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ARTICLE OPEN

Inference and interrogation of a coregulatory network in the
context of lipid accumulation in Yarrowia lipolytica
Pauline Trébulle1,2,3,4,5, Jean-Marc Nicaud 1, Christophe Leplat1 and Mohamed Elati2,3,4,5

Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale
information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in
context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of
industrial interest Yarrowia lipolytica. This lack of knowledge limits the development of this yeast as an industrial platform, due to
the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to
identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica.
Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for
biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription
factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein–protein interactions. This
study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the
transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b)
suggests new potential regulators and drivers of lipid accumulation and (c) experimentally validates the impact of six of the nine
regulators identified on lipid accumulation, with variations in lipid content from +43.2% to −31.2% on glucose or glycerol.

npj Systems Biology and Applications  (2017) 3:21 ; doi:10.1038/s41540-017-0024-1

INTRODUCTION
Yarrowia lipolytica is a non-pathogenic dimorphic ascomycetous
yeast that has been used by scientists for fundamental and
applied studies1, 2 and for its utility as an industrial platform for
the production of lipid-derived compounds.3–6 Indeed, Y. lipolytica
can grow in hydrophobic environments, using complex hydro-
carbons, hydrophobic substrates (e.g., n-alkanes, fatty acids) and
cheap industrial by-products as substrates.7 This species has also
been engineered to extend the variety of substrates it can use,
and it can now grow on biomass products, such as cellobiose and
raw starch.8, 9 Metabolically, this yeast tends to store lipids under
conditions of nitrogen limitation, an adaptation favoring survival
in the face of nutrient deficiency developed during the course of
evolution and providing interesting possibilities for use as an
industrial platform. Several potential uses of this yeast have been
considered, but its metabolism has been studied principally for its
potential to produce various compounds through fatty-acid
metabolism, including lipids, unusual fatty acids, aromas, dicar-
boxylic acid or TCA-cycle intermediates, such as succinic acid and
2-ketoglutaric acid.4, 10–13 A broad range of tools has also been
developed and validated for efficient genetic engineering in Y.
lipolytica.14–17 Safety assessments have been carried out, and this
species has been classified as generally regarded as safe of use
(GRAS),18 making it ideal for use in industrial biotechnology.3, 19

However, we currently know very little about the regulators
involved in lipid accumulation of Y. lipolytica. This lack of
knowledge is limiting the development of this yeast as a
metabolic engineering platform, as it remains time-consuming

and costly to develop strains with the desired phenotype. Gene
regulatory networks (GRNs) can be seen as the interface through
which genotype-environment interactions give rise to the
phenotype. Indeed, GRNs act like the “operating system” of the
cell, adjusting its behavior to external conditions and causing
changes in the amounts of transcripts, protein concentrations and
metabolic fluxes, through the actions of effector molecules, such
as transcription factors (TFs) or other proteins (e.g., phosphatases
and kinases involved in post-transcriptional modifications).
Regulatory networks are therefore of great importance, to provide
insight into the adaptive behavior of living systems in a condition-
specific manner whilst making it possible to predict the state of
the cell and its responses to environmental constraints.
However, the systematic characterization of GRNs is not always

straightforward, as little is known about most of these networks,
and they are often highly interconnected. The existing research
tools for regulatory network reconstruction20, 21 and interroga-
tion22 have greatly contributed to our understanding of biological
systems. Such networks were especially obtained for well known
model organism such as Saccharomyces cerevisiae.23–26 The
difficulty lies in the growing gap between high-throughput
biological data production and the mathematical models and
analytical tools used to derive a systems context from the data.
These networks are usually reverse engineered from large-scale
transcriptomic samples and evidence of physical interactions
(ARACNE,27 WGCNA,28 GENIE3,29 LICORN30). Our reverse engineer-
ing approach, Hybrid- learning co-operative regulation networks
(h-LICORN),30, 31 combine a data mining technique and a
numerical linear regression to effectively infer GRN (see Materials
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and Methods) and is original principally in terms of the
incorporation into the model of the cooperativity between co-
regulators, rendering it more relevant for the comprehension of
complex phenotype that are likely to be regulated by several
regulators rather than by a single one, as shown by us and others
in the yeast S. cerevisiae,30, 32 as well as in human.31, 33

In this work, we aimed to identify regulators and transcriptional
programs associated with lipid accumulation, to improve our
understanding of this process and to identify candidate regulators
able to alter the phenotype of this yeast. We inferred a network
from transcriptomic data during lipid accumulation and inter-
rogated it, to highlight context-specific regulation and for the
experimental validation of some of the candidates identified. One
key breakthrough in the exploration of these networks was the
shift of focus from the expression of regulators to their influence,
through evaluations of the expression of target genes,33, 34 with
the aim of detecting master regulators.

RESULTS
Coregulatory network assembly in the context of lipid
accumulation
We reconstructed a coregulatory network from our GSE35447
transcriptomic data set, deposited in NCBI Gene Expression
Omnibus database35 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE35447). These data were generated with the
Agilent platform (A-GEOD-15177—Agilent-031148 Yarrowia lipo-
lytica V2) and correspond to 80 samples taken during a time-
course experiment in which Carbon/Nitrogen (C/N) ratio was
increased to induce nitrogen-limiting conditions and lipid
accumulation. Lipid yield and content are dependent on the
nature of nutrient limitation. N limitation is the most widely used
to induce lipid production, as it gives the best conversion yield
with glucose.36 Samples were obtained from a D-stat culture,
where the dilution rate was kept constant while one of the
cultivation parameter (temperature, C/N ratio) was modulated at a
constant rate),37 at 26 different time points, for three biological
replicates. The data for 6539 genes were normalized (see Materials
and Methods) then processed by CoRegNet (Bioconductor
package) to produce a genome-wide regulatory network. Briefly,
CoRegNet is a workflow that use the h-LICORN algorithm31 to
mine candidates GRNs set of co-activators and co-inhibitors for
each genes. Various types of evidence, such as protein–protein
interactions (PPI), can then be incorporated to support coopera-
tive interactions into a score of validated interactions. Candidates
GRNs are then evaluated on their ability to describe the gene
expression data and their evidence score. Once the best GRN had
been selected, a cooperative network is reconstructed, based on
the shared TF targets, making it possible to identify coregulatory
relationships solely on the basis of the gene expression data
provided. We improved the reliability of the inferred network by
running CoRegNet with a minCoRegSupport parameter of 0.2 and
a curated list of 151 TFs identified by our team from previous
studies, homology and sequence analyses. PPI for Y. lipolytica were
downloaded from the STRING database,38 which provide interac-
tions based on either experimentation, homology with better
known organism such as S. cerevisae, or prediction. These
evidences were therefore incorporated into the network (P-
value = 3.12e-42). The resulting network (YL-GRN-1) contains
111 transcription factors, 4451 target genes and 17,048 regulatory
interactions. Further information about network inference is
available in Materials and Methods. The association between
gene name and official common name is provided in Supple-
mentary Table 1.

TF activity over nitrogen limitation highlights specific patterns
during lipid accumulation
From YL-GRN-1, sample-specific TF activity can be estimated
through its targets expression. We proposed a measure, the TF
influence, to assess its activity. This measure is based on a Welch’t-
test between the expression of the activated and repressed
targets genes in a given samples (more details in Materials and
Methods). TF influence was shown robust to noise33 and can be
used to decrease the dimensionality of the data, thereby
facilitating the visualization of patterns through an integrative
view accessible in the CoRegNet package. TF influence was
calculated for replicate means, to obtain a single value for each of
the 26 time-point that was representative of the variability
between the three technical replicates. The TF influence heatmap
generated in this way provides a visual representation of
transcriptional programs.
Patterns were identified in the transcriptional program, defining

several phases during the GSE35447 D-stat experiment (Fig. 1).
Neither carbon nor nitrogen was limiting in the reference state (C/
N ratio = 7.89), but four other phases could be defined, as follows:
(a) Phase I (t ± = 123.67 h, C/N ratio = 8.63) corresponds to the
early response to decreasing nitrogen levels. This pattern was first
observed at about t = 120 h, when nitrogen became limiting .37

This phase persisted until the C/N ratio reached 11.70. Below this
value, nitrogen limitation triggered new regulators, leading to lipid
accumulation in the second phase. (b) Phase II (t = 139.58 h, C/N
ratio = 11.70) appeared to be associated with early adaptation to
nitrogen limitation: at this stage, yeast metabolism adapts to the
nitrogen limitation of the environment, so as to maintain maximal
growth while performing the normal functions, despite resource
limitation. This phase immediately preceded the onset of lipid
accumulation, which was first detected at about 140 h. (c) During
phase III (t = 157.58 h, C/N ratio = 20.41), many regulatory changes
were observed that could be seen as a remodeling of the
regulatory network to adapt from short-term nitrogen limitation to
long-term nitrogen limitation. Finally, (d) phase IV (t = 166.08 h, C/
N ratio = 30.96) corresponded to long-term adaptation to nitrogen
depletion. The changes in TF influence pattern correlated with the
experimental observations reported in a previous study,37 not only
at 120 h and 140 h, but also at 165 h, which coincides with the
time at which respiratory quotient and lipid accumulation reach
their peak values. The experimental observations associated with
lipid accumulation were therefore consistent with the estimated
activity of the TFs considered here. Some TFs seemed to lose their
influence or to be activated before others, suggesting a hierarchy
of the response to nitrogen limitation and identifying particular
TFs as potential drivers of the transition between physiological
phases. For example, YALI0E30789g, MGF1-like (YALI0B19602g),
MGF1 and YALI0F21923g were activated during phase III, whereas
other TFs were not activated until phase IV.

Identifying the most influential TFs in lipid accumulation and the
master regulators of lipid-associated genes
We evaluated the importance of each TF throughout the whole
experiment and the different phases, by ranking TF according to
their influence, with the RobustRankAggreg R package .39 For each
phase, TF influence was computed and ranked from positive to
negative value as we considers that the regulator is active only
when it activates its set of activated genes (Ar) and represses its
set of repressed genes (Ir), as expected by the network reference
model which is reflected by a positive Welch t-test value while a
negative value represent the “absence” of TF activity with the
repressed genes (Ir) more expressed than the activated genes (Ar).
The regulator is more active when this value is higher. However,
the ranking of the TF over the whole experiment was carried out
using the absolute value of the TF influence to assess the impact
of the TF in every phase over both their Ar and Ir. The full rankings
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are shown in Supplementary Table 2. The top 10 most influential
TFs over the whole experiment were YALI0C20977g, RME1,
YALI0E18161g, GZF3, GZF2, TFC2, YALI0F21923g, HOY1, MGF1-like
and RIM101. These TFs had the strongest influence over the entire
experiment, but they were not active in the same phase Mixed
patterns were also observed in phase III, with some TFs displaying
changes in their influence earlier than others (e.g. MGF1,
YALI0E30789g, YALI0F21923g) (Fig. 1).
We retrieved a list of 282 Y. lipolytica genes from the Panther

webserver40 on the basis of their association with GO slim
biological processes relating to lipids (lipid transport, phospholipid
metabolism, lipid metabolism processes, or protein lipidation. See
Supplementary Table 3). From this list, we identified master
regulators on the basis of YL-GRN-1 (Table 1). The projection of
both the top 10 most influential TFs and master regulators over
the YL-CoRegNet-1 cooperativity network (Fig. 2) highlighted the
high degree of connectivity of these TFs within a portion of the
network and suggested that they acted in synergy during lipid
accumulation.

Validation of TF activity as a tool for identifying physiological
phases
A second network, YL-GRN-2, corresponding to the transition from
biomass production to lipid accumulation, was reconstructed from
our previous transcriptomic studies (GSE29046)41 consisting of
11 sampling points, regularly spaced over the period of fed-batch
culture, to validate the potential of TF influence for identifying
relevant time points corresponding to important physiological
changes in the absence of prior knowledge. The data set
was studied with the following CoRegNet parameters: minCor-
egSupport = 0.25, minGeneSupport = 0.2. The influence heatmap
for YL-GRN-2 presented three clear phases corresponding to the
stages in the transition from biomass production to lipid

accumulation identified and relating to (A) biomass production,
(B) early lipid accumulation and (C) late lipid accumulation,
respectively (see Supplementary Fig. 2).

Use of a cooperativity network to identify evidence-supported
coregulatory relationships and to identify new candidate co-
regulators
A co-regulation network (YL-CoRegNet-1) was reconstructed from
YL-GRN-1, as shown in Fig. 2. In this network, each node
represents a TF, and the gray edges correspond to co-regulation
by two regulators with a sufficient number of target genes in
common. In particular, the red edges represent co-regulation for
which evidence of protein–protein interactions has been
obtained. Evidence-supported co-regulatory relationships are well
represented in the network and are highly interconnected. A

Table 1. Master regulators for lipid-associated genes in Y. lipolytica as
retrieved from the Panther webserver on the basis of GO slim BP

Master regulators of lipid-associated genes and their P-values

YALI0F01562g 4.519e-05

GZF1 5.552e-04

YALI0E30789g 0.0025

MBP1 0.0098

YALI0D05041g 0.0107

RLM1 0.0124

YALI0F21923g 0.0137

YALI0C19151g 0.0169

YALI0C05995g 0.0442

GZF3 0.0477

Fig. 1 Heatmap of TF influence as a function of C/N ratio during a time-course experiment. Four main phases were identified on the basis of
changes in influence pattern: phase I (t± = 123.67 h, C/N ratio= 7.89), phase II (t= 139.58 h, C/N ratio= 8.63), phase III (t= 157.58 h, C/N ratio=
20.41), and phase IV (t= 166.08 h, C/N ratio = 30.96). These phases are shown on the left in turquoise, yellow, purple and red, respectively.
Negative and positive influences are indicated from blue to red, with color intensity proportional to the influence value. Time and C/N ratio are
indicated on the right, as described by Ochoa-Estopier and Guillouet 37 and in the GSE35447 data set
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review of the similarity-based annotations associated with the
recovered TFs available from GRYC (http://gryc.inra.fr), genole-
vures, NCBI and from previous studies41, 42 highlighted the
presence of TFs known or assumed to be involved in lipid
metabolism (e.g., GZF1, GZF2 or GZF3), carbon or nitrogen
metabolism (e.g., AZF1, YALI0F01562g, YALI0D14872g, NRG1,
YALI0C19151g, CAT8) and growth or hyphal formation (e.g.,
RME1, HOY1, REI1, MGF1, MGF1-like), and of several TFs displaying
no similarity or known functions (e.g., YALI0F15543g,
YALI0E18161g, YALI0F15543g). Some of the less common, but
nevertheless interesting, functions of the TFs were associated with
amino-acid metabolism, which is known to be affected by lipid
accumulation .43 For instance, GCN4 is associated with amino-acid
metabolism generally, whereas LEU3 is specifically associated with
leucine, PUT3 is associated with proline and ARG81 is associated
with arginine. Some of these TFs were identified as co-regulators
with others TFs with similar functions, such as GZF2, GZF3 and
GZF1, GZF4 all of which encode GATA-binding zinc finger proteins,
but others act as co-regulators with non-trivial TFs, generating
new hypotheses for further investigations of the regulation of lipid
accumulation. Several modules were manually identified by
projecting TF influence from the different phases onto the
cooperativity network thanks to the interactive visualization
interface from CoRegNet. Those sets of TFs activated in each
phase were highly interconnected with one another into region of
high density in the network (Supplementary Fig. 1). The largest
module corresponds to the TFs associated with phase II, as shown

in Fig. 2. Two other modules can be identified, corresponding to
the TFs activated during phases I and III, and those activated
during phases I and IV.

Construction of overexpression mutants for experimental
validation of the impact of the most influential TFs on lipid
accumulation profile
To confirm the impact of the identified TFs in triggering lipid
accumulation, TFs were individually overexpressed in the Y.
lipolytica wild-type strain JMY2810, with the Gateway systematic
overexpression system developed in our laboratory (17, Leplat C.,
Rossignol T. et coll., unpublished), as described in the materials
and methods. Lipid content was assessed after 72 h of culture in
minimal medium, with either glucose or glycerol as the carbon
source and ammonium as the nitrogen source, with a C/N ratio of
3. Lipid content was determined by gas chromatography. We
report here the effects on lipid content of the five most influential
TFs during phases I and II, based on YL-GRN-1. The effects of the
most influential TFs during phase I, YALI0C20977g, YALI0A12925g,
ELF1, YALI0E18161g and YALI0E30789g, are described in Fig. 3a. We
were unable to obtain a strain overexpressing GZF2. The effects of
the four most influential TFs during phase II, GZF3, HOY1, TFC2 and
RME1, are shown in Fig. 3b.
Three of the nine overexpression strains had an improved lipid

content on glucose, 43.2% and 20.8% higher than the wild type
for TFC2 and ELF1, respectively. GZF3 and HOY1 overexpression led
to altered phenotypes on both glucose and glycerol, with GZF3

Fig. 2 Heterarchy—Cooperativity network for Yarrowia lipolytica (YL-CoRegNet-1) constructed from YL-GRN-1, which was inferred from our
transcriptomic data set under nitrogen limitation, GSE35447. Nodes represent transcription factors (TFs), whereas gray edges indicate co-
regulatory relationships. Red edges are co-regulatory relationships for which evidence of protein–protein interactions has been obtained. Node
size and color represent the influence of the corresponding TFs during the onset of lipid accumulation (phase II). Red indicates a positive
influence whereas blue indicates a negative influence. Color intensity and node size are proportional to the influence value
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overexpression resulting in 21.0% higher levels of accumulation
on glucose and 22.4% higher levels on glycerol, whereas HOY1
overexpression resulted in much lower lipid contents on glucose
(23.3% lower) and glycerol (55.7% lower). The lipid contents of the
strains overexpressing YALI0E18161g and YALI0E30789g were
decreased in a medium specific-manner, with a 14.0% decrease
on glucose and a 31.2% decrease on glycerol, respectively. Finally,
three of the overexpression strains, those for YALI0C20977g, RME1
and YALI0A12925g (RME1-like), displayed no significant modifica-
tion of lipid content.

DISCUSSION
On the basis of the inferred cooperativity network and our
proposed measure of influence, several regulators were high-
lighted as co-regulators in the context of lipid accumulation in
Yarrowia lipolytica. Multiple pathways and functions are repre-
sented in the network, in particular, regulators of growth (e.g,
TFB2, AZF1, MGF1), filamentation (e.g, HOY1, SFL1), nitrogen
utilization (e.g, GTZ1 to 4) and genes regulating amino-acids
biosynthesis, such as ARO80, ARG81, MET32, GCN4, or LEU3, acting
as coregulators during the different phase identified. Indeed, the
projection of influence onto the network for each phase
(Supplementary Fig. 1) helps with studying the temporality of
the regulation and the presence of coregulators densely
connected into «modules» sharing the same influence pattern.

As seen during phase I, AZF1, OPI1, YALI0C20977, YALI0E18161g,
YALI0A12925g are among the TFs activated during the first phase.
These TFs are activated just after the C/N ratio starts to increase
and are assumed to be associated with the first response to
nitrogen depletion, with an alteration of growth and cell cycle
regulation, and may provide a regulatory pulse enabling the yeast
to deal with nitrogen limitation by redirecting carbon towards
lipid accumulation and entering phase II. While AZF1 and OPI1 are
known to be associated with growth and repression of
phospholipid synthesis respectively, only few is known about
the three others regulators, however, GO term enrichment of
YALI0E18161g repressed targets revealed an over-representation
of genes associated with cell cycle (4.19E-02).
TFs activated during the second phase of biolipid accumulation

gather various functions and form the biggest «module» and as
well as the denser part of the cooperativity network.
At this stage, all the 4 GATA-zinc finger TFs (GZF1, GZF2, GZF3,

GZF4) presents in the network are active with GTZ2 and GTZ3
being the more co-regulated. The presence of those regulators
during this phase is consistent with recent validation of their
involvement in the regulation of nitrogen metabolism in Y.
lipolytica44 but further analysis of the network and shared target
between GZF1 and GZF3 also suggest an over-representation of
genes related to fatty-acid metabolic process (2.68E-02), while
GZF1 is considered as a master regulator for both lipid and amino-
acid associated genes and GZF2 is co-regulators of both ARG81
and LEU3. Those observations are supporting their potential role in
lipid regulation, as well as the imbrication of nitrogen utilization
and amino-acids pathways for the regulation of lipid
accumulation.
Among the influential TFs during phase II, HOY1 and TFC2, two

coregulators, seem to have a less direct effect on lipid
accumulation, as they are involved in filamentation and transcrip-
tion initiation. When overexpressed, HOY1 decreases lipid
accumulation, probably due to its role in yeast-to-hyphae
transition. When growing, the yeast form requires the mobilization
of lipids for membrane synthesis. Thus, even if the yeast
accumulates more lipids, they are immediately remobilized,
decreasing lipid content. The activation of this TF at the onset
of lipid accumulation may thus coincide with post-transcriptional
alterations or the action of a co-regulator. Indeed, a second
regulator could be able to make use of the new lipids generated
under the influence of HOY1, but might interfere with the
remobilization of lipids, shifting the balance towards lipid
accumulation. Candidate regulators for this role include RME1, a
repressor of meiosis, for which there is strong evidence for a role
as a co-regulator of HOY1 but whose overexpression has no
specific effect on the accumulation phenotype despite being
shown to be among the most influential TFs during phase II.
However, it also worth to note that HOY1 included amino-acid
related TFs (MET32), as well as TFs for which no function are
known among its co-regulators, which may also be candidates of
interests (e.g, YALI0C03584g). As in phase I, a TF module activated
before the shift toward citric acid production could provide a
regulatory pulse toward this pathway. In particular, the set of TFs
activated during phase III and IV includes a large number of
master regulators of the 267 genes with GO-slim BPs relating to
amino acids (P-value <0.05) including YALI0F21923g and
YALI0E30789G, whose roles are unknown, YALI0C19151g, a CAT8-
like TF likely to be involved in growth and non-fermentative
growth conditions, and MGF1-like, a growth factor, which may be
potential drivers of the long-term adaptation to nitrogen
depletion in phase IV. In addition, it worth to note that those
same regulators seems to regulate significantly beta-oxidation
among their predicted activated targets (P-value 7.04E-07, 5.64E-
06, 4.84E-02 for YALI0F21923g, YALI0E30789g and YALI0C19151g,
respectively). Activation of beta-oxidation during long-term
adaptation may be explained by the use of lipids degradation as

Fig. 3 Mean percentage differences in lipid accumulation profile of
overexpressing TFs mutant relative to the wild type with their s.d.
Differences were considered significant if there was a change of at
least± 10%. TF-overexpressing strains were selected on the basis of
their ranks during phase I (a) and phase II (b)
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a source of energy in the context of long-term nutrient depletion,
resulting in citric acid production as by-product as well.
TFs were ranked on the basis of their influence. This approach

decreased the number of dimensions, but it cannot necessarily be
concluded that the TFs not retained with this approach are not
involved in lipid accumulation. It is also important to note that not
all influential TFs belong to the list of lipid master regulators. This
difference between the lists of master regulators and most
influential TFs may reflect the involvement in lipid accumulation
of mechanisms affecting not only lipid pathways, but also the
metabolism of the entire cell, which is consistent with previous
observations41, 43, 44 and support the hypothesis that lipid
accumulation is a consequence of change in carbon fluxes rather
than an enhanced lipid metabolism. In addition, several regulators
shown to be differentially expressed during lipid accu-
mulation41, 43 were retrieved in our network as coregulators (e.g,
GZF3, GZF2, ARG81, YALI0C19151g, TFB2) while others were found
to have non-trivial partners for which functions are yet to be
found. The most influential TFs may not necessarily have the most
direct effects on the lipid pathway. Instead, their influence
might reflect their final overall effect and their ability to have a
significant effect on various pathways in nitrogen-limiting
conditions, indirectly promoting lipid accumulation. Consistent
with this, five of the nine significant amino-acid master regulators
were among the most influential TFs (Supplementary Fig. 3).

CONCLUSION
Lipid accumulation in the oleaginous yeast Y. lipolytica is a process
of considerable industrial interest for the environment-friendly
production of high-value compounds derived from lipids, such as
biofuels, bioplastics and other biomolecules with properties of
interest. However, metabolism results from complex interplay
between the environment, genetic background and regulation,
with cells adopting various states and presenting different
phenotypes. An understanding of the role of gene regulatory
networks in lipid accumulation is therefore of key importance for
both the design of improved strains and to increase our
knowledge of this yeast species. We inferred a genome-scale
regulatory network, YL-GRN1, consisting of a total of 111 TFs
acting as co-regulators of target genes during lipid accumulation
under nitrogen limitation. The influence of the TFs was estimated
in the different samples and a matrix of influence over time and
increasing C/N ratio was generated.
Changes in influence over the course of the experiment were

consistent with the observed physiological changes and stages of
lipid accumulation. Indeed, the sensitivity of Y. lipolytica to
nitrogen limitation led to changes in TF influence patterns at
each key time point. The influence matrix is therefore a powerful
tool for highlighting physiological changes in the absence of prior
knowledge. From this matrix and the YL-CoRegNet-1 cooperativity
network, we were able to identify different modules providing
potential drivers of the lipid accumulation phases and possible co-
regulators of interest. Finally, TFs were ranked and the TFs with
the highest ranks during phases I and II were overexpressed in a
wild-type strain, with the Gateway overexpression system. Six of
the nine mutants obtained presented altered phenotypes, with
lipid contents differing from that of the wild type by more than
10%, validating our approach to the identification of context-
specific TFs.
Future studies should focus on computational developments (a)

to improve our ability to combine the proposed co-regulatory
model with genome-scale metabolic models45 (b) to select the
most informative combination of TF knockout strains and
environmental conditions based on the integrated regulatory
network.46 Moreover, understanding regulatory processes is a key
element in the development of synthetic biology with the aim of
designing and engineering large, self-adaptive, coupled regulatory

and metabolic systems at whole-genome scale for useful
purposes, such as the production of valuable compound.47

MATERIALS AND METHODS
Experimental setting and transcriptomic data collection
Chemostat and D-Stat experiments were performed in a 3 L stirred tank
bioreactor with a working volume of 1.5 L, with a Braun Biotech
International Biostat B (Sartorius AG, Germany) and MFCS/win 2.0
acquisition software. The temperature was regulated at 28°C and the pH
at 5.6 by the online addition of 5 M NaOH. Continuous culture was initiated
11 h after inoculation, when the glucose consumption was complete. For
chemostat culture, the bioreactor was fed continuously with mineral
medium (devoid of (NH4)2SO4) supplemented with 23 g L−1 glucose at
0.108 L h−1. The bioreactor was fed with a second reservoir containing 60 g
L−1 (NH4)2SO4 at 0.0117 L h−1, corresponding to a C/N ratio of 7.75 molC.
Nmol−1. The working dilution rate was 0.08 h−1. The feed rate of the
mineral medium supplemented with glucose was kept constant at 0.120 L
h−1, whereas that for (NH4)2SO4 followed a smooth linear decrease, from
0.0117 L h−1 to 0.0003 L h−1 for 50 h, corresponding to an increase in the
C/N ratio from 7.75 to 357,14molC.Nmol−1. All other parameters were kept
constant. For more details on the experimental setting, see Ochoa-Estopier
et al.37

Frozen samples were treated by mechanical disruption, with a bead
beater (Microdismembrator, Braun, Germany) and a tungsten bead (Ø ~ 7
mm), for 2 min at 2600 r.p.m. The resulting cell powder was recovered and
further processed for RNA purification with the RNeasy Midi Kit (Qiagen,
The Netherlands), according to the manufacturer’s instructions. Samples
were treated for labeling with the Low-Input Quick Amp labeling kit
(Agilent, USA), according to the manufacturer’s protocol, and hybridization
was performed according to Agilent’s general protocol. Scanning was
performed with an Agilent scanner and images were further processed
with Feature Extraction v10.0 (Agilent, USA).
Data were processed and normalized with the Limma Bioconductor

package .48 Local background estimates were corrected by the “normexp +
offset” method, using an offset value of 10. A scale normalization method
was applied to normalize background between arrays. ID REF = VALUE = log2
(fluorescence), based on background-subtracted, normalized data. The
processed data are publicly available from the NCBI GEO data repository
under the name GSE35447. The resulting data set corresponds to 80 samples
for 6539 genes, with three technical replicates of 26 time-points with an
increasing C/N ratio, plus four replicates of the reference point.

Constructing TF-target Gene regulatory network (YL-GRN-1) and
TF-TF cooperativity network (YL-CoRegNet-1)
Complex phenotypes are believed to arise from cooperative transcriptional
programs rather than from regulation by a single regulator. CoRegNet was
developed to study such programs and to reconstruct large-scale context-
specific co-regulatory network from transcriptomic data. It was shown to
outperform other network inference algorithms, particularly for small
sample numbers,31 an advantage when studying a non-conventional yeast,
such as Y. lipolytica, for which few transcriptomic datasets are available.
CoRegNet uses an algorithm, h-LICORN (hybrid-Learning Cooperative

Regulation Network), to infer a list of GRNs from a discretized
transcriptomic data set and a list of known regulators on the basis of a
frequent itemset mining approach.30, 31 Briefly, in a first step, it efficiently
searches the discretized gene expression matrix for sets of co-activators
and co-repressors by frequent items search techniques and locally select
combinations of co-repressors and co-activators as candidate subnetworks.
In a second step, it determines for each gene the best sets among those
candidates by running a regression. h-LICORN was shown to be suitable for
cooperative regulation detection [5,6].
The continuous data can be used alone to refine the original network by

selecting for each gene the GRN with the best R2 score based on the linear
model used to estimate the expression. However, CoRegNet can also refine
GRNs by incorporating evidence into the network using an integrative
selection algorithm proposed by the modENCODE consortium49 and
applies it to the selection of local GRN models. In essence, the goal is to
score each GRN (each interaction in the original method) using both the
transcriptomic data and the integrated evidences to select the set of best
GRN. Each GRN is scored by the inference method h- LICORN and by each
of the integrated data set. Finally, GRN are given the proportion of validated
interactions as a score. Following this, to each GRN is associated as many
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scores as they are integrated regulatory and cooperative datasets in
addition to the network inference R2 score, all which range from 0 to 1. The
original study proposes two approaches to merge the scores, an
unsupervised and a supervised approach. While both are implemented in
the CoRegNet package, the unsupervised approach was shown by the
authors to have better performances. It is simply an unweighted average of
each of the scores. Finally, for each gene, the GRN with the maximum
merged score is selected. The refined network obtained is then transformed
into a cooperativity network, based on the common targets of regulators.
We identified regulators and regulatory states associated with lipid

accumulation in Y. lipolytica, by applying CoRegNet to the preprocessed
GSE35447, as described above. CoRegNet was run with a default
minCoregSupport = 0.1, with a curated list of 151 TFs retrieved from
previous publications and from homology analysis. Y. lipolytica interactome
data relying on either experimentation, in-silico prediction, or most
commonly on homology analysis were downloaded from the STRING
database,38 and used as evidence for network refinement.
CoRegNet is freely available as a Bioconductor package.

Sample-specific TF activity estimation
We used the transcriptomic data and the highest-ranked GRN to compute
a sample-specific value of influence for each TF with a sufficient number of
targets. This approach models the h-Licorn inferred GRN structure by
comparing for each regulator r the distribution of its activated Ar and
repressed Ir genes (∀r ∈ VR, targets(r) = (Ar, Ir)). This model is based on the
work in33 where the influence measure was introduced to estimate the
activity of a regulator through a Welch t-test by comparing the distribution
of the expression of Ar and Ir. The influence of a regulator r is computed as

follows: E Arð Þ�E Irð Þ
ffiffiffiffiffiffiffiffiffiffi

μ2
Ar
Arj jþ

μ2
Ir
Irj j

q where E Arð Þ and E Irð Þ are respectively the set of

expressions of the activated and repressed genes in the samples. E Arð Þand
E Irð Þ are their respective means and μ2Ar and μ2Ir are their s.d. The most
influential TFs in a specific set of conditions are associated with large
differences in expression between repressed and activated targets, and are
represented as larger nodes in the network. Similarly, the TF influence
value can be projected onto the network and incorporated into an
integrative heatmap-based visualization. The influence of each TF in each
sample is represented by colors of different intensities: red indicates a
positive influence, implying stronger expression of activated genes than of
repressed genes, whereas blue indicates a negative influence, with the
opposite pattern. The more intense the color, the greater is the influence
of the TF. The robustness of this measurement was assessed, for each TF,
by correlation analysis, using the original network and a partially permuted
version of the network with increasing levels of noise. Similar tests were
performed, analyzing the correlation of TF influence on subparts of the
network validated by regulatory evidence. In all comparisons, influence
was significantly more robust and consistent with the validated network .33

This measurement estimates TF activity, which cannot be determined by
experimental approaches. The default parameter minTarget = 10 was used
to calculate influence.

Context-specific transcriptional program visualization
Both the network and its influence heatmap can be visualized through a
dedicated tool implemented in CoRegNet, using Shiny application, with
features for displaying the main sets of co-regulators in specific samples,
stages or subtypes. The network is represented as a graph, in which each
node is a regulator, each gray edge is a co-regulatory relationship and each
colored edge is a co-regulatory relationship for which evidence is
provided. The size and color of the nodes are proportional to the
differential expression and value of TF influence, respectively.

Experimental validation
Mutants were constructed by inserting the TF expression cassette (URA3ex-
pTEF-TF) into JMY2566 (MATa, ura3::pTEF-RedStar2-LEU2ex-Zeta, leu2-270,
xpr2-322, Ura-, Leu + ) as described by Leplat et al.17 The wild-type strain
JMY2810 (MATa, ura3::pTEF-RedStar2-LEU2ex-Zeta-URA3ex-pTEF, leu2-270,
xpr2-322, Ura + , Leu + ) was used as the wild-type control. Cassettes
containing the TF gene of interest were overexpressed under the control of
the constitutive pTEF promoter from the TEF1 gene, which encodes
translation elongation factor-1α. Yeasts were grown in YNB medium with
either 3% glucose or glycerol and a C/N ratio = 30 for 72 h at 28°C. Lipid
content was determined by gas chromatography. Lipid content duplicates

were averaged, standard deviations were plotted, and the results were
expressed as a percentage variation between the control strain JMY2810
and TF-overexpressing mutants. (Leplat C., Rossignol T, unpublished).

Panther webserver
Panther webserver tools40 were used to retrieve genes associated with GO
terms related to lipids and amino-acids as well as for gene ontology
enrichment using Yarrowia lipolytica all genes as reference set and default
setting in addition to Bonferroni correction.

Data availability
All data and tools mentionned in this article are freely accessible, in
particular, transcriptomic data that support the findings of this study have
been deposited in NCBI Gene Expression Omnibus database with the
accession code GSE35447 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE35447). CoRegNet is freely available as a Bioconductor
package.
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