulate a mobile robot tracking a given trajectory while avoiding an obstacle. The real path the robot follows with hard switches is given in figure 13.

We can see that when detecting the obstacle, the robot switches effectively to obstacle avoidance controller. However, the distance separating the robot from the obstacle is the only condition of switching. Therefore, oscillation in the robot's path is observed. It is due to switching to trajectory tracking as soon as D robot-obstacle is higher than R v which is the detection zone radius. While the obstacle is not passed, the robot (which is now controlled by trajectory tracking command) falls in the detection zone again and tries to avoid it again (switch to obstacle avoidance controller). Switch moments are illustrated in figure 14 which shows clearly undesirable switching to trajectory controllers whereas the obstacle is not passed yet.

Moreover, figure 15 shows the Lyapunov function variation for the different controllers. In spite of decreasing when the controller is active, the second condition of the Multiple Lyapunov function theorem is not satisfied, and switching in the trajectory tracking occurs with a higher Luyapunov function value than the last switch in. 

Trajectory oscillations

At the contrary, our architecture of control given in section 2 allows avoiding these useless switches since our automaton is regularized by the go-to-goal controller (figure 6). This latter prevents hard switches occurring before that the obstacle is passed. The real path followed by the robot is shown in figure 16 where no oscillation is observed.

Figure 16 shows clearly that our method prevents any undesired switch between controllers. Thereby, the robot does not switch to trajectory tracking before avoiding completely the obstacle. This is confirmed by switch moments (figure 17). V Figure 18 shows also that our method allows to satisfy the second condition of the Lyapunov variation function (cf. section 2). Indeed, when trajectory tracking is reactivated, its Lyapunov function value is less than the last time it switches in. 

Conclusion and future works

We applied hybrid control architecture on a mobile robot to obtain a stable trajectory tracking while avoiding obstacles. Indeed, the robot is controlled by elementary continuous controllers according to the sub-tasks to accomplish (trajectory tracking, obstacle avoidance) and switching from a controller to an other is done referring to discrete events. We saw that hard switches cause chattering and are not efficient to insure a safe navigation. Therefore, we propose to use the multiple Lyapunov function for hybrid systems to design a stable hybrid control architecture. In addition to elementary stable controllers for the two main sub-tasks, we introduce a third controller which insures the second sufficient condition of multiple Lyapunov function (cf. section 2). Simulations show that our architecture prevents useless switches, guaranteeing thus a safe navigation for the robot. Applying this stable control architecture to a dynamic environment (e.g., moving obstacles), will be the subject of future works. Application to multi-robot systems navigating in formation seems also to be interesting. The objective is to make each robot able to avoid an obstacle before regaining the convoy. 
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  FIG. 5 -Hard switches automaton.

FIG 7 -

 7 FIG 7 -Virtual target to reach before reactivating trajectory tracking controller. The obstacle is avoided here clockwise.
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 8 FIG.8-Evolution of the Lyapunov function of trajectory tracking when go-togoal controller is active. Continuous line means that trajectory tracking is active.
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  FIG10 -The mobile robot on the Frenet frame.

  FIG 11 -Limit cycle navigation method
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 13 FIG 13 -Real robot's path controlled by hard switches.
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 14 FIG[START_REF] Slack | Navigation template: mediating qualitative guidance and quantitative control in mobile robots[END_REF] -Switching moments (high state corresponds to trajectory tracking controller whereas low state is for obstacle avoidance one).
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 15 FIG.15-Lyapunov variation functions with hard switches.
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 18 FIG 18 -Lyapunov variation functions of the proposed control architecture.