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Abstract: This paper proposes a robust on-line and adaptive elliptic trajectory for reactive
obstacle avoidance. These trajectories permit a safe and smooth mobile robot navigation in
cluttered environment. Indeed, they use limit-cycle principle already applied in the literature
Adouane et al. (2011). The main contribution proposed here is to perform this navigation in a
completely reactive way while using only uncertain range data. Each obstacle, in this obstacle
avoidance strategy, is surrounded by an ellipse and its parameters are obtained online while using
the sequence of uncertain range data. This method uses the fusion between heuristic approach
and Extended Kalman Filter (EKF) techniques to improve the computed ellipse parameters.
A large number of simulations and experiments show the efficiency of the proposed on-line
navigation in cluttered environment.

Keywords: Mobile robots navigation; Obstacle detection and avoidance; Telemetry; Parameter
identification; Extend Kalman Filter.

1. INTRODUCTION

An important issue for successful mobile robot navigation
is obstacle avoidance. This function permits to prevent
robot collision and insure thus robot safety. One area of
research in obstacle avoidance is concentrated on reactive
methods, where only local sensors information is used
rather than a prior knowledge of the environment Toibero
et al. (2007), Adouane (2009a). In Khatib (1986), the
author proposes a real-time obstacle avoidance approach
based on the principle of artificial potential fields. In this
work, it is assumed that the robot actions are guided by
the sum of attractive and repulsive fields.

Many other approaches can be found in the literature,
such as the obstacle avoidance algorithm based on orbital
trajectories. It is described by circular limit-cycle differ-
ential equations Kim and Kim (2003), Jie et al. (2006)
or Adouane (2009b). This work uses elliptical trajectories
that was presented in Adouane et al. (2011). Therefore,
more generic and efficient obstacle avoidance is performed
and this even with different obstacle shapes, for instance
long walls. In fact, an ellipse fit better this kind of obstacles
than a circle.

At this aim, different approaches have been proposed in
the literature to enclose the data with an ellipse Welzl
(1991) and Zhang (1997). In Welzl (1991), the author
proposed a technique to obtain the smallest enclosing
ellipse by a set of data using primitive operation with
linear increasing time with regards to data dimension.
In Zhang (1997), the author presents a summary of the
methods to fit a set of data with an ellipse. The presented
methods are the least square fitting based on algebraic and
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Euclidean distance, Kalman filtering method and robust
estimation.

The Extended Kalman Filter has important application in
different fields, such as parameters estimation, data fusion
and signal processing Xiong et al. (2011) and Fouque et al.
(2008). In robotics field, the main applications is found in
localization, data fusion of the sensor and mapping Rigatos
(2010) and Levinson and Thrun (2010). In this work, we
use the EKF to enhance the ellipse parameters obtained
from uncertain data.

The rest of the paper is organized as follows: in the next
section, the task of navigation using elliptic trajectories is
presented. In section 3, the details of the control architec-
ture are introduced and obstacle avoidance algorithm is
given. Section 4 presents the method for enclosing the un-
certain range data with an ellipse. Simulation and exper-
imental results are given in section 5. Finally, conclusion
and some future works are given in section 6.

2. NAVIGATION IN CLUTTERED ENVIRONMENT

First, let us assume that the obstacle O can be surrounded
by an elliptical box (cf. Fig. 1). The elliptical shape is
represented by its Cartesian form:

(x− h)
2

a2
+

(y − k)
2

b2
= 1 (1)

where (h, k) ∈ <2 are the ellipse center coordinates and
a, b ∈ <+ are the semi-axes with a ≥ b.

The choice of ellipse box rather than circle as used in
Adouane et al. (2011) is to have one more generic and
flexible mean to surround and fit accurately different kind
of obstacles shapes (longitudinal shapes). In section 4, it
will be shown how the ellipse parameters can be efficiently



computed from range data. Let us also represent the robot
and the target by circles CR and CT of radius RR and RT

respectively (cf. Fig. 1). One can define:

(1) DRO as the minimal distance between the robot and
the obstacle “O”.

(2) Ellipse of influence (Ef ) as an ellipse that has the
same center (h, k) and tilt angle Ω as the ellipse which
surround the obstacle (1) while its major and minor
semi-axes, alc and blc, are defined as follows

{

alc = a+RR +Margin
blc = b+RR +Margin

where Margin represents safety tolerances encapsul-
ing: perception uncertainties, control reliability and
accuracy.

(3) “l” as the line passing through the center of CR and
CT . As we will see in the sequel, our method only
needs to know if it exists intersection points between
l and Ef (cf. Fig. 1).

Fig. 1. The obstacle and robot modeling.

The objective of the navigation task in cluttered environ-
ment is to lead a mobile robot towards a specific target in
an unstructured environment. This task must be achieved
while avoiding static and dynamic obstacles O which can
have different shapes.

3. CONTROL ARCHITECTURE

The used control structure is based on Benzerrouk et al.
(2010) (cf. Fig. 2). It aims to manage the interactions
between elementary controllers while guaranteeing the
stability of the overall control as proposed in Adouane
(2009a). Its objective is also to insure safe, smooth and
fast robot navigation. The specific blocks composing the
global control are detailed below.

Fig. 2. Control architecture for mobile robot navigation.

This control architecture uses a hierarchical action selec-
tion mechanism to manage the switches between the con-
trollers, according to environment perception. The mecha-
nism activates the obstacle avoidance controller as soon as
it exists at least one obstacle which can obstruct the future
robot movement toward its target Adouane (2009b). This

allows to anticipate the activation of obstacle avoidance
controller unlike what is proposed in Brooks (1986) or
Adouane and Le Fort-Piat (2006), which wait until the
robot is in the immediate vicinity of the obstacle (i.e.
DRO ≤ R “a certain radius value”).

Fig. 3. Robot configuration in a Cartesian reference frame.

Before describing each elementary controller, let us briefly
recall the kinematic model of an unicycle robot (cf. Fig. 3)
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where x, y, θ are configuration state of the unicycle at
the point Om, v and ω are respectively, the linear and the
angular velocity of the robot at the point Om.

3.1 Attraction to target controller

This controller guides the robot toward the target which is
represented by a circle CT of center (xT , yT ) and radius RT

(cf. Fig. 3). This controller is based on the position control
of the robot to the target, represents by d and θd in Fig.
3, more details are given in Benzerrouk et al. (2010). As
we consider a circular target with radius RT , therefore,
to guarantee that the center of robot axes reaches the
target with asymptotical convergence, d must be ≤ RT .
(cf. Fig. 3). The position errors are:

{

ex = x− xT = d cos(θd)
ey = y − yT = d sin(θd)

(3)

where d is the distance of the robot to the target and θd is
the orientation of the line passing through the robot and
the target. θ̃ ∈ [−π, π] is the orientation error, such that

θ̃ = θd − θ (4)

Its derivative
˙̃
θ is then

˙̃
θ = θ̇d − ω (5)

From the previous equation and the kinematic model (2),
we obtain

θ̇d = ωr = v sin(θ̃)/d (6)

where v is the linear velocity of the robot and d > 0.

3.2 Obstacle avoidance controller

To perform the obstacle avoidance behavior, the robot
needs to follow accurately limit-cycle trajectories as de-
tailed in Kim and Kim (2003) or Adouane (2009b). In these



works, the authors use a circular limit-cycle characterized
by a circle of influence of radius RI . In Adouane et al.
(2011), it is proposed to extend this methodology for more
flexible limit-cycle shape (an ellipse). The main ideas of
this controller are detailed below.

The differential equations giving elliptic limit-cycles are:

ẋs = mys + xs(1− x2
s/alc

2 − y2s/blc
2 − cxsys) (7)

ẏs =−mxs + ys(1− x2
s/alc

2 − y2s/blc
2 − cxsys) (8)

with m = ±1 according to the direction of avoidance
(clockwise or counter-clockwise, cf. Fig. 4). (xs, ys) cor-
responds to the position of the robot according to the
center of the ellipse; alc and blc characterize respectively
the major and minor elliptic semi-axes (cf. Fig. 1); c if 6= 0
gives the Ω ellipse angle.

Fig. 4. Clockwise and counter-clockwise shape for the used
elliptic limit-cycles.

The algorithm for obstacle avoidance is summarized by
following main steps:

• The nearest hindering obstacle is detected,
• The direction of avoidance is chosen according to the
position of the robot with regards to the position of
the obstacle and the target,

• The robot avoids the obstacle while following an
elliptic limit cycle trajectory which has the semi-axes
alc and blc, with alc ≥ blc.

Refer to Adouane et al. (2011) for details. The desired
robot orientation is thus given by the differential equation
of the limit-cycle (7) and (8) as:

θd = arctg (ẏs/ẋs) (9)

and the error by: θ̃ = θd − θ (10)

3.3 Control law

The used control law is expressed as follows Benzerrouk
et al. (2010):

v = vmaxe
−1/dcos(θ̃) (11)

ω = ωr +Kpθ̃ (12)

where vmax is the maximum linear velocity, Kp is a
constant such that Kp > 0 and d is the distance between
the robot and the target when the attraction to the target
controller is activated, and d is equal toDRO if the obstacle
avoidance is activated (cf. Fig. 1). The robot reaches the
target when 0 < d ≤ RT .

It is interesting to notice that only one control law is ap-
plied to the robot even if the control architecture contains
two different controllers. Only the set points change ac-
cording to the applied controller, Benzerrouk et al. (2010).

4. ENCLOSING UNCERTAIN RANGE DATA WITH
AN ELLIPSE

During the robot movement, it is important to detect on-
line and to avoid the hinder obstacle. At this aim, the
observed noisy range data are surrounded with the closest
ellipse to apply elliptic limit-cycle approach.

For this purpose, let us consider a set of n points in
<2 with coordinates Pi(xi, yi) (cf. Fig. 5). These points
are computed from the data range of the robot, and the
outliers are erased while using the Mahalanobis distance
De Maesschalck et al. (2000). In this section, it will be
shown how to compute the ellipse that encloses all points.
An important condition in this work is that the methods
need to start at least with three different points.start at least with three different points.

Fig. 5. Range sensor model and data set of n points.

Before describing below the proposed methods to obtain
the enclosing ellipse, let us present the model of the per-
ceived data from range sensor in the following subsection.

4.1 Range sensor model

The position of the obstacle with respect to the range
sensor in <2 can be denoted by the polar coordinates
(DLi, βi), where DLi is the distance between the center
of the robot and the impact point of the sensor and βi is
the orientation with respect to the mobile reference frame
(cf. Fig 5).

The sensor specifications and the real behavior of the
sensor has significant differences Burguera et al. (2009).
In this work, we focus on the accuracy of the range sensor,
because we have observed that short range readings are
more accurate than the long range ones. In Burguera et al.
(2009) it is observed how the mean and the standard
deviation of the errors between the real and the measured
range tend to increase with distance.

The reading range data provided by the range sensor at
each time step is modeled by the Normal distribution
Dt

Li = N(D̂t
Li, P t

Li), where D̂t
Li is the mean vector and

P t
Li is the covariance that is defined as the model of the

range and angular uncertainties. The angular uncertainty
is related to the sonar opening α and the range uncertainty
is given according to the accuracy of the range sensor (cf.
Fig. 5) Burguera et al. (2009).

The following sub-sections will present the proposed meth-
ods to enclose the data with an ellipse. Sub-section 4.2



permits to address the problem of enclosing ellipse and the
sub-section 4.3 is the extension of the proposed method to
deal with uncertainty data and to enhance the identifica-
tion of the ellipse parameters to get round the obstacle.

4.2 Heuristic approach

The proposed heuristic approach uses the distance between
the points to obtain one of the axes.

This method computes the distance between all the points
dij = ‖pi − pj‖ with i, j = 1, . . . , n; and select the
maximum distance dmax. We have thus, dij ≤ dmax. This
dmax is not decreasing if more data points are added.
While connecting the points with the maximum distance,
one of the ellipses axes is obtained. The ellipse center CO

is the middle point between the points with maximum
distances and the first semi-axis is a1 = dmax/2 (cf. Fig
6).

Now, we work in the new coordinates system X ′Y ′ to
obtain the second ellipse semi-axis a2. We transform the
n points to new coordinates system using (13).

P′
i =

[

cos(Ω) sin(Ω)
−sin(Ω) cos(Ω)

]

(Pi −CO) (13)

Where Ω is the orientation of the line between the two
points that have the maximum distance. P′

i(x
′
i, y

′
i) is the

coordinate in the new system, Pi(xi, yi) is the coordinate
in the initial system and CO is the coordinate of the ellipse
center in the initial system.

If the value of |y′i| of the points is greater than a threshold
ε > 0, the distance of P′

i to the origin O′ is computed,
i.e., if |y′i| > ε ⇒ d′i = ‖P′

i‖ is computed. This threshold is
used to eliminate the points that are colinear with the two
points that have the maximum distance (first axis) and the
points in the perpendicular line to first axis (which could
produce a large axis).

We know that all points inside the ellipse have the distance
d′i < max {a1, a2}. As we do not know the spatial distribu-
tion of the set of points and to ensure that all the points are
inside the ellipse, we choose that a2 = max {bi}, where bi
is the computed semi-axis using P′

i in (1). In other words,
bi ≤ a2 ≤ max {a1, a2} ⇒ Pi ∈ Ellipse. Hence, the ellipse
encloses all points without regard of the obstacle shape.
Finally, we obtain the semi-axes of the ellipse (1), cf. Fig
6, such as:

a = max {a1, a2}
b = min {a1, a2}

(14)

The orientation of the ellipse is ΩE = Ω + Π/2 if a2
is the major axis, otherwise ΩE = Ω. The heuristic
approach is an efficient method to enclose data with an
ellipse, however, this method does not consider neither
uncertain data nor the sequentiality of obtained data
which characterize the real experiments. The following
subsection deal with this issue.

4.3 Optimal parameters identification using EKF

Kalman filter is likely to have applications in many fields
as a general method for integrating noisy measurements
Rigatos (2010) and Levinson and Thrun (2010).

Fig. 6. Obtained ellipse using heuristic approach for two
data set of points.

This approach uses the general conic equation which is
given by:

f(x, y) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0 (15)

According to the real constants A, B, C, D, E anf F , we
obtain the analytic equation of the different kind of conics
(parabola, ellipse and hyperbole). An ellipse is defined if
the conic parameters (15) satisfy the following condition
B2 −AC < 0.

The problem is to fit a conic section (15) with a set of n
points {pi} = {(xi, yi)} | i = 1, . . . , n. This set of points
are selected using (15) with the ellipse parameters from
the heuristic method. These points satisfy the following
condition |f(xi, yi)| < δ, and 0 < δ << 1, i.e., these
points are close to the boundary of the obtained ellipse,
other points are not consider for this method. As the
data are noisy, it is unlikely to find a set of parameters
(A,B,C,D,E, F ) (except for the trivial solution A = B =
C = D = E = F = 0) such that f(xi, yi) = 0.

We applied this method to the conic fitting. The state
vector is defined by the conic parameters as x =
[A,B,C,D,E, F ]T and the measurement vector by the
point as zi = [xi, yi]

T , a linear dynamic system (in
discrete-time form) can be described by

xi+1 = Fixi +wi (16)

zi = Hixi + vi (17)

where i = 0, 1, . . .. The matrix state Fi is the identity ma-
trix of order 6 (I6), wi is the vector of random disturbance
of the state and is usually modeled as white noise:

E[wi] = 0, E[wiw
T
i ] = Qi

The measurement equation (17) is nonlinear and it is
described by the observation function:

fi(z
′
i,xi) = x′2

i A+ 2x′
iy

′
iB + y′2i C + 2x′

iD + 2y′iE + F (18)

where z′i is the ideal measurement. The real measurement
zi is assumed to be corrupted by additive noise vi, i.e.
zi = z′i + vi. We expand fi(z

′
i,xi) into a Taylor series

about (zi, x̂i|i−1):

fi(z
′
i,xi) = fi(zi, x̂i|i−1) +

∂fi(zi, x̂i|i−1)

∂z′i
(z′i − zi)

+
∂fi(zi, x̂i|i−1)

∂xi
(xi − x̂i|i−1) +O((z′i − zi)

2)

+ O((xi − x̂i|i−1)
2) (19)



By ignoring the second order terms, we get a linearized
measurement equation:

yi = Mixi + ξi (20)

where yi is the new measurement vector, ξi is the noise
vector of the new measurement, and Mi is the linearized
transformation matrix. They are given by

Mi =
∂fi(zi, x̂i|i−1)

∂xi

yi =−fi(zi, x̂i|i−1) +
∂fi(zi, x̂i|i−1)

∂xi
x̂i|i−1

ξi =
∂fi(zi, x̂i|i−1)

∂z′i
(z′i − zi)

Clearly, we have E[ξi] = 0, and E[ξiξ
T
i ] = Rξi . We consider

then there is no correlation between the noise process of
the system and that of the observation. The derivative of
fi(zi,x) with respect to x and that with respect to zi, are
given by

∂fi(zi,x)

∂x
= [x2

i , 2xiyi, y
2
i , 2xi, 2yi, 1] (21)

∂fi(zi,x)

∂zi
= 2[xiA+ yiB +D, yiC + xiB + E] (22)

The extended Kalman Filter (EKF) is then described by
the well known following steps:

• Initialization: Π0|0 = Π0, x̂0|0 = E[x0]
• Prediction of states: x̂i|i−1 = Fi−1x̂i−1

• Prediction of the state covariance matrix:

Πi|i−1 = Fi−1Πi−1F
T
i−1 +Qi−1

• Kalman gain matrix:

Ki = Πi|i−1H
T
i−1

(

Hi−1Πi|i−1H
T
i−1 +Rv

)−1

• Update of the state estimation:

x̂i = x̂i|i−1 +Ki(zi −Hix̂i|i−1)

• Update of the covariance matrix of states:

Πi = (I−KiHi)Πi|i−1

Note that the Kalman filtering technique is usually ap-
plied to a temporal sequence. Here, it is applied to a
spatio-temporal sequence. This spatio-temporal sequence
is composed of data from each sensor at each time. Due
to its recursive nature, it is more suitable to problems
where the measurements are available in a serial manner.
Otherwise, if all measurements are available or could be
made available (with no serious overhead) at the same
time, it is advantageous to applied the Kalman filter in
a single joint evaluation (all the spatial sequence at the
same time). This is because the Kalman filtering technique
is equivalent to the least-squares technique only if the
system is linear. For nonlinear problems, the EKF will
yield different results depending on the order of processing
the measurements one after the other, and may run the
risk of being trapped into a local minimum Zhang (1997).

5. SIMULATIONS RESULTS

To demonstrate the efficiency of the proposed approach
to enclose the obstacle with an ellipse and to avoid it,

a statistical survey was made. We consider a mobile
robot with a radius of RR = 0.065 m and six infrared
range sensors with the maximum detected range equal to
DLmax = 0.30 m (cf. Fig. 5). These sensors are in the
front of the robot, with 30◦ between each pairs of sensor
(cf. Fig. 7). The accuracy of the used sensors based on the
datasheet is around 10% of DLmax. In the simulation, we
consider uncertainty range with maximum value of 20%
of DLmax ensuring to take the worst range value. The
maximum velocity of the robot is 0.4 m/s and the sample
time is 0.01 s. For each simulation the robot starts at the
same configuration and reach the same final configuration.
We do not start to use any method until we have enough
range data (ndata ≥ 3).

This survey is used to make a focus around the proposed
heuristic method and Kalman filter which gives satisfac-
tory results and this while making an on-line navigation
in cluttered environment (cf. Fig. 7).

Fig. 7 shows the trajectory of the robot in the environment
with three obstacles. Moreover, the red points represent
the range data from the sensor along all the trajectory. The
range data buffer used to compute the ellipse parameters
is delete to each new obstacle. We observe that the
robot avoid the obstacles with a smooth trajectory. This
trajectory was obtained while using the on-line obstacle
avoidance algorithm Adouane et al. (2011) which takes
its parameters (elliptical limit-cycle to follows) from the
combination of the proposed heuristic approach and EKF.

Fig. 7. Robot trajectory using the heuristic and EKF
approach to enclosing the obstacle.

Fig. 8. Distance from the robot to the elliptical obstacles.

Fig. 8 shows the minimum distance between the elliptical
obstacles (obtained while knowing all the range data with-
out noise which surround the obstacle) and the position of



the robot along of the elliptical trajectory using only the
heuristic method (red dotted line), and the combination
of heuristic method and EKF (green line). This figure
shows that the robot does never collide with any obstacles
when the robust approach is used, therefore, the proposed
robust on-line approach is efficient to deal with cluttered
and unstructured environment.

Experimentations are implemented using Kheperar III
robot (cf. Fig. 9), its kinematic model is given by (2).
The navigation is achieved on a platform using the local
infrared sensors of the robot. This test demonstrate the ef-
ficiency of the proposed robust enclosing ellipse approach.
The real trajectory of the robot avoiding two obstacles is
given in figure 9. It can be seen that the robot success-
fully converges to its target after avoiding two obstacles
(surrounded with two ellipses of influence).

Fig. 9. Top view of the robot trajectory in the platform
and observed uncertain range data from the robot.

6. CONCLUSION

This paper proposes robust on-line elliptic trajectory to
perform smooth and safe mobile robot navigation. This
elliptic limit-cycle trajectory is obtained while using the
heuristic method combined with Extended Kalman Filter
which deals with the uncertain range data to obtain the
parameters of the ellipse which change smoothly. The main
contribution of this work is to perform this navigation in a
completely reactive way while using only uncertain range
data. The obstacle avoidance method permits us to obtain
generic and flexible navigation in very cluttered environ-
ments. The proposed reactive navigation was embedded
in multi-controller architecture and permits for a mobile
robot to efficiently navigate in environments with different
obstacles shapes. These methods were implemented to
evaluate the evolution of obtained ellipse in simulations
and experimental form.

In future works, the problem of outliers detection of the
range data will be accurately considered and the method
will be extended for multi-robot system. Furthermore, the
presence of dynamic obstacles will be developed.
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