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Abstract— This paper deals with reaching and keeping the
formation for a group of mobile robots. A set of virtual targets
(points) form a virtual structure of the same shape as the desired
formation. Hence, to join and to keep this formation, each robot
has only to track one of these targets. The objective of the
paper is mainly to propose a cooperative strategy between the
robots in order to rapidly join the virtual structure. Inste ad
of assigning ahead one target per robot, the proposed strategy
consists of making each one able to negotiate the closest target.
If the latter is desired by more than one robot, it is left
for the one which meets more difficulties to find an other
target. Negotiation is based on a minimalist communication
of relative cost coefficients between the robots. Simulation and
experimental results validate the proposed contributions.

I. INTRODUCTION

Controlling and coordinating Multi-robot systems MRS
are an attractive research subject thanks to their large ap-
plication fields (spatial exploration, platooning, rescue, etc.).
In this paper, we are particularly interested in the navigation
in formation task with a reactive manner. Works given in the
literature converge to three principle approaches: hierarchical
approach, behavior based, and the virtual structure strategy.

In the first approach, one or many robots are considered as
leaders while the other robots are the followers. Generally,
the leader tracks a predefined trajectory while the followers
track its transformed coordinates [1], [2]. This approach
is simple to perform. However, it is noticed that a leader
failure leads to stop the whole system. In behavior based
approach [3], [4], all the robots are homogeneous. It means
that perception and control are equitably distributed on the
robots. This method is then much more tolerant to failure
[5] than the hierarchical approach. Behavior based implies
that each one has a set of weighted behaviors (basic tasks)
to achieve. The resulting behavior of the group emerges
from the basic ones without an explicit model of the overall
cooperative behavior. However, this approach is upbraided
for the way to choose the applied control to each robot.
In fact, according to perception information, control system
switches between behaviors (competitive approach [6]), or
merges several controllers (motor schema [7]). This naturally
makes hard studying the stability of the overall control.
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Virtual structure approach considers the formation as a
single virtual body. The shape of the latter is the desired
formation shape, and its motion is translated into the desired
motion of each vehicle [8], [9]. The virtual structure is gener-
ally tackled through potential field methods [10], [11]: thus,
all members of the formation track assigned nodes which
move into the desired configuration. Each node applies an
attractive field to the corresponding robot whereas obstacles
and other robots apply repulsive field to avoid collision. The
weakness of the virtual structure is that potential applications
are limited especially when the formation shape needs to be
frequently reconfigured.

To overcome drawbacks of these strategies, it was pro-
posed to combine virtual structure and behavior based in
[12]. The achieved task (reaching and maintaining a desired
formation while avoiding collision) is divided into two basic
tasks (behaviors): attraction to a dynamical target, and ob-
stacle avoidance. These behaviors do not use potential fields
which allows possible reconfiguration of the formation.

In this paper, a particular attention is given to the coop-
erative strategy between the robots. Hence, only the part of
maintaining the formation is treated and obstacle avoidance
will not be detailed. In fact, in the literature, it is noticed
that the formation emerges because each robot tracks its
target. These targets are assigned ahead to the robots: In [4],
relative positions of the robots in the formation are based
on an identification number ID. Each robot obtains then the
relative position corresponding to its ID. The same strategy
is followed in [13]. Even in recent works, every robot tracks
a target already assigned to it [14], [15], [16] and optimizing
the allocation of these targets was not studied.

This preliminary assignation allows to avoid conflicts (to
not choose the same target) between the robots in a simple
way. However, if these robots optimize the way of sharing the
targets according to their initial positions, formation can be
reached faster and some deadlock situations can be avoided.
In fact, by assuming homogeneous robots (they have the
same constraints (maximal velocities, accelerations, etc.)),
reducing covered distances leads to reducing time to reach
the formation.

In this paper, we are then interested in the target ne-
gotiation between the robots. It is proposed that each one



negotiates, in a distributed manner, the closest target with
the others in order to reduce the total distance completed and
thus, time to reach the formation. If one target is desired by
many robots, it is given up to the one which seems having
bigger costs for the other targets. A form of altruism is then
observed between the robots.

The idea of the dynamic allocation of the targets is
inspired from the auction sales activity. The latter is used
in the literature for the task allocation to MRS [17] such
as exploration [18], visiting different locations [19], and
box pushing [20]. Three main auction mechanisms were
developed. Combinatorial auctions [21] treat all the possible
combination of the tasks. Hence, they give optimal results.
However, time computation becomes easily heavy when
the number of tasks and robots increase. Moreover, this
computation requires a central unit with a total knowledge
of the environment. This is inconsistent with our desired
distributed architecture of control. Repeated parallel auctions
[22], treat each task separately of the other tasks. Auctions
are repeated every time interval to test if one task can be
improved if it is allocated to an other robot. In sequential
mechanisms [19], each robot auctions each task individually
taking into account its previous state. Therefore, there is
no need to a central coordination. However, robots have to
communicate their costs to determine the winner of each
task.

As in [23], our algorithm is close to a combination of the
two last methods since each robot wins a target or gives it
up to another by computing and comparing (itself) costs of
these targets. Allocation of the targets can occur every∆T to
adapt the robots to the formation changes. Only a minimalist
communication is needed with the proposed algorithm.

The remainder of the paper is organized as follow: in
next section (II), the task of navigation in formation is
defined and the dynamic allocation of the targets algorithm
is detailed. Section III reminds the proposed control law
insuring that each robot joins the formation [12]. Section IV
gives simulation and experimental results. Finally, conclusion
and some prospects are given in section V.

II. NAVIGATION IN FORMATION USING VIRTUAL

STRUCTURE

A. The virtual structure principle

Before discussing cooperative strategy, the adopted virtual
structure principle is reminded. ConsiderN robots with the
objective of reaching and maintaining them in a given for-
mation. The proposed virtual structure that must be followed
by the group of robots is defined as follow:

• Define one point which is called the main dynamical
target (cf. Figure 1),

• Define the virtual structure to follow by definingNT

nodes (virtual targets) to obtain the desired geometry.
Each nodei is called a secondary target and is defined
according to a specific distanceDi and angleΦi with
respect to the main target. Secondary targets defined by
this way have then the same orientationθT . However,

each targeti will have its linear velocityvTi
. The

number of these targetsNT must beNT ≥ N .
An exemple to get a triangular formation is given in

figure 1.
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Fig. 1. Keeping a triangular formation by defining a virtual geometrical
structure.

B. Cooperative strategy between the robots: dynamic allo-
cation of the targets

The idea is that robots cooperate in order to reduce time
of reaching the formation. As already discussed, each robot
chooses the closest target to track. However, this may create
conflicts when many robots choose the same target. To avoid
this conflict, a hierarchy between them was adopted in [12].
Hence, the desired target is given up to the robot of a higher
rank. However, this hierarchy is not justified especially if
the robots have the same characteristics. In this paper, it
is then proposed that each robot computes a coefficient per
target to describe its interest for this one. Computed every
time interval∆T , this coefficient informs if this target is
very close or very far from the robot comparing to the other
targets. It is calledRelative Cost Coefficient(RCC) and is
notedδ. Comparing RCCs of the same target allows to each
robot to decide if it takes this target or gives it up to an other.

In what follows, the RCC of a roboti for the targetj is
notedδij . It is computed as

δij =
dSij

NT∑

k=1

dSik

=
dSij

dSij
+

NT∑

k=1,k 6=j

dSik

(1)

where dSij
is the distance between the roboti and the

targetj. For a roboti, the set of RCCs for all the targets is
put in a vector∆i.

It is clear that (cf. Equation 1) 0 ≤ δij ≤ 1
Moreover,δij is as close to 0 as

dSij
�

NT
∑

k=1,k 6=j

dSik
(2)

Thus, every robot prefers the target with the smallest RCC
because it is the closest one. It is then noticed that the same
result would be obtained by simply comparing the distances
to the different targets and directly choosing the closest one.
However, the main objective of the RCC is to negotiate the
desired target with the others. Hence, if two robotsi andk
ask for the same targetj (they are in conflict for this target),



distancesdSij
and dSkj

are not sufficient to know which
robot has to obtain it in order to reach faster the formation.

Therefore, to negotiate their targets, robots act according
to the following proposition:

Proposition 1. If many robots are in conflict for one target,
then this target is left to the robot having the smallest RCC
for this target.

In fact, according to (2), the strategy of this proposition
is to compare the situation of the robots according to the
existing targets and to give up the desired one to the fur-
thest robot from the other targets. The proposed distributed
strategy for dynamic allocation of the targets which allows
an altruism between the robots is given in algorithm 1.

Require: Vectors∆i, i = 1..N .
Ensure: Choice of the virtual target to follow

1: while (Target not chosen)do
2: choose the targetj corresponding to the smallest RCC

∆i(j);
3: if ∆i(j) < ∆k(j), ∀k 6= i, k = 1..N then
4: go to line 11;
5: else
6: choose an other targetl such as

∆i(j) < ∆i(l) < ∆i(m),∀m 6= j;
7: j = l;
8: go to line 3;
9: end if;

10: end while;
11: go toward the chosen target ;

Algorithm 1: Distributed virtual target assignment(NT ≥ N).

The proposed algorithm is distributed on all the robots. It
requires that each roboti communicates only its vector∆i to
the other ones. It is also proposed that a vector∆i includes
the subscripti indicating the robot identifier. Identifiers of the
robots are randomly chosen and do not indicate any hierarchy
for the target assignment.

According to this algorithm, every robot is able to deduce
if the desired target will be really available or it will be
taken by an other one having a less corresponding RCC.
Negotiation and allocation of the target is then done in a
distributed manner.

It is noticed that the required communication process is
very basic and can be summarized in algorithm 2. The time
interval δt to wait (line 2, algorithm 2) allows to avoid
collision between network packets.

1: receive the vectors∆k such thatk = 1..i− 1;
2: wait a timeδt, then send the vector∆i;
3: receive the vectors∆k such thatk = i+ 1..N ;

Algorithm 2: Sequential communication process of the
robot i with the other robots.

Even if most of conflicts in target assignment are solved
thanks to algorithm 1, some points need to be discussed:

• if the robot i has the same RCC value for a targetj

as an other robotk (which means∆i(j) = ∆k(j)),

then i can search the second possible targetl for
itself such that∆i(j) < ∆i(l) < ∆i(m), ∀m 6= l,
and the second possible targetn for the robotk with
∆k(j) < ∆k(n) < ∆k(m), ∀m 6= n (robot k has
naturally the same reasoning). The roboti keeps the
targetj if (∆i(l) > ∆k(n)), because it means thatk
will find the targetn with a cheaper RCC. Otherwise,
if (∆i(l) < ∆k(n)), the roboti gives up the targetj
becausel seems cheaper for it than the targetn for the
robotk.

• If the robots i and k have also the same RCC for
their next targets(∆i(l) = ∆k(n)) (targetsl and n

are as defined above). In this case, the targetj can be
indifferently taken byi or k. However, to avoid that
both the robot choose the targetj, or both leave it, it is
proposed that the robot with the higher subscript obtains
it. This convention cannot be considered as a hierarchy
between the robots since they choose their targets with
the same RCCs.

• Finally, this distributed reasoning can be easily applied
if more than two robots negotiate the same target. Note
that according to algorithm 2, communication is done
once at the beginning of negotiations. It is then not
affected (by becoming tedious) when many robots are
in conflict for a target.

III. T HE APPLIED CONTROL TO THEROBOTS

A. Attraction to a Dynamical Target Controller

To remind the attraction to a Dynamical Target Controller
which allows to keep the formation, consider a roboti

with (xi, yi, θi) pose. This robot has to track its secondary
dynamical target. To simplify notations in the following, the
same subscript of the robot is given to its target. The latter
is then notedTi(xTi

, yTi
, θT ) (cf. Figure 2) and the variation

of its position can be described by
{

ẋTi
= vTi

.cos(θT )

ẏTi
= vTi

.sin(θT )
(3)

 i 

 

Ym 
Xm 

Om(xi , yi) 
dSi 

Ow Xw 

Yw 

 i 

 T 

vT i 

Ti (xTi , yTi ) 

Secondary Virtual 

Target 

Fig. 2. Attraction to a dynamical target.

Let’s also introduce the used robot model (cf. Figure 2).
Experimental results are made on Khepera robots, which
are unicycle mobile robots. Their kinematic model can be
described by the well-known equations (cf. Equation 4).











ẋi = vi.cos(θi)

ẏi = vi.sin(θi)

θ̇i = ωi

(4)



whereθi, vi andωi are respectively the robot orientation,
the linear and angular velocities.

The set-point angle that the robot must follow, to reach its
dynamical target, is given by

θSati
= arcsin(b sin(θT − γi)) + γi (5)

Where b =
vTi

vi
. γi is the angle that the robot would have

if it was directed to its target (cf. Figure 2). This set-point
has been obtained by keepingγi constant. More details and
proofs are available in [12].

B. The used control law

The used control law, which was proposed in [12], allows
to each roboti to converge to its set-point.

vi = vmax − (vmax − vTi
)e−(d2

Si
/σ2) (6a)

ωi = ωSati
+ kθ̃i (6b)

where
• vi andωi are linear and angular velocities of the robot

respectively. It is also notedωSi
= θ̇Sati

whereθ̇Sati
is

the angular variation ofθSati
.

• vmax is the maximum linear speed of the robot,
• σ, k are positive constants,
• θ̃i is the error orientation so that̃θi = θSati

− θi which

gives ˙̃
θi = ωSati

− ωi.
Lyapunov based stability allowed to prove the convergence

of the robot to its target [12]. Convergence of the whole
multi-robot system to the set-point virtual structure can then
be derived by studying the following Lyapunov function

V =
N
∑

k=1

Vk (7)

whereVk is the Lyapunov function associated to the robot
k. This function was defined as

Vk =
1

2
θ̃2k (8)

It has been proved thaṫVk < 0 (when θ̃k 6= 0)[12].
Therefore, it can be easily deduced that

V̇ =

N
∑

k=1

V̇k < 0 (9)

The global system is then asymptotically stable. Moreover,
it can be noticed that the applied angular velocityωi allows
exponential convergence of the error orientation to 0.

However, this theoretical convergence is applied to non-
holonomic mobile robots. It means that stability will be
insured only if the angular set-point is reachable by the
robot while considering its kinematic constraints (maximal
velocities, maximal accelerations).

In [12], it has been proved that the robot converges to its
target only if

vi ≥ vTi
⇔ b ≤ 1 (10)

According to equation (6a), it is noticed that the linear
velocity of the robot verifies the condition given by in-
equation (10), and takes into account its maximal linear
velocity. However, it is noted that linear velocity of the
secondary targets depends on their relative position in the

virtual structure. The choice ofDi and angleΦi affect then
vTi

.
Moreover, the variation of the angular set-pointθ̇Sati

has
to stay reachable by the robot. Indeed, the angular velocity
supported by the robot has a maximal value notedωmax.
Defining the bounaries oḟθSati

so that |ωi| ≤ ωmax and
those ofDi andΦi so thatvTi

< vmax will be discussed in
a future work.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To show the relevance of the proposed algorithm for the
dynamic allocation of the targets, it is proposed to simulate a
group of 5 robots reaching a formation(N = 5). The MRS
is simulated with different initial positions (IPs).

For every IP, the simulation is made twice: one with a
prior assignation of the targets (targetTi to robotRi), and
one with the proposed algorithm where the robots use the
RCC to obtain their targets. In the two cases, time to reach
the formation is measured in order to evaluate the proposed
algorithm performance. Note that the formation is considered
reached if the distancedSij

separatingevery robotRi from
the chosen targetTj is such thatdSij

≤ r0; wherer0 is the
radius of a small virtual circle in the neighborhood of the
targets. Results are given in table I.

Comparing the two approaches, it can be seen that ne-
gotiation of the targets using RCC offers a smaller time of
convergence. It is noticed that the amount of enhancement
depends on the initial position of the robots. In fact, for a
prior assignation case (without negotiation), robots may be
in the other side of the virtual structure compared to their
assigned targets. They have then to avoid each other and to
uselessly navigate to far targets. To illustrate this problem,
An example of initial positions is given in figure 3(a). In
the case of prior assignation, robotRi has to join targetTi.
To keep obvious the order of the targets in the figures, a
straight trajectory is given to the virtual structure (see figure
3(b)) (a circular trajectory is used in experimental results).
Taking the exemple of robotR5, it can be seen that it has
to go until targetT5 when it does not negotiate the closest
one (cf. Figure 3(b)). However, by using RCC algorithm (cf.
Figure 3(c)), it obtains the targetT2 which is much closer.
Meanwhile,R5 did not chooseT3 even if it was the closest
one (cf. Figure 3(a)). In fact, it gives upT3 to the robotR3

which was behind it at the beginning of the simulation. In
the same manner,R1 gives up the closest target (T5) to R4

and takesT1.

TABLE I

T IME TO REACH THE FORMATION FOR DIFFERENT INITIAL POSITIONS

IPS [S].

Without target negotiation with target negotiation
IPs1 9.9 8.2
IPs2 12.2 9.3
IPs3 20.8 15.9
IPs4 21.8 20
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Fig. 3. Trajectory of the robots reaching the formation: prior assignation
versus negotiation of the targets.

A. Experimental results: a formation of 3 robots

Experimentations are implemented on Khepera III robots.
As first tests, only perception of the MRS is still centralized.
Hence, navigation is achieved on a platform equipped with
a camera giving positions and orientations of the robots (cf.
Figure 4). These one have to join and to maintain a triangular
virtual structure. The latter has a circular trajectory such that
it stays reachable. First, it has a clockwise motion (cf. Figure
5(a)).Every robot calculates then the RCC for the targets.

Camera 

Fig. 4. Platform experimentations.

Results are given in table II.
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Fig. 5. Real trajectory of the robots. Distributed allocation (a) and
reallocation (b) of the targets. Notation:Ti(tj) Targeti at momentj, Ri(tj )
Robot i at momentj.

For the robotR1, the smallest RCC corresponds toT3.
This one is not desired by any other robot since the RCC of
R2 andR3 for this target is not the smallest one comparing
to the other targets. However,R2 andR3 ask both forT2

through their RCC. SinceR2 has the smallest one,R3 has
to search for an other. It takes the remained targetT1.

TABLE II

RELATIVE COST COEFFICIENT AT MOMENT(t0).

T1 T2 T3

R1 0.41 0.32 0.25
R2 0.39 0.23 0.33
R3 0.39 0.24 0.41

At momentt2+∆t, a jump of the virtual structure state is
produced (cf. Figure 5(b)). Also, the dynamic of the virtual
structure is changed so that its motion becomes counter-
clockwise. The robots recalculate the RCC for each target.



The RCC are given in table III. This table shows that all
the robots prefer targetT2. R1 obtains it because it has the
smallest corresponding RCC.R2 andR3 search then for the
target with the RCC immediately higher than the RCC of
T2. Again, both are interested byT1. The latter is obtained
by R3 because its RCC is smaller.R2 takes the remained
targetT3. It can be seen thatR2 andR3 give upT2 to R1

(altruism). Distances between the robots and their targetsare
given in figure 6. They decrease until 0 which confirm that
the formation is reached and maintained. When the virtual
structure dynamic is changed, robots are far from their targets
which explain the observed jumps. The same observations
are noticed on the global Lyapunov function (cf. Figure 7).

TABLE III

RELATIVE COST COEFFICIENT AT MOMENT(t2 +∆t).

T1 T2 T3

R1 0.36 0.21 0.38
R2 0.37 0.22 0.40
R3 0.34 0.26 0.40
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V. CONCLUSIONS AND FUTURE WORKS

In this paper, the formation of a multi-robot system, based
on the virtual structure strategy, was studied. A cooperative
protocol between the robots was proposed in order to rapidly
join the formation. Instead of a prior assignation of their
places in the formation (virtual targets), it is proposed that
each robot negotiates its one with the others by communi-
cating relative cost coefficients for each target. An altruism
is then observed between the robots. Moreover, simulation
results show the performance offered by the proposed algo-
rithm. Time to reach the formation was improved by reducing
trajectory of the robots. Even if the obtained results are not
the most optimal ones, this work addresses an interesting
subject and allows to improve this time by discussing the
RCC formula.

In the proposed experimental results, dynamical negoti-
ation of the targets was enabled at the beginning of the

experimentation and when switching to the virtual structure
dynamic. In order to be done in a completely reactive way,
discussing and justifying its frequency (∆T ) will be the
subject of future works. Collision avoidance between the
robots and with other dynamical obstacles will be detailed
in a future paper.
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