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This paper is about a Multi-Agent based solution to control and coordinate team-working mobile robots moving in unstructured environments. Two main contributions are considered in our approach.

The first contribution of this paper is about the Multi-Agents System to Control and Coordinate teAmworking Robots (MAS2CAR) architecture, a new architecture to control a group of coordinated autonomous robots in unstructured environments. MAS2CAR covers three main layers: (i) the Physical Layer (ii) the Control Layer and (iii) the Coordination Layer. The second contribution of this paper is about the multi-agent system (MAS) organisational models aiming to solve the key cooperation issues in the coordination layer, the software components designed based on U TOPIA a MAS framework which automatically build software agents, thanks to a multiagent based organisational model called MOISE Inst .

We provide simulation results that exhibit robotics cooperative behavior related to our scenario, such as multirobots navigation in presence of obstacles (including trajectory planning, and reactive aspects) via a hybrid control.

I. INTRODUCTION

A multi-robot system can be defined as a set of robots operating in the same work space. Given some robotics task specified by a designer, a multiple-robot system can benefit from cooperative behavior if, due to some cooperation or coordination mechanism, there is an increase in the total utility of the system [START_REF] Cao | Cooperative mobile robotics: Antecedents and directions[END_REF].

In the case of mobile robotics, the need to operate in increasingly complex and unstructured environments, and at the same time reduce costs to a minimum in terms of time, power, etc.), raise the development of autonomous robots. The ultimate goal is the capability of achieving coordinated movements and of carrying out tasks that usually require human assistance. This need for autonomy requires from the robot a certain capacity of being able at any moment to assess both its state and its environment that are usually combined with different other robots states as well as with its mission requirements in order to make coherent control decisions. If we consider navigation aspects, autonomous mobile robots are usually embedded with sensors/actuators according to the mission to be performed. This complexity induces major challenges both at the development of robotics control architecture system but also at the design of navigation software.

Indeed, an autonomous mobile robot has to carry out a set of sensors/actuators dedicated to its own navigation and another sensors set that can change according to the mission to be performed. Therefore the navigation software developed for these vehicles become complex and requires a design methodology.

This paper aims at presenting MAS2CAR 1 , an architecture model for multi-mobile robots based on Multi-Agent System (MAS) coordination. This paper is organized as follow : in section II we make an overview of the related works in the areas of multirobots and MAS, in III we introduce our architecture model focusing on the tree main layers of our model : Physical Layer, Control Layer and Coordination Layer. Subsequently, we focus on the Coordination Layer and we explain how the MAS have been used. More partic-ularly, we describe the Organization Specification (OS) in section IV, some MAS important implementation aspects in V and the simulation results in section VI.

II. STATE OF THE ART

Robotics software is now one of essential part of robotics system development. Therefore, software architectures design methods and concepts, are mainly made to enhance evolutionary, modularity... and to avoid redesign costs. The last years have seen active research in the field of distributed robotics, and in the development of architectures for multi-robot coordination. These architectures have focused on providing different capabilities to the group of robots. For instance, ALLIANCE [START_REF] Parker | Alliance: An architecture for fault tolerant multi-robot cooperation[END_REF], a behavior-based software architecture, has focused on fault tolerant cooperative control. In Morrow and Khosla [START_REF] Morrow | Manipulation task primitives for composing robot skills[END_REF], robot skills are expressed as finite state machines (FSM).

The coordination of robots for large-scale assembly has been considered in Simmons et al. [START_REF] Simmons | Coordination of heterogeneous robots for large-scale assembly[END_REF]. Klavins and Koditschek [START_REF] Klavins | A formalism for the composition of concurrent robot behaviors[END_REF] have presented tools for composing hybrid control programs for a class of distributed robotics systems. This approach assumes that a palette of controllers, each one implements a bihavior. These controllers, i.e, robot behaviors, are sequentially composed using the techniques introduced in Burridge, Rizzi, and Koditschek [START_REF] Burridge | Sequential composition of dynamically dexterous robot behaviors[END_REF]. These ideas are applied to the design of assembly tasks as found in automated factories.

Control software architecture design approaches are usually classified into three main categories [START_REF] Ridao | Oca: A new hybrid control architecture for a low cost auv[END_REF]:

• Reactive v.s. Cognitive (deliberative) architec-
tures, many modules connects several inputs sensors/actuators, each module implements a behavior. These behaviors are called "reactive" because they provide an immediate output of an input value, and cognitive otherwise [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF] [9]. • Hierarchical v.s. Non-Hierarchical architectures, the hierarchical architectures are built in several levels, usually three. Decisions are taken in the higher level; the intermediate level is dedicated to control and supervision. The low level deals with all periodical treatment related to the instrumentation, such as actuator control or measuring instrument management [START_REF] Lumia | The nasrem robot control system and testbed[END_REF]. • Hybrid architectures are a mix of the two previous ones [START_REF] Ridao | Oca: A new hybrid control architecture for a low cost auv[END_REF]. Usually these are structured in three layers: the deliberative layer, based on planning, the control execution layer and a functional reactive layer [START_REF] Schneider | Controlshell: A software architecture for complex electro-mechanical systems[END_REF]. It's in the same time reactive with a cognitive level (planning for example).

To bring coordination into a multi robotics system we can distinguish centralized approaches from distributed ones.

• A centralized system [START_REF] Farinelli | Multirobot systems: a classification focused on coordination[END_REF] has a robot (leader) in charge of organizing the work of the other robots.

The leader is involved in the decision process for the whole team, while the other members can act only according to the leader's directions. • In contrast, a distributed system is composed of robots that are completely autonomous in the decision process with respect to each other; there is no leader in such cases.

Among multi-agent based Robotics Development Environments (RDE), OROCOS architecture [START_REF] Bruyninckx | Open robot control software: The orocos project[END_REF] is a modular framework capable of controling multi-robot systems providing an environment for implementation of real-time control systems with various abstraction levels for hardware device drivers.

ARTIS architecture [START_REF] Botti | Modelling agents in hard real-time environments[END_REF] allows developing agents working in hard real-time environments. Using an offline analysis of the specification, the architecture performs the execution of the entire system. The Agents allows the self-adaptation in the changing environments, by executing tasks autonomously. ARTIS has been experimented in the SIIVIBA [START_REF] Jennings | A roadmap of agent research and development[END_REF] and FIPA [START_REF] Dorigo | Evolving selforganizing behaviors for a swarm-bot[END_REF] platforms.

IDEA architecture (Intelligent Distributed Execution Architecture) [START_REF] Muscettola | Idea: Planning at the core of autonomous reactive agents[END_REF] based on a multi-agent system to control multi-robot systems. Where each agent can be a functional module, a planner, a diagnostic system, ... The operation of agents is based on the "procedure" and "token". IDEA agents can communicate and monitor each other. The database is partitioned online of time (timelines), each representing the temporal evolution of a sub-system property.

ARTIS [START_REF] Botti | Modelling agents in hard real-time environments[END_REF] and IDEA [START_REF] Muscettola | Idea: Planning at the core of autonomous reactive agents[END_REF] architectures are a very interesting architectures, and both describes one agent architecture. When an ARTIS agent is applied to robot, it contains sensor/actuator modules, control modules for real time execution and a reflex layer for critical events, its in-agents are dedicated to the different behaviors such as localization, trajectory planner, radio communication, obstacle avoidance... And IDEA is a multi agent framework for planning and execution for agents, it's composed of three layers: Token and procedures, communication wrapper, and a virtual machine which integrates planning as the reasoning module at the core of the execution engine, the interplaying of its different modules (the domain model, the plan database, the plan runner and the reactive planner) provides the basis for agents autonomy. both have a good coordination level if we consider them in a multirobot context, but it does not rely on organizational rules to build agents, which is the case of our architecture, our agents are built through an organization, the organizational model takes into account all the tasks and constraints, and on this basis we build our agents thanks to U TOPIA .

There is an other multi-agent Hybrid architecture [START_REF] Fierro | A framework and architecture for multi-robot coordination[END_REF] which describe a high-level language with formal semantics, to describe multi-agent networked robotics systems. This architecture allows the development of complex multi-robot behavior via: hierarchical and sequential composition of control; estimation modes, and parallel composition of agents. Robot agents can receive estimates of the obstacles from other robots, and commands and specifications from the human operator on input channels, and its can sent its own informations to other robots or to the human operator using the output channels.

This architecture is the closest given into our model. Infact it's organized at the highest level of the hierarchy, in two interacting agents: a coordination agent and a robot-group agent, which approximately represent in our architecture: MOISE Inst the organizational model and U TOPIA the MAS instantiation middelware. The coordination agent reduces to the specification of communication channels between robot agents, and the specification of parameters for transitions and the instantiation of each agent within the robot-group agent.

A MAS particularly meet the underlaying needs of supervision and coordination of multiple and mobile robots. For that, we have to associate an agent to each physical robot and model each robot as an agent in the MAS model.

Among the MAS models we have chosen the Electronic Institution [START_REF] Esteva | Electronic institution: from specification to development[END_REF]. Indeed, this organizational model allows to express cooperation schemes defined by the user with an Organization Modeling Language such as for instance MOISE + [START_REF] Hübner | A model for the structural, functional, and deontic specification of organizations in multiagent systems[END_REF], ISLANDER [START_REF] Esteva | Ameli: An agent-based middleware for electronic institutions[END_REF], OMNI [START_REF] Dignum | Omni: Introducing social structure, norms and ontologies into agent organizations[END_REF]. The aim of these services is to constraint and supervise agent's actions and interactions in order to achieve some global goals. We call those explicit cooperation schemes OS.

To summarize our different ideas, we state to develop a hybrid architecture which takes into account: the advantages of Reactive and Hierarchical architectures, to obtain more efficient reaction in different aspects, such as having good level of data processing while minimizing the reaction time, allows coordination and permits hybrid distributed / centralized aspect. This architecture is dedicated to multi-robot systems with a high degree of coordination between autonomous robots. The main originality of MAS2CAR is the used coordination method and the challenge is to implement an organizational model for robotic agent with all the physical and automatical constraints to obtain a more powerful multi-robot coordination, and apply it on real robots.

III. MAS2CAR'S GLOBAL MODEL

In our architecture model :

• We focus on nonholonomic homogeneous2 robots; • The environment in which robots evolve is partially known but we also consider the possibility of encounter unexpected obstacles.

A. Overview

Elaborating an innovative architecture to control a group of coordinated autonomous vehicles in unstructured environments, have to take into account different aspects. That is why our model is composed by three main layers for every robot (cf. Figure 1):

1) The Physical Layer is composed of multiple sensors/actuators existing on the robot. 2) The Control Layer allows us the "basic" goals modules such as planning, re-planning, reactivemode and the sensors/actuators management.

3) The Coordination Layer is dedicated to more complex abstract or social goals. Basically, this level is represented by an agent. The originality of this architecture is to use Electronic Institution MAS model to bring cooperation, coordination and intelligence at both individual and social levels.

As shown in Figure 1, the Control Layer makes the link between the Physical Layer and the Coordination Layer (agent). It manages the sensors and actuators in order to serve abstract commands for every actuator and events from every sensor.

For instance, if the Coordination Layer decide to reach a target, the Control Layer have to exactly calculate the best trajectory to reach this objective, taking into account the robot's structural constraints: the nonholonomy, avoiding the set points discontinuities, the limitation of the rotational torques, etc. The robot must avoid also the known obstacles on the path. We have choosen the Potential Fields method [START_REF] Safadi | Local path planning using virtual potential field[END_REF] to plan the robot trajectory, and the Orbital Obstacle Avoidance Algorithm [START_REF] Adouane | Orbital obstacle avoidance algorithm for reliable and on-line mobile robot navigation[END_REF] for unexpected obstacles.

Afterwards, the Control Layer controls all the required actuators to follow the computed trajectory until the objective.

B. Properties 1) Communication: One of the main objects of study in multi-robot systems research is the communication or interaction between the robots. Three main communication structures are often used [START_REF] Stilwell | Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles[END_REF], [START_REF] Werfel | Extended stigmergy in collective construction[END_REF].

• First is communication or interaction via environment: this occurs when the environment itself is the communication medium with no explicit communication between agents. This type of interaction between robots is also known as stigmergy and examples can be found in [START_REF] Das | A vision-based formation control framework[END_REF].

• Another typical structure is the interaction via sensing: this refers to local interactions that occur between agents as a result of them sensing one another, but without explicit communication.

An example would be vision by means of omni directional cameras [START_REF] Parker | Alliance: An architecture for fault tolerant multi-robot cooperation[END_REF]. • Last is interaction via communications: this involves explicit communication with other agents, by either directed or broadcast intentional messages.

The most appropriate in the MAS environments is this last one, thanks to its directed and broadcast intentional messages, in our model we use it with a communication interface listening on every robots. Thanks to this, an agent of the Coordination Layer can connect to its associated Control Layer in two different ways: (i) Locally if the robot has the required characteristics to embed the agent directly; (ii) Remotely through a robot wireless interface.

2) Abstraction: Every agent connected to the Control Layer's interface can send and receive messages. The Control Layer behave as a middleware which receive commands for actuators and send events from sensors.

As an abstract layer for the hardware, this Control Layer design permits multi-heterogeneous robots, as the Control Layer can be adapted to different hardware while serving the same middleware.

For these reasons, this architecture allows (i) Robotindependent Coordination Layer implementation (ii) platform-independent programming languages to implement the MAS and finally (iii) more powerful and reactive Coordination Layer.

The Control Layer (cf. Figure 1) take basic decisions such as determining a trajectory or avoiding an unexpected object allowing the Coordination Layer to focus on more complex tasks or social behaviors.

This paper focus on the Coordination Layer presented in the next sections.

IV. MAS2CAR'S OS

As said on section II, we use Electronic Institution and MOISE Inst [START_REF] Gâteau | Moiseinst: An organizational model for specifying rights and duties of autonomous agents[END_REF] as organizational model. MOISE Inst allows to model a MAS with four dimensions : structural, contextual, functional and normative. (cf. Figure 2)

In other words, thanks to MOISE Inst we can model the fact that :

(FS) to accomplish a specific goal or mission of the Functional Specification. (SS) An agent playing a particular role of the Structural Specification, (CS) when the organization is in a given context of the Contextual Specification, (NS) according to a deontic operator of the Normative Specification, it force, allow or forbid actions In this part we will describe an Institution-oriented approach to model our MAS. We will focus on giving the possibility for agents to reach a targeted point (objective) according to a partially known environment in a planning-based mode.

Nevertheless, we also model a possible reactive mode to face unexpected events. The resulting OS allow cooperation and coordination as all the agents are managed by a supervisor detecting and avoiding conflicts. In this particular case, the possible conflicts Figure 1. Architecture of a robot at the individual scope [START_REF] Mouad | Multi-agents system to control and coordinate teamworking robots (mas2car)[END_REF] are collision between robots and the cooperative behavior is the way robots constraint themselves relatively to their own objective to guarantee the accomplishment of the most important social-scope goal : the preservation of all the robots.

A. Structural Specification

Define a role (r) per robot: rRobot{i} with i = {1..n} and n the total number of robots. All these roles have a cardinality of 1. By this way one and only one agent is associated to each robot. In addition of the robot's roles, we have defined a role for a Supervisor, rSupervisor, which have the duty to manage the others agent with a global point of view.

Thus our architecture is a distributed architecture, and the MAS (Coordination Layer of our architecture, cf. figure 1) is mainly composed by the agents representing an associated agent's Control Layer and by a supervisor, in each robot. In consequence we obtain a high level of coordination and cooperation for our group of robots due to the connection between supervisors in each robot.

B. Contextual Specification

A contextual specification can be seen as a recursive transition-graph where states are called contexts and set of contexts are called scenes (s). We have one scene for the supervisor, sSupervisor, and one for each robot : sRobot{i} (cf. table I). Theses scenes includes specific contexts influencing the behavior of the robots:

• Planning mode associated to the initial context planningMode, used as often as possible by the robots to compute their trajectories and reach their goals.

• Reactive mode associated to the context reactive-Mode, triggered when an unexpected obstacle is detected in order to avoid it. Thanks to transitions, we can switch the mode of each robots. Indeed, the organization is n + 1 different contexts at the same time (n agents and 1 supervisor). At the beginning, we have: sSupervisor/Active and sRobot{i}/planningMode/Active (the agent i activate the Planning Mode) i = {1..n}. If due to unexpected obstacle, the supervisor send the transition AO5 (which means "Avoid Obstacle" into the scene sRobot{5}), the contexts turn to be sSupervisor/Active, sRobot5/reactiveMode/Active and sRobot{i}/planningMode with i = {1..n}, i = 5.

C. Functional Specification

Here, we have specified goals and set of goals (missions) for the robots and the supervisor (cf. table I). The goals are executed in a specific order according to three modalities:

• Sequence (→): g 1 → g 2 → ... → g p-1 → g p the goal g p have to be realized before g p-1 , ... , g 2 have to be realized before g 1 . • Parallelism ( ): r {g 1 , g 2 , ..., g p } : the goals g 1 , g 2 , ... , g p have to be realized in parallel after realizing r. • Choice ( ): r {g 1 , g 2 , ..., g p } one and only one g i∈[1.

.p] have to be realized after realizing r.

We have three missions :

mSupervisor = gRoot {gSupervisor, gCollisionSolver}
The supervisor have to do three set of actions in parallel: management of the messages and requests from the robots within gSupervisor, and detection / resolution of conflicts between robots within the goal gCollisionSolver.

mP lan

= gW aitSupervisor → gComputeT rajectory → gAskF orP ermission → gReachT arget First we execute gWaitForSupervisor (is the supervisor here and ready?) when done, we execute gComputeTrajectory wherein we ask Control Layer for a planning in order to reach a targeted point of the environment.

Then we execute gAskForPermission wherein we ask supervisor if the computed planning implies conflicts with other robots. As a result, we obtain constraints to avoid conflicts and we modify the planning to respect these constraints and robot characteristics.

Finally, the goal gReachTarget is executed and we send messages to the Control Layer in order to move according to the plan.

This goal run until the objective is reached or until it is interupted by messages coming from sensors (unexpected obstacle). In this case a transition (AOi where i is the identification of the robot) is sent to switch the robot into reactive mode.

mReact

= gAvoidObstacle → gReturnOnT rajectory mReact Is used to manage an unexpected obstacle detected by sensors. In gAvoidObstacle we move the robot according to data coming from sensors in order to avoid the obstacle. As soon as the obstacle is far enough we run gReturnOnTrajectory wherein we try to get back to the trajectory planified before. When it is done, we can leave the reactive mode and go back to the planning mode by sending a transition to change the context.

D. Normative Specification

In the normative specification (cf. table I), we have a Norm for the supervisor NSupervisor, which forces the agent playing the role rSupervisor when the Institution is in the context sSupervisor/Active to do the mission mSupervisor described before.

For the n robots, we have two norms N{i}planningMode and N{i}reactiveMode with i = {1..n}.

• N{i}planningMode forces the agent playing the role rRobot{i} when the Institution is in the context sRobot{i}/planningMode/Active to do the mission mPlan, • N{i}reactiveMode the same for role rRobot{i} when the Institution is in the context sRobot{i}/reactiveMode/Active to do the mission mReact.

V. MAS2CAR'S IMPLEMENTATION

In order to be focused on the model and collaborative behavior we use U TOPIA [START_REF] Schmitt | Easy programming of agent based electronic institution with utopia[END_REF] as MAS middleware to implement the Coordination Layer of our architecture.

U TOPIA automatically deploy a MAS that can be specialized with goal or missions corresponding to Java classes run on the fly by the middleware in respect of the Normative Specification.

In other words, the concrete MAS corresponding to the specification seen in section IV, is mainly managed with U TOPIA. We only present the key aspects of the implementation of the goals and information shared between goals and agents.

Table I NORMATIVE SPECIFICATION GLUEING ALL THREE OTHER SPECIFICATIONS

A. Goals implementation

On section IV, we described our OS and we have seen that the Functional Specification implies set of goals called missions. A goal such as gSupervisor is abstract and only denote, at this state, a set of actions.

Of course, in our model of implementation, we have associated abstract goal designations with concrete actions. U TOPIA permits to map declared Functional Specification goals with Java classes.

B. Information sharing

When a goal is achieved, U TOPIA's agent playing a role of the Structural Specification run the next goal according to the mission.

For a mission such as mP lan = gReachT arget → gAskF orP ermission → gComputeT rajectory → gW aitSupervisor we can notice that information have to be shared between goals. For instance, after computing a plan in gComputeTrajectory and after obtaining supervisor's permission we have to respect the plan in gReachTarget. To this end, we obviously need the planning when gReachTarget is run, even if the planning isn't computed in this goal.

We use a couple of U TOPIA's primitives to share information between goals run by a same agent. At the end of the goal implementation gComputeTrajectory we publish a shared object under the name "planning" describing the plan.

Shared objects are also used by goals running in parallel particularly those of Supervisor. We have an object called Environment describing the essential information about robots and obstacles constituing the environment.

Basically, the goal gSupervisor update the object according to received messages from robots, gColli-sionSolver use this global point of view to detect and avoid conflicts by adding constraints to the conflicting planning such as speed constraints, coordinates of a new trajectory...

VI. SIMULATION AND RESULTS

Figure 3 shows a closer view of the robots represented by filled circles ( R1 red, R2 blue and R3 green). In this demonstration, the robots R1 and R2 should have been too close according to our criteria defined by l min . This situation is shown by two unfilled red and green circles in the middle of the picture.

The speed of the R1 robot was reduced in gCom-puteTrajectory according to constraints received by the supervisor's goal gAvoidCollision. Unfortunately, an unexpected obstacle was placed right on the robot's trajectory. R1 detected it through its sensors while running gReachTarget. That's why you can see this robot in reactive-mode avoiding the obstacle by running gAvoidObstacle which is the cycle limite avoidance [START_REF] Adouane | Orbital obstacle avoidance algorithm for reliable and on-line mobile robot navigation[END_REF].

You can also notice a red transparent circle in collision with the obstacle. This circle represent the expected position of the robot according to the last received planning (this trajectory is obviously not traked by the robot).

In figure 4, R1 avoided successfully the obstacle and is back on its initial trajectory thanks to gReturnOnTrajectory. A new trajectory computation is done to reach its goal from its new position, taking into account the position and the speed of the other robots, in this case 

VII. CONCLUSION

In this paper we described the proposed architecture model and its three parts. The Physical Layer is related to the robot itself, its sensors, actuators and characteristics. The Control Layer module is in charge of several treatments such as sensors / actuators management and serve as middleware between Physical and Coordination Layers.

We focused on the Coordination Layer and have shown how a multi-agent system can be helpful to bring coordination and cooperation into a multiple heterogeneous robot set. To this end, the key point is twofold :

• Using an Organizational Model (MOISE Inst ) in order to describe the structure, goals and contexts in a normative Multi-Agent System. • Taking the benefit of U TOPIA framework to handle the OS and translate it into a concrete MAS corresponding to the Coordination Layer throught our goal implementations executed by the robots. Beyound the theory, we shown a concrete and generic OS demonstrating how we can manage the robots in a structured environment while allowing the robots to autonomously react to unexpected events. Moreover, we presented some of our results showing how the supervisor can send new constraints to avoid conflicts, how transitions are sent to switch between planning and reactive mode while allowing more autonomy for a particular robot, and finally how this robot switch to planning mode again to knuckle back under supervisor.

This centralized / decentralized possibility is a key characteristic of MAS2CAR architecture as it allows to face every events while keeping a specification of global goals.

Future works will adress more sophesticated collaborative tasks, behaviors and team-work, such as the treatment of a big abstract mission... his is the force of using an organizational model such as MOISE Inst which aims, inter alia, at structure collaboration.
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 2 Figure 2. MOISE Inst , a normative Organization Specification model, and its different specifications.
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 3 Figure 3. Reactive-mode in order to avoid an unexpected obstacle

Figure 4 .

 4 Figure 4. Robot getting back on its initial trajectory

  

Multi-Agents System to Control and Coordinate teAmworking Robots (MAS2CAR)

A robot set is homogeneous if the capabilities of the individual robots are identical and heterogeneous otherwise.