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Abstract This paper deals with the reactive navigation in clustered environment. It pro-
poses an online and adaptive elliptic trajectory to perform smooth and safe mobile robot
navigation. These trajectories use limit-cycle principle already applied in the literature
[3]. The main contribution proposed here is to perform this navigation in a completely
reactive way while using only range sensor data. At this aim, each obstacle to avoid
is surrounded by an ellipse and its parameters are obtained online while using the se-
quential range data and appropriate method to identify the enclosed ellipse. Different
methods to obtain these ellipse parameters are presented and implemented. A specific
criterion is taken into account to obtain always smooth change in these parameters.
A large number of simulations permit to show the efficiency of our proposal for the
navigation in cluttered environment.

Key words: Mobile robot navigation; Obstacle detection and avoidance; Telemetry;
Parameter identification; Least square.

1 Introduction
An important issue for successful mobile robot navigation is obstacle avoidance. In
fact, this function permits to prevent robot collision and insure thus robot safety. One
area of research in obstacle avoidance is focused on reactive methods, where only local
sensors information is used rather than a prior knowledge of the environment [9], [13],
[1]. In [11], the author proposes a real-time obstacle avoidance approach based on the
principle of artificial potential fields. In this work, it is assumed that the robot actions
are guided by the sum of attractive and repulsive fields.

Several other approaches can be found in the literature, such as the obstacle avoid-
ance based on orbital trajectories. This approach is described by circular limit-cycle
differential equations [12], [10] and [2]. Our work uses elliptical trajectories that was
presented in [3]. Therefore, more generic and efficient obstacle avoidance is performed
and this even with different obstacle shapes, for instance long walls. In fact, an ellipse
fit better this kind of obstacles than a circle.

For this purpose, different techniques have been proposed in the literature to enclose
the data with an ellipse [15], [14] and [7]. In [15], the author presents a summary of the
methods to fit a set of data with an ellipse. The presented methods are the least square
fitting based on algebraic and Euclidean distance, Kalman filtering method and robust
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estimation. In [14], the author proposed a technique to obtain the smallest enclosing
ellipse by a set of data improving thus the Welzl’s algorithm [14] with linear increasing
time with regards to data dimension. In [7] the authors constructed an ellipse using the
mean and covariance of the data and the Mahalanobis distance to analyze the relation-
ship among them. The maximum Mahalanobis distance is used for different purposes,
namely for detection of outliers and for investigating the representativity between two
data sets. This work proposes an on-line heuristic method based on the distance between
the data to compute the parameters of ellipse.

The rest of the paper is organized as follows: in the next section, the task of navi-
gation using elliptic trajectories is presented. In section 3, the details of the control ar-
chitecture are introduced and obstacle avoidance algorithm is given. Section 4 presents
the methods for enclosing the range data with an ellipse. Simulation results are given in
section 5. Finally, conclusion and future works are given in section 6.

2 NAVIGATION IN CLUTTERED ENVIRONMENT
First, let us assume that the obstacle O can be surrounded by elliptical box (cf. Fig. 1).
The elliptical shape is represented by its Cartesian form:

(x−h)2 / a2 +(y− k)2 / b2 = 1 (1)

where (h,k) ∈ ℜ2 are the ellipse center coordinates and a,b ∈ ℜ+ are the semi-axes
with a≥ b.

In section 4, it will be shown how the ellipse parameters can be efficiently computed
from range data. Let us also represents the robot and the target by circles CR and CT of
radius RR and RT respectively (cf. Fig. 1). One can define:

1. DRO as the minimal distance between the robot and the obstacle “O” [8].
2. Ellipse of influence (E f ) as an ellipse that has the same center (h,k) and tilt angle Ω

as the ellipse which surround the obstacle (1) while its major (minor) semi-axis is
alc(blc) are defined as follows{

alc = a+RR +Margin
blc = b+RR +Margin

where Margin represents safety tolerances encapsuling: perception uncertainties,
control reliability and accuracy.

3. “l” as the line passing through the center of CR and CT . As we will see in the sequel,
our method only needs to know if it exists intersection points between l and E f (cf.
Fig. 1).

The objective of this navigation task in cluttered environment is to lead a mobile robot
towards a specific target in an unstructured environment. This task must be achieved
while avoiding static and dynamic obstacles O which can have different shapes. In this
work, we consider that the cluttered environment has only static obstacles. Furthermore,
the presence of dynamic obstacles will be developed in future work.
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Fig. 1 The used perceptions for mobile robot
navigation.

Fig. 2 Robot configuration in a Cartesian refer-
ence frame.

3 CONTROL ARCHITECTURE
The used control structure is based on [3] (cf. Fig. 3). It aims to manage the interactions
between elementary controllers while guaranteeing the stability of the overall control
as proposed in [1]. Its objective is also to insure safe, smooth and fast robot navigation.
The specific blocks composing the global controller are detailed below.

Fig. 3 Control architecture for mobile robot navigation.

This control architecture uses a hierarchical action selection mechanism to manage
the switches between the controllers, according to environment perception. It has a
mechanism that activates the obstacle avoidance controller as soon as it exists at least
one obstacle which can obstruct the future robot movement toward its target [2]. This
permits to anticipate the activation of obstacle avoidance controller unlike what is pro-
posed in [6] or [4], which wait until the robot is in the immediate vicinity of the obstacle
(i.e. DRO ≤ R “a certain radius value”).

Before describing each elementary controller, let us briefly recall the kinematic
model of an unicycle robot (cf. Fig. 2) ẋ

ẏ
θ̇

=

 cos(θ) 0
sin(θ) 0

0 1

[ v
ω

]
(2)

where x, y, θ are configuration state of the unicycle at the point Om, v and ω are
respectively, the linear and angular velocity of the robot at the point Om.

The attraction to target controller guides the robot toward the target. This controller
is based on the control position of the robot to the target. In this paper, we focus on
the obstacle avoidance controller, more details about attraction to target controller are
given in [5].
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3.1 Obstacle avoidance controller

To perform the obstacle avoidance behavior, the robot needs to follow accurately limit-
cycle trajectories as what is given in [12] and [2]. In these works authors use a circular
limit-cycle characterized by a circle of influence of RI radius. In [3], it is proposed to
extend this methodology for more flexible limit-cycle shape (an ellipse). The main ideas
of this controller are detailed below.

The differential equations giving elliptic limit-cycles are:

ẋs = mys + xs(1− x2
s/alc

2− y2
s/blc

2− cxsys) (3)
ẏs = −mxs + ys(1− x2

s/alc
2− y2

s/blc
2− cxsys) (4)

with m =±1 according to the direction of avoidance (clockwise or counter-clockwise,
cf. Fig. 4). (xs,ys) corresponds to the position of the robot according to the center of the
ellipse; alc and blc characterize respectively major and minor elliptic semi-axis (cf. Fig.
1); c if 6= 0 gives the Ω ellipse angle.
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Fig. 4 Clockwise and counter-clockwise shape for the elliptic limit-cycles.

The algorithm for obstacle avoidance is summarized in the following main steps:

• The nearest hindering obstacle is detected,
• The direction of avoidance is chosen according to the position of the robot with

regards to the position of obstacle and the target,
• The robot avoids the obstacle while following an elliptic limit cycle which has the

semi-axes alc and blc, with alc ≥ blc.

More details of the used obstacle avoidance algorithm is given in [3].
The desired robot orientation is thus given by the differential equation of the limit-

cycle (3) and (4) as:
θd = arctg(ẏs/ẋs) (5)

and the error by: θ̃ = θd−θ (6)

3.2 Control law

The used control law is expressed as follows [5]:

v = vmaxe−1/dcos(θ̃) (7)
ω = ωr +Kpθ̃ (8)
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where vmax is the maximum linear velocity, Kp is a constant such that Kp > 0 and if the
obstacle avoidance controller is activated, d is equal to DRO (cf. Fig. 1) else d is the
distance between the robot and the target when the attraction to the target controller is
activated. The robot reaches the target when 0 < d ≤ RT , where RT is the radius of the
target (cf. Fig. 1).

It is interesting to notice that only one control law is applied to the robot even if
its architecture of control contains two different controllers. Only the set points change
according to the applied controller [5].

4 ENCLOSING DATA RANGE WITH AN ELLIPSE
During the robot movement, it is important for the robot to detect on-line and to avoid
the hinder obstacle. The robot will try to surround the observed range data with the
closest ellipse to apply elliptic limit-cycle approach.

For this purpose, let us consider a set of n points in ℜ2 with coordinates Pi(xi,yi) (cf.
Fig. 5). These points are computed from the data range of the robot, and it is considered
that it was previously filtered, i.e, without noisy and outliers. In this section, it will be
shown how to compute the ellipse that encloses all points. An important condition in
this work is that the methods need to start at least with three different points.

Y
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i ii
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measurement

α 

D LD
 m

ax
L

Fig. 5 Data set of n points.

This paper considers that the robot detects one obstacle at a time. The segmentation
method of the set of points will be used in future works to the detection of more than
one obstacle at a time and for big obstacles.

The following sub-sections will present different methods to enclose the data points
with an ellipse. Sub-sections 4.1 and 4.2 are applied and (more or less) modified ap-
proach with regards to what is proposed in the literature and the method given in sub-
section 4.3 is a completely new approach to deal with this problem.

4.1 Fitting using least square approach

This approach uses the general conic equation which is given by:

f (x,y) = Ax2 +2Bxy+Cy2 +2Dx+2Ey+F = 0 (9)
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According to the real constants A, B, C, D, E anf F , we obtain the analytic equation of
the different kind of conics (parabola, ellipse and hyperbole). An ellipse is defined if
the conic parameters (9) satisfy the following condition B2−AC < 0.

The problem is to fit a conic section (9) with a set of n points {pi} = {(xi,yi)}| i =
1, . . . ,n. As the data are noisy, it is unlikely to find a set of parameters (A,B,C,D,E,F)
(except for the trivial solution A = B = C = D = E = F = 0) such that f (xi,yi) = 0.
Instead, we will try to estimate them by minimizing some objective function J.

A common practice is to minimize the algebraic distance f (xi,yi), we use the least-
square fitting based on algebraic distance [15] to minimize the following function:

J =
n

∑
i=1

f 2(xi,yi) (10)

Note that there is no justification for using algebraic distance apart from easy im-
plementation. To avoid the trivial solution, f (xi,yi) should be normalized. We use the
normalization A+C = 1 because it is one of the most popular methods proposed in the
literature [15], and its implementation is easy.

Using the normalization in (9), the set of equation f (xi,yi) can be written as:

fi ≡ ais−bi = 0 (11)

where s= [A,B,D,E,F ]T , ai = [x2
i −y2

i ,2xiyi,2xi,2yi,1] and bi =−y2
i . The solution that

minimize the functional J is given by

s = (AT A)−1AT b (12)

where A = [a1,a2, . . . ,an]
T and b = [b1,b2, . . . ,bn]

T . This method is known as the
pseudo inverse technique.

4.2 Covariance approach

This method is based on the analysis of the relationship between the n points. We use
the covariance of the data and the Mahalanobis Distance (MD) [7]. In the field of mul-
tivariate calibration, the MD is used for different purposes, namely: for the detection of
outliers, the selection of calibration samples from a large set of measurements and for
investigating the representativity between two data sets. In the original variable space,
the MD takes into account the correlation in the data, since it is calculated using the
inverse of the covariance matrix of the data set of interest.

The principle of covariance approach is given below: First the covariance matrix Cx
is constructed:

Cx =
1

(n−1)
(Xc)

T (Xc), (13)

where Xc is the column-centered data matrix (X− X̄). X is the data matrix containing
n objects in the rows measured for p variables and X̄ is the data mean.

Now, we analyze the covariance matrix Cx using the eigenvalues and eigenvectors to
obtain the parameters of the ellipse f (x′,y′) (1). Furthermore, we use the Mahalanobis
distance to select the dimension of the semi-axes (percentage the data inside the ellipse)
[7]. The eigenvalues λ1, λ2 (λ1 > λ2) are related to the semi-axes a and b as follows:
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a = MDmax
√

λ1
b = MDmax

√
λ2

(14)

where MDmax is the maximum Mahalanobis distance to ensure that all the set of data is
enclosed by the ellipse. The eigenvectors v1, v2 are related with the orientation Ω .

Ω = arctan(v2/v1) (15)

The center of the ellipse is the mean of the data X̄ and the maximum semi-axes a is the
direction where there are the most important amounts of data.

4.3 Heuristic approach

The proposed heuristic approach uses the distance between the points to obtain one of
the axes.

This method computes the distance between all the points di j = ‖pi − p j‖ with
i, j = 1, . . . ,n; and select the maximum distance dmax. We have thus, di j ≤ dmax. With
this manner, this maximum distance is not decreasing. The line connecting the cor-
responding two points (the points with the maximum distance) is one of the ellipses
axes, where the ellipse center CO is the middle point between the points with maximum
distances and the first semi-axes is a1 = dmax/2.

Now, we work in the new coordinates system X ′Y ′ to obtain the second ellipse semi-
axes a2. We transform the n points to new coordinates system using (16).

P′i =
[

cos(Ω) sin(Ω)
−sin(Ω) cos(Ω)

]
(Pi−CO) (16)

Where Ω is the orientation of the line between the two points that have the maximum
distance. P′i(x′i,y′i) is the coordinate in the new system, Pi(xi,yi) is the coordinate in the
initial system and CO is the coordinate of the ellipse center in the initial system.

If the coordinate y′i of the points is greater than the threshold ε > 0, we compute
the distance of P′i to the origin O′, i.e., |y′i| > ε ⇒ d′i = ‖P′i‖. The threshold is used
to eliminate the points that are collinear with the two points that have the maximum
distance (axes).

We know that all points inside the ellipse have the distance d′i < max{a1,a2}. As we
do not know the spatial distribution of the set of points and to ensure that all the points
are inside the ellipse, we choose that a2 =max{bi}, where bi is the computed semi-axes
using P′i in (1). In other words, bi ≤ a2 ≤ max{a1,a2} ⇒ Pi ∈ Ellipse. Therefore, the
ellipse will enclose all points without regard of the obstacle shape.

Finally, we obtain the semi-axes of the ellipse (1) such as:

a = max{a1,a2}
b = min{a1,a2}

(17)

5 SIMULATIONS RESULTS
To demonstrate the efficiency of the proposed approach to enclosing the obstacle with
the ellipse, a two statistical survey was made. We consider a mobile robot with a radius
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of RR = 0.5 m and a α = 180◦ laser range sensor with the maximum detected range is
equal to DLmax = 3.0 m (cf. Fig. 5). The maximum linear velocity of the robot is 1.5 m/s
and the sample time is 0.01 s. For each simulation the robot starts at the same configu-
ration and reaches the same final configuration. We do not start to use any method until
we have the enough data range ndata ≥ 3. The first survey is used to compare the meth-
ods presented above to identify the closer ellipse shape which surround the detected
obstacle (cf. section 4).

Fig. 6 shows the identified ellipse parameters using the different methods. We ob-
serve that the heuristic parameters change more smoothly if they are compared with the
others.

Fig. 6 Parameter of the estimated ellipses.

Fig. 7, 8, 9 shows the evolution of the identified ellipse for the least square, covari-
ance and heuristic methods, respectively. We observe that the least square method and
covariance change abruptly.

Fig. 7 Evolution of the obtained ellipse using least square approach.

Fig. 8 Evolution of the ellipse using covariance approach.
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Fig. 9 Evolution of the ellipse using heuristic approach.

The second survey is used to make a focus only around the proposed heuristic
method which gives satisfactory results and this while making an on-line navigation
in cluttered environment (cf. Fig 10).

Fig. 10 shows the trajectory of the robot in the environment with three obstacles.
We observe that the robot avoid the obstacles with a smooth trajectory. This trajectory
was obtained while using the on-line obstacle avoidance algorithm [3] which takes its
parameters (elliptical limit-cycle to follows) from the proposed heuristic approach.

Fig. 11 shows the distance between the optimal ellipse (obtained while knowing all
the range data which surround the obstacle) and the position of the robot (red dotted
line), and the distance between the ellipse using the heuristic method and the robot.
This figure shows that the robot does never collide with any obstacles, thus the proposed
on-line approaches is efficient to deal with cluttered unstructured environment. Future
work will consist to implement this approach in real robots.

Fig. 10 Robot trajectory using the heuristic approach to en-
closing the obstacle.

Fig. 11 Distance from the robot to the
optimal ellipse and to on-line estimated
ellipse using the heuristic approach.

6 CONCLUSION
This paper proposes an on-line elliptic limit-cycle trajectory to perform smooth and
safe mobile robot navigation. This elliptic trajectory is obtained while using only local
range data. The later, permits to obtain the parameters of the ellipse which surround the
obstacle to avoid. After giving a review of different methods to enclosing an ellipse,
an appropriate heuristic method was proposed and compared to the existing approaches
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(based on least square or covariance). The proposed heuristic permits to obtain a smooth
changes of the ellipse parameters. The overall obstacle avoidance strategy permits us
to obtain generic and flexible navigation in very cluttered environments. The proposed
reactive navigation was embedded in multi-controller architecture and permits for a
mobile robot to efficiently navigate in environments with different obstacles shapes. In
future works, the problem of dynamic obstacles, outliers detection and uncertainty of
the range data will be considered. Furthermore, we will use the Kalman filter to deal
with the uncertainty of the range data.
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