
HAL Id: hal-01714861
https://hal.science/hal-01714861

Submitted on 23 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-agents based system to coordinate mobile
teamworking robots

Mehdi Mouad, Lounis Adouane, Pierre Schmitt, Djamel Khadraoui, Benjamin
Gâteau, Philippe Martinet

To cite this version:
Mehdi Mouad, Lounis Adouane, Pierre Schmitt, Djamel Khadraoui, Benjamin Gâteau, et al.. Multi-
agents based system to coordinate mobile teamworking robots. 4th Companion Robotics Workshop,
Sep 2010, Brussels, Belgium. �hal-01714861�

https://hal.science/hal-01714861
https://hal.archives-ouvertes.fr


Multi-agents based system to coordinate mobile
teamworking robots

Mehdi Mouad12, Lounis Adouane2, Pierre Schmitt1, Djamel Khadraoui1,
Benjamin Gâteau1, and Philippe Martinet2

1 CRP Henri Tudor - SSI dept. Luxembourg
2 LASMEA - Aubière, France

mehdi.mouad@tudor.lu; lounis.adouane@lasmea.univ-bpclermont.fr

Abstract. This paper aims at presenting the Multi-Agents System to
Control and Coordinate teAmworking Robots (MAS2CAR), a new ar-
chitecture to control a group of coordinated autonomous robots in un-
structured environments. MAS2CAR covers two main layers: (i) the
Control Layer and we focus on (ii) the Coordination Layer.
The control module is responsible for a part of the decision making pro-
cess taking into account robot’s structural constraints. Despite this au-
tonomy possibility, the Coordination Layer manages the robots in order
to bring cooperative behavior and to allow team-work. In this paper we
present a scenario validating our approach based upon the multi-agent
systems (MAS). Thanks to its reliability we have chosen the MoiseInst

organizational model and we will present how it can be used for this
use-case. Moreover, regarding to the implementation part, we have re-
tained Utopia, a framework which automatically build a MAS thanks
to a MoiseInst specification. We will present key problematics of the
Cooperation Layer implementation solved thanks to Utopia and exhibit
robotic cooperative behavior related to our scenario through simulation
results.

1 Introduction

A multi-robot system can be defined as a set of robots operating in the same work
space. In addition, cooperative behavior is settled as: given some task specified
by a designer, a multi-robot system displays cooperative behavior if, due to some
underlying mechanism (i.e. the mechanism of cooperation or coordination), there
is an increase in the total utility of the system.

In mobile robotics, the need to operate in increasingly complex and unstruc-
tured environments, and at the same time reduce costs in terms of time or power
to a minimum raise the development of autonomous vehicles.

This need for autonomy requires from the vehicle a certain capacity of being
able at any moment to assess both its condition and the state of its environment.
This informations have to be combined with the different vehicles states and its
mission requirements in order to make coherent decisions. That induces a high
level of complexity in the robotic control architecture software.



2 Mouad, Adouane, Schmitt, Khadraoui, Gâteau, Martinet

This paper aims at presenting MAS2CAR3 a new architecture model for
multi-robot systems and more particulary its agent-based Coordination Layer.

Robotic software is now one of essential part of robotics system development,
therefore software architectures design methods and concepts, often inspired by
engineering software field, are necessary within a robotics project. The last few
years have seen active research in the field of distributed robotics, and in the
development of architectures for multi-robot coordination. These architectures
have focused on providing different capabilities to the group of robots. For in-
stance, ALLIANCE [1], a behavior-based software architecture, has focused on
fault tolerant cooperative control.

The coordination of robots for large-scale assembly has been considered in
Simmons et al. [2]. Klavins and Koditschek [3] have presented tools for composing
hybrid control programs for a class of distributed robotic systems. This approach
assumes that a palette of controllers for individual tasks is available. These
controllers, i.e, robot behaviors, are sequentially composed using the techniques
introduced in Burridge, Rizzi, and Koditschek [4].

Control software architecture design approaches are usually classified into
three main categories [5]:

– Reactive architectures, many modules connects several inputs sensors/actuators,
Each module implements a behavior. These behaviors are called ”reactive”
because they provide an immediate output of an input value input value. [6]
[7].

– Hierarchical architectures’s design is centered on the decision-making system.
These architectures are organized several layers, A layer only communicates
directly with the lower layer and the one directly above, this is how the
treatment is done[8].

– Hybrid architectures are a mix of the two previous ones [5]. Usually these
are structured in three layers: the deliberative layer, based on planning, the
control execution layer and a functional reactive layer.

A MAS particularly meet the underlaying needs of supervision and coordi-
nation of multi-mobile robots. For that we have to associate an agent to each
physical robot and model each robot as an agent in the MAS model. Among
the MAS models we have chosen the Electronic Institution[14]. Indeed, this or-
ganizational model allow to express cooperation schemes defined by the user
with an Organization Modeling Language such as for instance Moise+ [9], Is-
lander [10], OMNI [11]. The aim of these services is to constraint and supervise
agent’s actions and interactions in order to achieve some global Goals. We call
those explicit cooperation schemes Organization Specification (OS).

To summarize our different ideas, we state to develop a hybrid architecture
which takes into account: the advantages of the other kind of architectures,
to obtain more efficient reaction in different aspects, allows coordination and
permits hybrid distributed / centralized aspect. This architecture is dedicated
to multi-robot systems with a high degree of coordination between autonomous

3 MAS2CAR: Multi-Agents System to Control and Coordinate teAmworking Robots



Controlling multiple mobile cooperative robots 3

robots. The main originality of MAS2CAR is the used coordination method and
the challenge is to implement an organizational model for robotic agent with all
the constraints and related issues.

This paper is organized as follow : in section 2 we introduce our architecture
model in a global point of view and we underline the tree main layers of our model
: Physical Layer, Control Layer and Coordination Layer. Subsequently, we focus
on the Coordination Layer and we explain how the multi-agent systems have been
used to achieve this part of the architecture. More particularly, we describe the
Organization Specification in section 3, some MAS important implementation
aspects in 4 and our simulation results in section 5.

2 MAS2CAR global model

2.1 Properties

Elaborating an innovative architecture to control a group of coordinated au-
tonomous vehicles in unstructured environments, have to consider different as-
pects. That is why our model is composed by three main layers for every robot
(cf. Figure 1):

1. The Physical Layer is composed of multiple sensors/actuators existing on
the robot.

2. The Control Layer aims at figuring out the best way to accomplish “basic“
goals with modules aiming at plan, re-plan, and manage the sensors and
actuators. As shown in Figure 1, the Control Layer makes the link between
the Physical Layer and the Coordination Layer

3. The Coordination Layer is dedicated to more complex abstract or social
goals.

Communication We use interaction via communications [12, 13] in our model
with a communication interface listening on every robots. Thanks to this, an
agent of the Coordination Layer can connect to its associated Control Layer in
two different ways: (i) Locally if the robot has the required characteristics to
embed the agent directly;(ii) Remotely through a robot wireless interface.

Abstraction Each agent connected to the Control Layer’s interface can send
and receive messages. The Control Layer behave as a middleware which receive
commands for actuators and send events from sensors.

For this reason, this architecture allows (i) Robot-independent Coordination
Layer implementation thus (ii) platform-independent programming languages to
implement the MAS and finally (iii) more powerful and reactive Coordination
Layer.

The Control Layer is in charge of basic decisions allowing the Coordination
Layer to focus on more complex tasks or social behaviors. This paper focus on
the Coordination Layer presented in the next sections.



4 Mouad, Adouane, Schmitt, Khadraoui, Gâteau, Martinet

Fig. 1. Architecture of a robot at the individual scope JNRR094

3 MAS2CAR Organization Specification (OS)

In this section we will describe an Organization-oriented approach to model
our MAS using MoiseInst as organizational model. We will focus on giving
the possibility for agents to reach a targeted point (objective) according to a
partially known environment in a planning-based mode. Nevertheless, we also
model a possible reactive mode to face unexpected events.

3.1 Structural Specification

Define a role per robot: rRobot{i} with 1 6 i 6 n and n the total number of
robot. One and only one agent is associated to each robots. In addition of the
robot’s roles, we have defined a role for a Supervisor, rSupervisor, which have
the duty to manage the others agent with a global point of view. Thus the
MAS, Coordination Layer of our architecture, is mainly composed by the agents
representing an associated agent’s Control Layer and by a supervisor.

3.2 Contextual Specification

A contextual specification can be seen as a recursive transition-graph where
states are called contexts and set of contexts are called scenes. We have one
scene for the supervisor, sSupervisor, and one for each robot : sRobot{i} (cf.
figure 2). Theses scenes includes specific contexts influencing the behavior of the
robots: (i)Planning mode associated to the initial context planningMode, used
as often as possible by the robots to compute their trajectories and reach their
goals. (ii)Reactive mode associated to the context reactiveMode, triggered when
an unexpected obstacle is detected in order to avoid it.



Controlling multiple mobile cooperative robots 5

Thanks to transitions, we can switch the mode of each robots. Indeed, the
organization is in n+1 different contexts at the same time. First, we have: sSu-
pervisor/life and sRobot{i}/planningMode ∀i ∈ [1..n]. If we send the transition
aO5 (”avoid obstacle” into the scene sRobot{5}) the contexts turn to sSupervi-
sor/life, sRobot5/reactiveMode and sRobot{i}/planningMode ∀i ∈ [1..n], i 6= 5.

3.3 Functional Specification

Here, we have specified goals and set of goals (missions) for the robots and the
supervisor (cf. figure 2). The goals are executed in a specific order according
to three modalities : Sequence, Parallelism, and Choice. We have defined three
missions :

mSupervisor = gRoot ‖ {gSupervisor, gSupervisorGUI, gCollisionSolver}:
The supervisor have to do three set of actions in parallel : management of the
messages and requests from the robots within gSupervisor, representation of the
robots in a graphical interface within gSupervisorGUI and detection / resolution
of conflicts between robots within gCollisionSolver.

mPlan = gReachTarget → gAskForPermission → gComputeTrajectory
→ gWaitSupervisor: First we execute gWaitForSupervisor (is the supervisor
here and ready ?) then, we execute gComputeTrajectory to ask Control Layer
for a planning in order to reach a targeted point of the environment. Then we
execute gAskForPermission wherein we ask supervisor if the computed planning
implies conflicts with other robots. Finally, the goal gReachTarget is executed
and we send messages to the Control Layer in order to move in respect of the
planning.

mReact = gReturnOnTrajectory → gAvoidObstacle : Is used to manage
an unexpected obstacle detected by sensors. In gAvoidObstacle the avoidance is
reactive maintaning a given distance with the obstacle. And run gReturnOnTra-
jectory to join the trajectory planified before and quit the reactive mode.

3.4 Normative Specification

In the normative specification (cf. figure 2), we have a norm for the supervisor
NSupervisor, which forces the agent playing the role rSupervisor when the Insti-
tution is in the context sSupervisor/life to do the mission mSupervisor described
before. For the n robots, we have two norms N{i}planningMode and
N{i}reactiveMode with 1 6 i 6 n. (1)N{i}planningMode forces the agent playing
the role rRobot{i} when the Institution is in the context sRobot{i}/planningMode
to do the mission mPlan, (2)N{i}reactiveMode forces rRobot{i} when the Insti-
tution is in the context sRobot{i}/reactiveMode to do the mission mReact.

4 MAS2CAR Implementation

In order to be focused on the model and collaborative behavior we use Utopia
[14] as MAS middleware to implement the Coordination Layer of our architec-
ture.



6 Mouad, Adouane, Schmitt, Khadraoui, Gâteau, Martinet

Fig. 2. Normative Specification and links with others specifications

Utopia automatically deploy a MAS adapted to a XML Organization Speci-
fication. This MAS can be specialized with goal or missions corresponding to
Java classes run on the fly by the middleware in respect of the Normative Speci-
fication. In other words, the concrete MAS corresponding to the specification
seen in section 3, is mainly managed with Utopia. We only present the key as-
pects of the implementation of the goals and information shared between goals
and agents.

4.1 Goals implementation

On section 3, we described our Organization Specification and we have seen that
the Functional Specification implies goals and set of goals called missions. A goal
such as gSupervisor is abstract and only denote, at this state, a set of “fuzzy“
actions. Of course, in our model implementation, we have associated abstract
goal designations with concrete actions.

Utopia maps declared FS’ goals with Java classes. For instance, gSupervisor
is mapped this way:

<Goal id="gSupervisor" class="robotopia.supervisor.GSupervisor"/>

This class itself access Utopia’s primitives through the implementation of
the class ”GoalImplementation“ overriding a method called ”run()“.

public class GSupervisor extends GoalImplementation{public void run(){ ... }}



Controlling multiple mobile cooperative robots 7

5 Simulation and results

Figure 3 shows our two modes, the robots are represented by filled circles (red,
blue and green). In the planning-mode demonstration, the red and green robots
should have been too close. Nevertheless, the speed of the red robot was reduced
in gComputeTrajectory according to constraints received by the supervisor’s goal
gAvoidCollision, after that they continue there path without collisions. In the
reactive part, an unexpected obstacle (represented by a red square) was placed
right on the robot’s trajectory. Red robot detected it through its sensors while
running gReachTarget. we can see the switch to reactive-mode, and the avoidance
of the obstacle by running GAvoidObstacle, and joins back its initial trajectory
thanks to GReturnOnTrajectory. A new planning was computed to reach its goal
from its new position and there was no conflict with this new planning as the
two others robot are far enough from its position.

Fig. 3. Reactive-mode and the Planning-mode

6 Conclusion

In this paper we described our architecture model and its three parts. The Physi-
cal Layer, the Control Layer and we focused on the Coordination Layer and have
shown how a multi-agent system can be helpful to bring coordination and co-
operation into a multiple heterogeneous robot set. To this end, the key point is
twofold : (i) Using an Organizational Model (MoiseInst) in order to describe
the structure, goals and contexts in a normative Multi-Agent System. (ii) Tak-
ing the benefit of Utopia framework to handle the OS and translate it into
a concrete MAS corresponding to our Coordination Layer throught our goal
implementations executed by the robots.

Beyound the theory, we shown a concrete and generic Organization Speci-
fication (OS) demonstrating how we can manage the robots in a structured envi-
ronment while allowing robot autonomous reactions to face unexpected events.



8 Mouad, Adouane, Schmitt, Khadraoui, Gâteau, Martinet

Moreover, we presented some of our results showing how the supervisor can send
constraints to avoid conflicts, how transitions are sent to switch between plan-
ning and reactive mode allowing autonomy for a particular robot and finally how
this robot switch to planning mode again to knuckle back under supervisor.

This centralized / decentralized possibility is a key characteristic of MAS2CAR
as it allows to face every events while keeping a specification of global goals.

References

1. Parker, L.: Alliance: An architecture for fault tolerant multi-robot cooperation.
In: IEEE Transactions on Robotics and Automation. Volume 14. (1998) 220–240

2. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith: Coordination of het-
erogeneous robots for large-scale assembly. In: ISER00, 7th Int. Symposium on
Experimental Robotics. (2000) 311–320

3. Klavins, E., Koditschek, D.: A formalism for the composition of concurrent robot
behaviors. In: IEEE Int. Conf. on Robotics and Automation. Volume 4. (2000)
3395–3402

4. Burridge, Rizzi, R., A., Koditschek, D.: Sequential composition of dynamically
dexterous robot behaviors. In: International Journal of Robotics Research. Volume
18(6). (1999) 534–555

5. Ridao, P., Carreras, M., Batlle, J., Ama, J.: Oca: A new hybrid control architecture
for a low cost auv. In: Proceedings of the Control Application in Marine Systems.
(2001)

6. Brooks, R.: A robust layered control system for a mobile robot. In: IEEE Journal
of Robotics and Automation. (1986) 14–23

7. Rosenblatt, J.: Damn: A distributed architecture for mobile navigation. In: Journal
of Experimental and Theoretical Artificial Intelligence. (1997) 339–360

8. Lumia, R., Fiala, J., Wavering, A.: The nasrem robot control system and testbed.
In: IEEE Journal of Robotics and Automation. (1990) 20–26

9. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In: SBIA’02.
Number 2507 in LNAI, Springer (2002) 118–128

10. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-
based middleware for electronic institutions. In: AAMAS’2004, New York City,
USA, ACM Press (19-23 July 2004) 236–243

11. Dignum, V., Vazquez-Salceda, J., Dignum, F.: Omni: Introducing social struc-
ture, norms and ontologies into agent organizations. In: ProMAS International
Workshop 2004, New York, USA (2004)

12. Stilwell, D.J., Bishop, B.E., Sylvester, C.A.: Redundant manipulator techniques
for partially decentralized path planning and control of a platoon of autonomous
vehicles. In: IEEE Transactions on Systems, Man, and Cybernetics. Volume 35.
(2005) 842–848

13. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. In: IEEE
Intelligent Systems. Volume 21. (2006) 20–28

14. Schmitt, P., Bonhomme, C., Gâteau, B.: Easy programming of agent based elec-
tronic institution with utopia. In: 10th international conference on New Technolo-
gies of Distributed Systems (NOTERE 2010), Tozeur - Tunisia (31 May 2010)


