
Storyboard-Based Empirical Modelling of
Touch Interface Performance

Alix Goguey1, Géry Casiez2,3, Andy Cockburn4 & Carl Gutwin1

1University of Saskatchewan, Canada, 2Université de Lille, France, 3Inria, France,
4University of Canterbury, New Zealand

alix.goguey@usask.ca, gery.casiez@univ-lille.fr, andy@cosc.canterbury.ac.nz, gutwin@cs.usask.ca

(a) Example of interaction sequence (b) Example of predictions (c) Example of scenario comparison
Figure 1: Illustration of StEM: (a) users drag and drop actions onto a timeline to construct an interaction sequence; (b) users can visualize prediction
times for a scenario composed of different screens; (c) users can compare scenarios, and filter the predictions according to factors such as screen size.

ABSTRACT
Touch interactions are now ubiquitous, but few tools are avail-
able to help designers quickly prototype touch interfaces and
predict their performance. For rapid prototyping, most appli-
cations only support visual design. For predictive modelling,
tools such as CogTool generate performance predictions but
do not represent touch actions natively and do not allow ex-
ploration of different usage contexts. To combine the ben-
efits of rapid visual design tools with underlying predictive
models, we developed the Storyboard Empirical Modelling
tool (StEM) for exploring and predicting user performance
with touch interfaces. StEM provides performance models
for mainstream touch actions, based on a large corpus of re-
alistic data. We evaluated StEM in an experiment and com-
pared its predictions to empirical times for several scenarios.
The study showed that our predictions are accurate (within
7% of empirical values on average), and that StEM correctly
predicted differences between alternative designs. Our tool
provides new capabilities for exploring and predicting touch
performance, even in the early stages of design.
Author Keywords
Touch interaction; Modelling; Performance prediction.
ACM Classification Keywords
H.5.2 Information interfaces (e.g. HCI): User interfaces
INTRODUCTION
Touch interfaces are now a ubiquitous means for interaction
with computers. However, despite this ubiquity, it can be dif-
ficult for designers and researchers to predict how different

designs for touch-based interactions will perform, and there
are few tools available for exploring the performance of touch
prototypes. For example, a designer may wonder whether in-
teraction time for a common task will be reduced by adding
a “bezel swipe” menu, compared to a regular menu design
– and may wonder whether any performance improvement
will be consistent across different screen sizes, screen orien-
tations, and different ways of holding the device.

Several tools exist for supporting the visual design of touch
interfaces, but these systems do not include performance pre-
diction. For predictive modelling, applications such as Cog-
Tool [15] can generate predictions based on frameworks in-
cluding GOMS/KLM – but these systems do not incorpo-
rate touch actions natively, and instead approximate touch
using existing mouse-based models. Recent work has pro-
vided some touch-based extensions to KLM-style models: for
example, with new operators for touch actions like tapping,
pointing, dragging, and flicking [29], and with time estimates
for a few basic “fingerstroke-level” actions [18]. Even with
these extensions, however, modelling of touch-based interac-
tions is still limited: there is no modelling framework that
provides time estimates for the full set of touch operators;
in addition, the most complete existing framework was de-
signed to predict actions in games, covers only a single device
and orientation, and only provides estimates for users who are
working as fast as they can [18].

As a result, it is still difficult for researchers and designers to
predict user performance with touch UIs, and very difficult
to do so for early design prototypes. To combine the benefits
of rapid visual design tools with the capability of predictive
models, we developed a new interactive tool – the Storyboard
Empirical Modelling tool (StEM) – for exploring and pre-
dicting user performance with touch interfaces. StEM pro-
vides predictive models of six mainstream touch actions (tap,
point, drag, swipe, scale, and rotate), based on a large cor-

https://www.acm.org/publications/computing-classification-system/1998/h.5.2

pus of realistic data gathered from several device types, hand
grips, and screen orientations. The corpus was built from a
field experiment that has gathered 39,804 touch tasks from
201 users to date, and the corpus continues to grow. We char-
acterized and compared different factors within this dataset,
and found that there are significant performance differences
between different devices, different screen orientations, and
different hand grips, showing that designers can benefit from
predictions that cover a wider range of usage situations.

We evaluated StEM’s corpus-based predictive capabilities us-
ing a lab study where participants carried out basic tasks un-
der controlled conditions, and also completed full scenarios
that we had previously modelled using StEM (including an e-
commerce selection task, a map manipulation task, an e-mail
task, and a navigation task with a multi-level settings menu).
We found that our predictions closely matched the empirical
results, in terms of interface comparisons, crossover points,
and actual performance values. Our absolute time predictions
were on average within 7% of empirical results (1.1s out of a
15-seconds task), and never worse than 13%; this was more
accurate than the results of our best-effort approximation us-
ing either CogTool or FLM. We also replicated an empiri-
cal comparison between Marking Menus and FastTap menus
from prior research; our predictions were again very close to
the published values, and correctly identified the performance
order of the different techniques.

The StEM tool provides new power for designers and re-
searchers who need to understand user performance with
touch interfaces. At any stage in the development of touch
prototypes, StEM provides comprehensive and accurate esti-
mates of touch performance, and it provides these estimates
for a wide range of usage situations involving different types
of users, devices, and postures. In addition, our corpus of
empirical data and our design tool are publicly available1, and
can be used by anyone who needs to more thoroughly explore
touch performance.

RELATED WORK
Extending the Keystroke Level Model
The Keystroke-Level Model (KLM) [4] was developed to pre-
dict the time performance of interaction on desktop comput-
ers using a mouse and a keyboard. It describes an interaction
as a series of atomic actions, each represented by an oper-
ator. For instance, the action of deleting an icon would be
described as follows: mentally prepare for the task (M, which
represents the user’s thinking or decision-making process),
find the icon (M), point at the icon (P), press and release the
mouse button (BB), move the hand to the keyboard (H) and
press the delete key (K). A total of 2 M operators, 1 P, 2 B, 1
H and 1 K combine to yield a prediction time of 4.6 s.

However, with the rise of touch-based interfaces, KLM re-
quired extension to represent an additional set of atomic ac-
tions. Holleis et al. [13] extended the KLM operators for
button-based mobile phones (without touchscreens), and Li
et al. added operators to cover stylus interaction on mobile
devices [19]. The KLM model was then extended to touch-
screen interaction [18, 29].
1ns.inria.fr/mjolnir/StEM/

First, Rice et al. introduced operators specific to touch inter-
action, such as tap, drag, pinch, zoom, rotate, gesture, swipe,
and tilt [29]. These operations, along with a subset of KLM
operators, formed their Touch-Level Model (TLM). Their
work only described the model, rather than providing timing
information for the actions. Second, time estimates for some
of the new operators were introduced by Lee et al. [18] as part
of their Fingerstroke-Level Model (FLM). Lee et al. carried
out an experiment to empirically determine the time of four
of the new operators: tapping, pointing, dragging, and flick-
ing. However, the focus of their work was on helping mobile
game designers improve game mechanisms, so the study was
conducted using only a single device and orientation: a 4.3-
inch screen in landscape mode, where participants used their
non-dominant hand to hold the device and performed touch
actions with their dominant thumb. In addition, participants
were instructed to be as fast as possible. In contrast to this
focused study, one of our main goals was to estimate touch-
action times across a variety of conditions (different form fac-
tors, grips, and orientations) and in ecologically-valid usage
conditions.

Modelling from low level actions to user strategies
Low level motor actions on touch interfaces have been mod-
elled for pointing [8,25,30], dragging [6], as well as transfor-
mations that include rotation, scaling and translation [9, 31].
Derived models are typically based on Fitts’ law [7] or vari-
ations such as FFitts law, which captures movements when
accuracy matters [3]. We used these models to analyse the
data of our corpus. For higher level models, researchers have
also examined the strategies that users follow to perform a
task, including consideration of how interaction techniques
can affect these strategies [2, 11, 21].

Modelling touch interaction
Giving early insights about interface performance should help
designers to identify strengths and weaknesses of different al-
ternatives, and consequently improve design. Existing wire-
framing tools such as Balsamiq c©, AxureRP c©, InVision c©,
SILK [17], Marquise [26] and FrameWire [20] allow rapid
prototyping and storyboarding of UI/UX design elements and
sequences, and already enable exploration of an application’s
design space without having to carry out full implementation.
However, wire-frame designs do not provide much informa-
tion about performance: they require an experienced practi-
tioner to recognize flaws in the design, and because they don’t
provide time estimates, it can be difficult to make reasoned
choices about competing alternatives.

The use of predictive models like KLM or FLM assist the it-
erative design process by providing performance estimates -
helping designers identify which alternatives are better suited
to a given usage context. For example, Quaresma et al. used
KLM to compare iPhone navigation applications and assess
the visual demand on drivers [28]. Models can also help de-
signers and researchers compare interaction techniques and
obtain early insights on performance: for example, Goguey
et al. used FLM to compare different interaction techniques
across different scenarios on smartphones and tablets [10].
They compared a technique using finger identification and
normal touch-based GUI interaction.

http://ns.inria.fr/mjolnir/StEM/
http://www.balsamiq.com
http://www.axure.com
http://www.invisionapp.com

One main challenge in the use of predictive models is to com-
pute the sequence of operators for a given scenario, since this
process requires expertise in composing and combining dif-
ferent individual actions. John et al. aimed to automatize that
modelization process by creating CogTool: “a UI prototyping
tool that can produce quantitative predictions of how users
will behave when the prototype is ultimately implemented”
(CogTool user guide, p. 2) [15]. CogTool allows designers
to create a mock-up of an application using a series of Frame
objects, each representing a different screen. On each Frame,
the user defines which part is interactive using pre-defined
widget overlays. Once widgets have been specified, the user
links them in order to create a sequence of interaction. Fi-
nally, CogTool computes time predictions for each sequence.

CogTool was designed to automate the use of KLM/GOMS
models, but as described above, these models do not cover all
aspects of touch-based interaction. The developers of Cog-
Tool have shown that it can be extended to touch interfaces,
but there are limitations: for example, some actions such as
swipes, rotations and pinches cannot be modeled, and others
like drags need to be modeled using CogTool’s existing tap-
down and tap-up actions. In addition, it is not clear to what
extent those touch models are directly based on the mouse
behaviours that are built into the tool.

A few projects have tested CogTool’s abilities in modelling
touch interfaces. For example, Abdulin et al. [1] tested
KLM’s accuracy in predicting performance on medium-sized
touchscreens. They used the KLM model with CogTool to
predict time on 7” and 10” touchscreens, and compared to ac-
tual user time on different button-based UIs; the study showed
less than 5% difference when completing pointing based in-
teractions. Another study compared time estimates provided
by CogTool to real measures on a mobile wallet applica-
tion [27], and found a difference of 20% between predicted
and empirical times. These results suggest that CogTool may
be well-suited to predict performance of button-based UIs on
touchscreens; but it is less clear whether it can capture other
types of touch interaction that are farther from the underly-
ing assumptions of mouse-and-windows designs. In addi-
tion, CogTool cannot provide time estimates across a range
of users, devices, or orientations.

In the sections below we describe the StEM tool we devel-
oped to overcome these limitations in current frameworks.
First, however, we describe the database of realistic touch ac-
tion trials that we gathered in order to provide time estimates
for our models of tapping, pointing, dragging, swiping, resiz-
ing, and rotating actions.

GATHERING TOUCH TIMES: THE TOUCH-ACTION DB
Our design tool predicts the times of touch actions based on a
corpus of data about these actions. This database (the Touch-
Action DB or TADB) is populated from an ongoing web-
based field experiment that asks people to carry out simple
touch tasks on their own devices and in everyday environ-
ments. We have gathered a large (and growing) corpus of
information about the time for a wide range of touch actions,
devices, orientations, and hand grips.

The field experiment uses a custom web application (fig-
ure 2) that works with any phone, tablet, or touchscreen lap-
top that can run a web browser. The application is hosted at a
publicly-available location (ns.inria.fr/mjolnir/steam/). When
participants visit this site, they are enrolled in the study (in-
cluding demographics, device details, and informed consent)
and then presented with a series of touch tasks. Each task in-
volves an elementary touch-based interaction: tapping, point-
ing, dragging, swiping, rotating, and resizing. After a training
phase where participants try out each of the interactions, users
are given test tasks in random order and asked to carry out the
tasks as they would in everyday use. Participants are allowed
to stop at any time (i.e., each participant completes as many
tasks as wanted). We stored a web cookie so that if a partici-
pant continued the study later, they would be recognized (and
they would not have to repeat the demographics and consent
forms).

The tasks in the field experiment are:
‚ Tapping (Figure 2b). Participants are shown a circular

white target at a random location (after a random 0.5s-2.5s
timeout) and must tap the target with a finger. The start-
ing location for the user’s finger is uncontrolled (see dis-
cussion below). We record the time between the target’s
appearance and the tap.

‚ Pointing (Figure 2c). Participants are shown a circular start
area and a circular target (positions and sizes of the circles
are controlled to provide a range of IDs). Participants tap
the start area and then the target area. We record the time
between the first tap on the start area and the first tap on
the target area.

‚ Dragging (Figure 2d). Participants are shown a draggable
yellow circle and a circular green target; again, positions
and sizes of the circles are controlled to provide a range of
IDs. Participants drag the yellow circle to the green target.
We record the time between the first touch on the yellow
circle and its eventual release inside the green target.

‚ Rotation (Figure 2e). Participants are shown a yellow cir-
cle with one black mark indicating the rotational angle of
the circle, and two red marks indicating a rotation target.
The aperture between the red marks, and the starting angle
of the circle, are controlled. Participants rotate the yellow
circle, using two fingers, to place the black mark between
the two red marks. We record the time between the first
rotation of the yellow object and its successful release.

‚ Scaling (Figure 2f). Participants are shown a yellow circle
and a green ring. The initial size of the yellow circle and
the thickness of the green ring are controlled. Participants
scale the yellow circle, using two fingers and a pinch or
expand gesture, so that its edges are inside the green ring.
We record the time between the first size change of the
yellow object and its successful release.

‚ Swiping (Figure 2g). Participants are shown a draggable
yellow circle at one end of a line. The position of the circle,
and the direction and length of the line are controlled. Par-
ticipants drag the yellow circle along the path and release
it after it has moved at least 50% of the path’s length or the
circle’s velocity is higher than a threshold (determined em-
pirically based on typical Android behaviour). We record

http://ns.inria.fr/mjolnir/steam/

a b c d

e f g h

Figure 2: Web application and example tasks used to collect touch data:
(a) home screen, (b) tapping task, (c) pointing task, d) dragging task,
(e) rotation task, (f) scaling task, (g) swiping task, (h) task separation
screen.

the time between the initial touch on the circle and its suc-
cessful release. The swipe results were used for two oper-
ators in the StEM tool described below: the distance ver-
sion of the motion was used for the swipe operator, and the
speed version was used for the flick operator.

Between tasks, participants are presented with a screen that
allows them to indicate their grip on the device (Figure 2h):
GRIPONE

HANDED (ie. held in the dominant hand and touched us-
ing the thumb of that hand); GRIPHOLD&

TOUCH (ie. held in the
non-dominant hand and touched with a finger of the domi-
nant hand); and GRIPTWO

HANDED (held in both hands and touched
with fingers/thumbs of either hand). Once the grip is selected
they can complete any number of trials; time for each task is
recorded in the database along with meta-data about the per-
son, the device, the grip, and the screen orientation (portrait
or landscape). The participant’s grip is the only element that
cannot be identified automatically by the system, and there-
fore is a source of potential in-correctness in the database (if
participants state the wrong grip). However, we believe this
problem is likely to be infrequent, since we allowed partic-
ipants to indicate a grip change before any trial; we also at-
tempted to limit the number of unrecorded grip changes by re-
moving tasks requiring two-finger gestures when participants
had indicated they were using the one-handed grip.

The TADB website was advertised via social media, newslet-
ters, and within classes. So far, we have gathered a total of
39,804 trials from 201 different users.

Models used for touch tasks
The empirical data gathered from the field experiment pro-
vides time estimates and regression coefficients for a set of
models covering each touch action. For pointing, dragging,
scaling, and rotation, we used Fitts’ Law models [7, 23]
that were developed in previous work [9]. Our models use
the Shannon formulation for index of difficulty ID [22, 24]:
T “ a` b log2 p1`AMP{TOLq where T represents the time
prediction for a given ID log2 p1`AMP{TOLq 2, AMP repre-

2We use the generic terms Amplitude and Tolerance instead of Dis-
tance and Width, as our terms cover both rotation and scaling tasks
as well as pointing and dragging.

sents the amplitude of the task (for pointing and dragging, the
distance between the circles; for rotation, the angle between
the black rotation indicator and the centre of the red targets;
for scaling, twice the distance between the yellow circle’s
edge and the middle of the green ring), and TOL represents
the tolerance of the task (ie. for pointing, the diameter of the
target; for dragging, the difference between the diameters of
the target and dragged circle; for rotation, the aperture angle
between the two red marks; and for scaling, the thickness of
the target ring).

For tapping and swiping, no model has become established in
previous literature. The tapping task requires additional con-
sideration because the starting position of the tapping finger is
unknown (it is above the screen and out of sensing range). We
used the pointing model with a fixed amplitude correspond-
ing to the diagonal of the device’s screen3. For the swiping
task, we did not use an equation at all, but rather used the sim-
ple empirical mean (or median) times from the database as a
rough estimate (taking all swiping trials into account). Our
models for tapping and swiping are reasonable starting points
that can be easily updated as new research becomes available.

VALIDATION OF THE TOUCHDB CORPUS
In order to validate our method for gathering touch data, we
conducted a controlled lab experiment. We recruited partici-
pants to perform the previously described tasks using our web
application, while varying and controlling factors such as de-
vice, orientation, and hand grip.

Participants
Eighteen participants (nine men, nine women) were recruited
from the local university community and were given an hon-
orarium of $10. The average age of the participants was 24.9
(SD 5.8), and all participants used a multitouch device on a
daily basis. One participant was left-handed.

Design
Participants came to the lab for the study. As for the in-the-
wild version of the experiment, no instruction on speed or
accuracy requirements were given in order to approach ev-
eryday behaviour, which differs from previous work [18].

The experiment varied four factors: DEVICE (5 or 7
inch screen), ORIENTATION (portrait or landscape), GRIP

(GRIPONE
HANDED, GRIPHOLD&

TOUCH or GRIPTWO
HANDED), and ID (3 dif-

ferent TOL for tapping, 3 different TOL and 2 different AMP
for pointing and dragging, 3 different TOL, and 3 different
AMP for rotation and 3 different TOL and 2 different AMP
for scaling). For swiping, the ID factor was replaced by the
length of the path (2 different lengths). Each combination of
factors was repeated several times: 8 times for tapping (ran-
domly varying the location of the target), 8 times for point-
ing and dragging (varying the direction of the movement),
4 times for rotation (varying the rotation direction between
clockwise and counter-clockwise), 4 times for scaling (vary-
ing the direction between contract and expand), and 4 times
for swiping (varying the movement direction).

3We make the assumption that the hand is at rest next to the device
before each tapping action and thus we use the diagonal of the screen
as an estimate of the “pointing” amplitude.

Tasks R2 Adjusted R2 a b

Tapping ą .86 ą .84 .53 s .06 s.bits´1

Pointing ą .92 ą .91 .20 s .11 s.bits´1

Dragging ą .87 ą .85 .17 s .18 s.bits´1

Rotation ą .95 ą .94 .32 s .30 s.bits´1

Scaling ą .54 ą .45 .74 s .10 s.bits´1

Table 1: Summary of the Fitts’ regression analysis for all users in the
database.

To keep session durations at 45 minutes, we removed three
combinations of DEVICE, ORIENTATION, and GRIP that we
considered as overly difficult to perform: GRIPONE

HANDED and
GRIPTWO

HANDED with a 7-inch screen, and GRIPONE
HANDED with a

5-inch landscape-oriented screen. Once again, no rotation or
scaling tasks were presented for the one-handed grip.

For each combination, each participant completed 24 trials
for tapping, 48 trials for pointing and dragging, 36 trials
for rotation, 24 trials for scaling, and 32 trials for swiping.
Across all participants, 25,632 trials were logged; of these,
1,125 trials (4.4%) were removed as erroneous because they
were performed using more than one action.

Results
Our goals in this analysis were to compare lab results (that
had strong controls) to our in-the-wild TouchDB data, and
also to characterize the main differences within the dataset.
We examined the first issue by determining how well the data
in each corpus fit the Fitts’ models; we examined the second
by conducting standard within-subjects RM-ANOVA tests on
the measured variable TIME. We used the ezANOVA package
in the ez R environment. When significant effects were found,
we carried out post-hoc analyses using pairwise T-test com-
parisons with the Holm correction. We used median times
when aggregating data, since task mean completion times are
typically not normally distributed.

Task index of difficulty varies substantially across devices
and screen orientation, because of the differences in avail-
able screen space. In order to be able to compare the different
factors in the RM-ANOVA, we rounded the IDs to the closest
integer and performed the analysis on these ID bins that were
in common across all factors (1, 2, 3 and 4 for pointing, 2, 3
and 4 for dragging, 2, 3, 4 and 5 for rotation and 1, 2 and 3
for scaling).

In the following sections, we provide detailed results for
pointing and dragging, as they account for the majority of
the touch interactions, and summarize the analysis results for
the other tasks (see tables 1 and 2 and figure 3).
Pointing
Fitts law regression – The regression analysis on the experi-
mental data yielded an r2 ą.98, an intercept a of .26 s and a
slope b of .09 s.bits´1. To compare against the full TouchDB
dataset, we also performed a regression analysis for all the
users in the database (r2ą.92, a=.20 s and b=.11 s.bits´1) and
all the users without the experimental data (r2 ą.89, a=.17 s
and b=.12 s.bits´1).

Main effects on TIME– As expected, we found a significant
main effect of ID (F3,51=216.7, pă.0001). Post-hoc tests
showed significant differences between all levels of ID (all

pă.005), with higher-ID tasks taking longer. We found a
significant main effect of GRIP (F2,34=8.1, pă.005). Post-
hoc tests showed significant differences between all levels of
GRIP (all pă.05): GRIPTWO

HANDED was faster than GRIPHOLD&
TOUCH ,

which was faster than GRIPONE
HANDED. We found no significant

main effect of DEVICE (F1,17=2.5, p=.13) or ORIENTATION
(F1,17=.5, p=.5).

Interactions on TIME– We found significant interactions
between ID and each of the other factors (DEVICE:
F3,51=8.9, pă.0001; ORIENTATION: F3,51=3.2, pă.05; GRIP:
F6,102=9.5, pă.0001). Post-hoc tests showed multiple sig-
nificant differences, but none involving a specific ID across
the other factors (all pą.1), except for ID 4, where the
5-inch device was faster than the 7-inch device (pă.005)
and GRIPTWO

HANDED was faster than both GRIPONE
HANDED and

GRIPHOLD&
TOUCH (all pă.01). These results suggest that as a task

gets harder, DEVICE and GRIP matter more. We found no sig-
nificant interaction between ORIENTATION and GRIP, ORI-
ENTATION and DEVICE nor GRIP and DEVICE (all pą.1).
Dragging
Fitts law regression – Regression analysis on the experimen-
tal data yielded an r2 ą.99, an intercept a of .13 s and a slope
b of .20 s.bits´1. To compare against the overall TouchDB
data, we again performed a regression analysis for all the
users in the database (r2 ą.87, a=.17 s and b=.18 s.bits´1)
and all the users but without the experimental data (r2 ą.92,
a=.12 s and b=.17 s.bits´1).

Main effects on TIME– As expected, we found a significant
main effect of ID (F2,34=528.6, pă.0001). Post-hoc tests
showed significant differences between all levels of ID (all
pă.005) with higher-ID tasks taking longer. We found a sig-
nificant main effect of DEVICE (F1,17=4.6, pă.05). Post-hoc
tests showed that participants were significantly faster on the
5-inch device than on the 7-inch device (pă.01). We found
no significant main effect of ORIENTATION (F1,17=.5, p=.5)
or GRIP (F2,34=3.1, p=.06).

Interactions on TIME– We found significant interactions be-
tween ID and DEVICE, and between ID and GRIP (DEVICE:
F2,34=5.4, pă.01; GRIP: F4,68=4.3, pă.005). Post-hoc tests
showed multiple significant differences, but not between a
specific ID across the other factors (all pą.3) except between
ID 4 across DEVICE (pă.0001), where the 5-inch device was
faster than the 7-inch device. We also found a significant
interaction between GRIP and DEVICE (F2,34=6.2, pă.01).
Post-hoc tests showed a difference between GRIPHOLD&

TOUCH

Tasks ID DEVICE ORIENTATION GRIP

Pointing pă .0001 p“ .13 p“ .5 pă .005
F3,51 “ 216.7 F2,34 “ 8.1

Dragging pă .0001 pă .05 p“ .5 p“ .06
F2,34 “ 528.6 F1,17 “ 4.6

Rotation pă .0001 pă .01 pă .05 pă .0005
F3,51 “ 127.6 F1,17 “ 9.2 F1,17 “ 7.1 F2,34 “ 12.2

Scaling pă .0001 pă .005 p“ .4 pă .005
F2,34 “ 170.2 F1,17 “ 10.6 F2,34 “ 6.3

Table 2: Summary of the main effects on TIME of the ANOVA analysis.
Tapping is not reported as there were too few levels of ID in common
across the combination of other factors.

across DEVICE (pă.05), with GRIPHOLD&
TOUCH being faster on the

5-inch screen. We found no significant interaction between
ID and ORIENTATION, ORIENTATION and GRIP, or GRIP
and DEVICE (all pą.2).
Summary
Overall, both pointing and dragging are well described by
Fitts Law, and in both tasks, time increases with difficulty.
These results were expected, but are useful in validating the
data gathered in the field experiment. In addition, our re-
sults confirm that there can be significant differences across
device form factors. We found that pointing is faster when
holding and operating a device with both hands, but this was
not the case for dragging. Since pointing is a discrete task,
two hands can better cover the screen and thus speed up the
interaction - but for dragging, the task requires one finger’s
interaction and so there is no advantage in having two fin-
gers available. We also found differences across device sizes
for the dragging task: dragging on a 5-inch screen was faster
than on a 7-inch screen, possibly due to the natural constraint
of hand size. Overall, we found similar slope coefficients to
previously-reported values [9].
THE STORYBOARD EMPIRICAL MODELLING TOOL
We developed StEM to provide a simple and fast means for
predicting user performance with touch interfaces. StEM is
inspired by systems like CogTool, which take a complicated
modelling framework (KLM) and provide an interactive front
end that allows broad access to the underlying formalism. As
described above, however, CogTool does not include several
kinds of touch actions, and models others as composites of
existing mouse-based actions.

StEM allows designers to build touch-interaction sequences
on top of visual representations of an interface - whether these
are rough sketches, wireframes, screenshots of actual proto-
types, or even blank screens. Instead of analysing an interac-
tion sequence and extracting touch operators by hand, StEM
allows designers to drag and drop touch actions onto the in-
terface pictures (figure 4a), which places a canvas object rep-
resenting the action onto the interface, and adds the action to
the touch-interaction timeline (figure 4a). To specify the spe-
cific properties of an action (eg. the size and position of a tap
area on the device screen), the user manipulates the canvas
object on the interface picture (figure 4c).

Because many tasks require interaction with several screens,
the designer can link individual screens together into a sce-

G
R

IP
O

N
E

H
A

N
D

E
D

G
R

IP
H

O
LD

&
T
O

U
C

H

G
R

IP
T
W

O
H

A
N

D
E
D

La
n

d
sc

a
p

e
Po

rt
ra

it1 2 3 4
2 3 4

2 3 4 5
1 2 3

ID

G
R

IP
O

N
E

H
A

N
D

E
D

G
R

IP
H

O
LD

&
T
O

U
C

H

G
R

IP
T
W

O
H

A
N

D
E
D

G
R

IP
O

N
E

H
A

N
D

E
D

G
R

IP
H

O
LD

&
T
O

U
C

H

G
R

IP
T
W

O
H

A
N

D
E
D

Grip

N
e
x
u
s

5
N

e
x
u
s

7
N

e
x
u
s

5
N

e
x
u
s

7
N

e
x
u
s

5
N

e
x
u
s

7

Device
Orientationdragging

rotation

pointing

scaling

0

1
sec

2
sec

Figure 3: Mean times and 95% confidence interval of each tasks per
main factors.

a) drag and drop
actions onto the timeline

b) the sequence of operators
is automatically updated

c) canvas objects representing
the properties of the actions

d) predictions time

Figure 4: Example of StEM use: (a) the user drags and drops actions
onto the timeline to construct the sequence of interaction of the current
application screen; (b) the corresponding sequence of operators is au-
tomatically updated; (c) the user specifies the parameters of an action
by manipulating its canvas representation (eg. position, size, ...); (d) af-
ter querying the database, the prediction times are displayed as stacked
bars (each colour represents an operator).

nario (figure 1b). A scenario is therefore the unit at which
a designer models a high-level task on a particular device -
so, for a given scenario, the size of the device has to be set
(ie. width and height in millimetres).

Once a scenario has been designed, StEM automatically com-
putes the corresponding sequence of operators using a set of
predefined rules (described below). Each operator is associ-
ated with an index of difficulty, a time, or a movement di-
rection depending on its type. At any time, the designer can
query the database and retrieve the predicted time for the cur-
rent sequence of operators. She can also specify a number
of filters (figure 1c) that specialize the predictions to specific
devices, screen orientations, or hand grips. In addition, the
designer can specify two percentage thresholds to obtain pre-
dictions for two user groups: the x% fastest and the y% slow-
est users in the database.

The prediction results are then displayed in three charts (us-
ing the d3.js framework). The first (figure 1d) presents the
general trend for all users, the fastest users, and the slowest
users. The chart displays the total time taken by a sequence
as well as the time taken by each operator: the bars stack each
operator according to the order of actions in the timeline. The
second chart breaks down the first graph to each individual
user (bottom left graph on figure 1b). The third graph shows
the distribution of the users (bottom right graph on figure 1b).

Operators and rules
The sequence of operators is computed based on previous
work [18, 29], except that we use a different definition for
tapping compared to Lee et al. [18]. Lee considers tapping as
a pointing task with a small amplitude (a fixed amplitude of
10 mm was used). In StEM, we consider tapping as a pointing
action where the amplitude is unknown (ie. where the start-
ing position of the finger is unknown - as described above we
use a fixed amplitude based on the screen size). Lee’s tap-
ping operator is therefore captured by our pointing operator -
for example, pushing a button twice is modeled by a pointing
action with an amplitude of 0 mm (ie. an ID of 0 bits).

The operators we use in StEM are:
‚ T (tapping): pressing an on-screen target without knowl-

edge of the starting finger position.
‚ P (pointing): pressing an on-screen target with knowledge

of the starting finger position
‚ D (dragging): moving an on-screen object until it is within

a designated area
‚ R (rotation): rotating an on-screen object with two fingers
‚ S (scaling): resizing an on-screen object with a two-finger

pinch gesture
‚ F (flicking): a ballistic linear movement in one of the car-

dinal directions (up, down, left, right)
‚ Sw (swiping): a controlled linear movement in one of the

cardinal directions
‚ (long-press): a timeout indicating a long press on a touch

target (typically 300 ms).
‚ M (mental) and R (system response): timeout representing

the time taken by a user to make a decision and time out
representing the time taken by the system to reach its new
state. For the sake of simplicity, we gathered M and R into
a generic operator W (wait) that can be specified by the
designer.

Figure 5 represents the state machine used by StEM to com-
pute the sequence of operators in the action order specified
by the user. For instance, describing an icon drag and drop
on the second homescreen would result in: the user flicks left
to the second homescreen (Idle to Flick to Idle, TF), the user
performs a long press on the icon to move (Idle to Draggable
object to Long-press to Draggable object, T), the user then
moves and drops the icon at the desired location (Draggable
object to Drop area, D).

It is important to note that StEM users do not need to be aware
of the underlying models. They just drag and drop widgets on
the background (as with tools like Balsamiq c©). The interac-
tion sequence and IDs are automatically determined, based
on parameters set by StEM users, such as the pointing dis-
tance and target size. Users also determine factors influenc-
ing the pool of data within the TADB that is used to calcu-
late values. These factors include demographic characteris-
tics (eg. age or gender) and usage characteristics (eg. grip or
orientation). These parameters are specified through filters
(left of figure 1c). All the tasks characteristics and filters are
taken into account when automatically querying the TADB.
Similar to KLM, prediction times are computed by summing
time estimates for the interaction atoms. Except for swipe
tasks, no average or median times are used for predictions.
Intercept and slope values for Fitts’ Law calculations (a and b
parameters) are dynamically determined based on regression
equations that draw from the appropriate pool of data within
the TADB. The aggregation method for time used in the Fitts’
Law calculations depends on the selected checkbox (mean or
median) in the StEM UI.

Case study
As a demonstration of how StEM can enable comparison of
design alternatives without full implementations, we present
a hypothetical case study in which a designer wants to create

Idle

Button

Draggable
object

Drop
area

Timeout

Long-
press

Timeout

Long-
press

Long-
press

T

D

R

W

T

T

P

P

P

P

P

P

W

W

D

Rotation

Flick
Swipe

Scaling

F S

or

Figure 5: State machine representing the rules used to compute the in-
teraction sequences. Black and grey circles represent the components
that can be added to the interaction timeline (Idle represents the neu-
tral state). White circles represent the operators of the interaction se-
quences: T for tapping, P for pointing, D for dragging, R for rotation,
S for scaling, Sw/F for swiping/flicking, W for waiting, and for a long
press. Since rotation, scaling, and swiping/flicking follow the same rules,
they were grouped together on the state machine

a shopping application with efficient touch interaction. After
looking at existing layouts she decides to compare three de-
signs for adding items to the shopping cart. In design A (fig-
ure 6a), the user is shown a list of cards representing items.
To buy an item, the user taps the card, which pops up an in-
put box and a numerical keypad that can be used to specify a
quantity. In design B (figure 6b), the user is shown the same
list of cards, but to enter a quantity she uses a ”+1” button
located beside the item. In design C (figure 6b), the interface
provides both ”+1” and ”+10” buttons.

Using StEM and a set of wireframe mockups of the designs,
the designer predicts the interaction time for buying differ-
ent quantities (1, 15, 95 and 100) of an item. The prediction
results are summarized in table 3. When choosing only one
item, design B is the quickest, because the single action can
be performed on the first screen and the button is bigger than
in design C. When buying 15 items, however, design B be-

(a) Design A (b) Design B (c) Design C

Figure 6: Designs of the case study.

gins to show its limitations. Design C is still more efficient
than design A for 15 items, because bringing up the second
screen takes more time than six button-presses. When buy-
ing 95 items, design A is the fastest, but is not substantially
better than Design C - and when buying 100 items, Design
C is once again the quickest choice. StEM’s ability to pro-
vide quick performance predictions for the different design
alternatives can help reveal that adding a second entry screen
may not be a better choice, unless customers typically pur-
chase more than 100 items at a time - and in addition, that the
larger button on Design B is only marginally better for single
purchases, and is dramatically slower for multiple purchases.
Depending on the usage context (ie. the typical number of
items chosen at once), the designer now has a better overview
of the alternatives, at only the cost of developing wireframe
mockups.

STEM EVALUATION
We assessed the accuracy of StEM’s performance predictions
in three ways: first, we compared predicted times for spe-
cific task scenarios to empirically-recorded values; second,
we compared StEM’s predictions to two existing tools (Cog-
Tool and FLM); and third, we modeled two interaction tech-
niques, Marking Menus and FastTap Menus, and replicated
the experimental results of their comparison. In this evalua-
tion we do not test the tool’s usability.

Prediction accuracy for task scenarios
In order to evaluate StEM’s absolute time predictions, we
modelled a diversity of realistic tasks in term of context
(home screen, settings, applications), motor actions (point-
ing, typing, dragging gestures) and task duration (short, long)
from real world applications, and then compared StEM’s
predictions to empirical values. The scenarios were: re-
organizing app icons by moving them between Android’s
fourth and second home screens; checking for system up-
dates in the Android settings menus; answering, deleting and
archiving email messages in Gmail; manipulating a map view
in Google Maps; and carrying out a shopping task on the
Amazon website in the Chrome browser. All scenarios (and
our predictions) were based on the interface of a Nexus 5
smartphone.

We asked six participants (mean age 23.8, SD 1.3, 2 females,
all daily users of touchscreens) to perform these five scenarios
three times each, using a normal pace of interaction. All tri-
als were video-recorded at 60 fps, and task completion times
were manually extracted from the video (from the first arm
movement to the target application state). We then compared
the empirical completion times with those predicted by StEM.

Results

1 item 15 items 95 items 100 items

Design A 3.9s 4.4s 4.4s 4.7s
Design B .7s 4.6s 26.7s 28.1s
Design C .8s 2.3s 4.5s 3.3s

Table 3: Summary of the prediction times for design A, B and C.

measured median

predicted median

F10% S10%All

Icons Updates Google Map Gmail Amazon

F10% S10%All
F10% S10%All

F10% S10%All
F10% S10%All

twice the standard deviation

0

10
sec

20
sec

Figure 7: Measured and predicted times for each scenario. The correc-
tions account for the screens swapping. F10% corresponds to the fastest
10% and S10% for the slowest 10%.

In Table 4, we summarize the measured times of interaction
as well as StEM’s predictions. For each scenario, we report
the median of all the 18 trials, the two fastest trials (11% of
the total number), the two slowest trials, as well as the stan-
dard deviation of all trials. We also report the median times
predicted using StEM for all the users in the database, the
fastest 10%, and the slowest 10%. We then report the differ-
ence between the measured and predicted time, and highlight
in bold differences that are more than one standard deviation
from the measured time.

To account for the system response time, we measured the
time needed by the tablet to open application and swap
screen. In Gmail, opening the email thread we used for the
experiment took 1.7s, and screen swapping (even though the
application was already open) took on average 500ms. We
therefore add an W operator to our scenario modelization as
follows: we added fixed times for three screen transitions
for the Update scenario (W=1.5s), one transition for Google
Maps (W=.5s), four for Gmail (W=2s), and two for Amazon
(W=1s). We also added a W=1.7s app-loading time to the
Gmail scenario. The empirical tasks took between 10 and
20 seconds. In almost all cases, StEM’s predictions were off
by less than a second and a half. The times are presented in
figure 7.

Our predictions (for all users, using the median) differed from
empirical values by: 7% for the Icons scenario (0.7s less than
the median), 7% for the Updates scenario (0.5s more), 6% for
the Google Maps scenario (0.5s less), 13% for the Gmail sce-
nario (1.9s less), and ă1% for the Amazon scenario (ă0.1s
more).

The difference between predicted and empirical values for the
slowest users in Gmail was still more than a standard devia-
tion (5.2, SD 2.5s). When looking at the empirical data for
the Gmail scenario, we found that three participants were sub-
stantially slower during their first trials (user 1 went from 20s
to 17.1s and 14.7, user 3 from 20.8 to 15.5 and 15.8, and
user 6 from 18.8 to 15.4 and 13.1). Looking at the videos,
it appeared that those users were searching for the next ac-
tion to perform, and were thus still learning about the task. If

Experiment StEM texp´ tStEM
SD Fastest Median Slowest Fastest Median Slowest Fastest Median Slowest

Icons 1.4 8.4 9.9 12.8 7.8 9.2 11.7 0.6 0.7 1.1
Updates 1.1 5.6 6.8 8.7 6.6 7.3 9.0 -1.0 -0.5 -0.3

Google Maps 1.5 5.8 8.0 10.9 5.9 7.4 11.2 -0.1 0.5 -0.3
Gmail 2.5 12.5 14.9 20.4 11.7 13.0 15.3 0.8 1.9 5.2

Amazon 2.7 17.5 19.8 26.6 16.4 19.8 26.3 1.1 0.0 0.3

Table 4: Summary of the interaction times in seconds of each scenario (using the median). To compute the fastest and the slowest times. We took a 10%
threshold (ie. 2 trials in the experiment). Bold text indicates that predicted times are more than one standard deviation from the measured times.

we consider only the second and third iterations of the task
(where participants were familiar, and were therefore primar-
ily carrying out touch actions rather than mental operations),
our predictions are closer (from a difference of 3.9s to .2s for
all users, and from 5.2s to 1.5s for the slowest participants).
In the discussion below, we also consider the limitation that
StEM currently only predicts motor actions.

Comparison to predictions from CogTool and FLM
Our second evaluation of StEM was to compare our pre-
diction results with the two best current modelling environ-
ments: CogTool and the Fingerstroke-Level Model. We
used the available operators and time estimates from Cog-
Tool and FLM to model the real-world scenarios described
above, using the regression equations provided in [18] and
the standard CogTool distribution from http://github.com/
cogtool. However, for both FLM and CogTool, the Google
Maps scenario is not reported because neither tool includes
rotation and scaling operators; and for CogTool, swipe ac-
tions in the Update, Gmail, and Amazon scenarios are mod-
eled with drags (since CogTool does not include a native
swipe operator). Finally, we report only median values for all
participants, since neither CogTool nor FLM predict a range
of user performance. A summary of results are shown below
and in table 5: in all cases but one, predictions from both Cog-
Tool and FLM are worse than those of StEM (and in many
cases by substantial amounts).

Using FLM models:
‚ Icons: 5.8s (4.1s less than the median time, off by 41%)
‚ Update: 5.5s (1.3s less, off by 19%)
‚ Gmail: 11.0s (3.8s less, off by 26%)
‚ Amazon: 15.3s (3.48s less, off by 18%)

Using CogTool:
‚ Icons: 5.5s (4.4s less than the median time, off by 44%)
‚ Update: 6.7s (.1s less, off by 2%)
‚ Gmail: 11.4s (3.5s less, off by 23%)
‚ Amazon: 17.7s (2.0s less, off by 10%)

Replicating a published comparison of touch techniques
For our third evaluation, we re-created an interaction se-
quence from prior research, which compared the FastTap in-
teraction technique [12] to Marking Menus [16]. We mod-
elled both the novice and expert interaction modes for these
techniques, and compared the completion times reported in
the published study to those predicted by StEM. In table 6, we

summarize the experimental times and standard deviations re-
ported in [12] as well as the predicted mean and median times
using StEM. As above, we report the differences between the
experimental and predicted times and highlight in bold the
differences which are more than one standard deviation apart.

On average, our predictions are off by a third of a second;
in only one case (the median time prediction of FastTap used
in expert mode) is the StEM prediction off by more than one
standard deviation. We hypothesize that this divergence is
due to the chorded interaction of FastTap which is not yet
fully modelled in StEM. However, despite this limitation, our
prediction is able to correctly match the reported order be-
tween the techniques, using both mean and median times. In
both the empirical study and the StEM predictions, the in-
terfaces performed in the same order: 1) FastTap expert, 2)
FastTap novice, 3) Marking Menus expert, and 4) Marking
Menus novice. This result provides additional evidence that
StEM is able to successfully predict comparisons between de-
sign alternatives, even when these alternatives involve novel
interaction techniques.

DISCUSSION
StEM is designed to integrate support for rapid prototyping of
touch interactions with the benefits of accurate performance
prediction. Through drag-and-drop manipulation of touch in-
teraction UI components, StEM users can quickly and easily
specify the interaction. Having done so, performance predic-
tions are automatically available, covering a variety of pos-
tures and form-factors, as well as enabling the designer to se-
lectively review different performance quantiles, such as the
fastest or slowest users.

A large part of the flexibility and range of the StEM tool is
based on the development and validation of the data corpus
(TADB) that underlies StEM’s predictions. While previous

texp StEM FLM CogTool

Icons 9.9s 7% (-0.7s) 41% (-4.1s) 44% (-4.4s)
Updates 6.8s 7% (+0.5s) 19% (-1.3s) 2% (-0.1s)

Google Maps 8.0s 6% (-0.5s) -— -—
Gmail 14.9s 13% (-1.9s) 26% (-3.8s) 23% (-3.5s)

Amazon 19.7s ă1% (ă0.1s) 18% (-3.5s) 10% (-2.0s)

Table 5: Summary of the prediction errors (with corrections) for StEM,
FLM and CogTool methods. Errors are the absolute differences between
predicted and empirical times divided by the empirical time.

http://github.com/cogtool
http://github.com/cogtool

modelling tools, such as CogTool, have merged prototyping
and prediction capabilities, they have lacked the ability to
describe many of the components of touch interaction. Al-
though we hope that designers will choose to use StEM (once
it is released), the full data corpus is available to researchers
and practitioners, enabling them to re-purpose the extensive
dataset for their own uses.

Limitations and further work
The TADB data corpus was populated by volunteer partici-
pants who carried out cued tasks in their own time on their
own devices, and without the controls that can be obtained in
laboratory settings. This method has associated strengths and
weaknesses. Key strengths are that the corpus can be popu-
lated with much a larger and broader dataset than can be prag-
matically obtained in the lab, and that the participants’ perfor-
mance may better reflect performance during real interaction
(rather than optimal lab conditions). Key weaknesses, how-
ever, concern the introduction of noisy and erroneous samples
into the dataset. For example, when electing to contribute
data to the corpus, participants manually selected a control
identifying the posture they would use during upcoming tri-
als, their age, gender, and handedness; if these responses are
incorrect, the data for subsequent trials could misrepresent
the actual performance in the intended condition. At present
we have taken no action to identify or remove noisy samples
from the corpus, but doing so may improve modelling ac-
curacy. In general, as crowd-sourcing of experimental data
becomes increasingly common there is a pressing need for
improved methods for data cleaning [5, 14].

The data corpus also examined only the most frequently oc-
curring atoms of touchscreen interaction, leaving opportuni-
ties for extending the range of elemental interactions featur-
ing in the dataset. For example, we have not as yet exam-
ined double-tap actions, force-based actions (as used on re-
cent Apple devices), and certain finger-chorded actions (e.g.,
two-finger tap/swipe or five-finger pinch/spread). All of these
more exotic atoms of touch interaction are used in contempo-
rary devices, and there is value in characterizing their per-
formance within future versions of the corpus. A possibility
to better capture the diversity of touch interaction would be
to investigate programming by demonstration (like in Mar-
quise [26] or FrameWire [20]): demonstrating user actions
while using StEM could help to inform researchers about
which atoms to integrate in the TADB in order to improve
StEM prediction.

Paper StEM texp´ tStEM
Time SD Mean Median Mean Median

Expert MM 2.2 .8 2.3 2.1 -0.2 0.1
FT 1.6 .3 1.3 1.2 0.2 0.3

Novice MM 2.9 .9 3.1 3.0 -0.2 -0.1
FT 2.1 .4 1.9 1.7 0.2 0.3

Table 6: Summary of the comparison between the Marking Menus and
the FastTap technique in seconds (using mean and median). In bold
are the differences between the reported and predicted times which are
greater than the reported standard deviation.

Our predictions only focus on motor action time. Account-
ing for cognitive processes, such as mental preparation time,
time spent searching for a target in a list, or application re-
sponse time, is left to the designers (who can model these el-
ements with StEM’s generic Wait operator). However, mod-
elling such processes in more detail – for example by helping
designers choosing the right amount of time for these opera-
tors or providing operators accounting for user expertise (the
current version of StEM only predicts time for users familiar
with the mockup UI) – is worth exploring as future work.

Another useful direction for further work on the corpus is the
performance impact of chaining a series of interaction atoms
into a larger interactive series. Currently, the TADB corpus
provides timing estimates for each discrete interface action
that it models, and StEM produces predictions based on the
sum of these timing estimates. By modifying our method for
gathering corpus data we could validate whether combined
operations are best modelled through simple timing summa-
tion, or whether additional parameters are needed to account
for any difference between observed performance and the
simple summation model.

Finally, a key area for further work concerns evaluating the
effectiveness of StEM as a design tool. While the corpus has
independent research value, our overall research objective is
to aid design by linking eased prototyping with largely au-
tomatic performance prediction. The work presented in this
paper suggests that the performance predictions are relatively
accurate, and StEM has several features that should contribute
to a user experience that is similar to existing design tools,
but further studies are needed to examine how designers use
StEM and whether they find it useful and usable for improv-
ing their designs. We intend to begin this evaluation by ex-
amining novice designers in undergraduate classes, and then
shift our focus to professional designers. More generally, we
would like to try using StEM as a teaching tool and evaluate
if it conveys insights on layout and interaction designs.

CONCLUSION
Storyboard Empirical Modelling (StEM) is a drag-and-drop
tool that allows designers to quickly prototype touch interac-
tions and explore their performance implications. StEM relies
on the Touch-Action database, a crowd-sourced data corpus
that provides empirical characterisations of tap, point, drag,
swipe, scale and rotate touch interactions across a wide range
of device types, hand grips, and screen orientations. Although
we developed the TADB corpus primarily as the foundation
for predictions with StEM, the corpus is available on the web
for other researchers and practitioners. We carried out sev-
eral evaluations of StEM, and showed that its predictions are
accurate within an average of 7% difference from empirical
values, and never worse than 13%, across a variety of sce-
narios – and substantially better than existing tools. StEM
provides new capabilities for designers and researchers who
need to understand user performance with touch interfaces at
any stage in the design process.

REFERENCES
1. Evgeniy Abdulin. 2011. Using the Keystroke-level

Model for Designing User Interface on Middle-sized
Touch Screens. In Proc. of CHI EA. ACM, 673–686.
http://doi.acm.org/10.1145/1979742.1979667

2. Caroline Appert, Michel Beaudouin-Lafon, and
Wendy E. Mackay. 2005. Context matters: Evaluating
Interaction Techniques with the CIS Model. In People
and Computers XVIII — Design for Life: Proceedings of
HCI 2004. Springer London, 279–295.
http://dx.doi.org/10.1007/1-84628-062-1_18

3. Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts
Law: Modeling Finger Touch with Fitts’ Law. In Proc.
of CHI. ACM, New York, NY, USA, 1363–1372. http:
//dl.acm.org/citation.cfm?id=2470654.2466180&
coll=DL&dl=ACM&CFID=244634215&CFTOKEN=16005854

4. Stuart K Card, Thomas P Moran, and Allen Newell.
1980. The keystroke-level model for user performance
time with interactive systems. In Communications of the
ACM. ACM, 396–410.
http://doi.acm.org/10.1145/358886.358895

5. Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani,
Paolo Papotti, Nan Tang, and Yin Ye. 2015. KATARA:
A Data Cleaning System Powered by Knowledge Bases
and Crowdsourcing. In Proc. of SIGMOD. ACM,
1247–1261.
http://doi.acm.org/10.1145/2723372.2749431

6. A. Cockburn, D. Ahlström, and C. Gutwin. 2012.
Understanding Performance in Touch Selections: Tap,
Drag and Radial Pointing Drag with Finger, Stylus and
Mouse. Int. J. Hum.-Comput. Stud. 70, 3 (March 2012),
218–233. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2011.11.002

7. Paul M Fitts. 1954. The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of experimental psychology 47, 6
(1954), 381.

8. Clifton Forlines, Daniel Wigdor, Chia Shen, and Ravin
Balakrishnan. 2007. Direct-touch vs. Mouse Input for
Tabletop Displays. In Proc. CHI. ACM, 647–656.
http://doi.acm.org/10.1145/1240624.1240726

9. Alix Goguey, Mathieu Nancel, Géry Casiez, and Daniel
Vogel. 2016. The Performance and Preference of
Different Fingers and Chords for Pointing, Dragging,
and Object Transformation. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
4250–4261. DOI:
http://dx.doi.org/10.1145/2858036.2858194

10. Alix Goguey, Daniel Vogel, Fanny Chevalier, Thomas
Pietrzak, Nicolas Roussel, and Géry Casiez. 2017.
Leveraging finger identification to integrate multi-touch
command selection and parameter manipulation. In
IJHCS journal, Vol. 99. Elsevier, 21 – 36.
http://dx.doi.org/10.1016/j.ijhcs.2016.11.002

11. Alix Goguey, Julie Wagner, and Géry Casiez. 2015.
Quantifying Object- and Command-Oriented

Interaction. In Human-Computer Interaction –
INTERACT 2015: 15th IFIP TC 13 International
Conference, Bamberg, Germany, September 14-18,
2015, Proceedings, Part IV (INTERACT ’15). Springer
International Publishing, Cham, 231–239. DOI:
http://dx.doi.org/10.1007/978-3-319-22723-8_18

12. Carl Gutwin, Andy Cockburn, Joey Scarr, Sylvain
Malacria, and Scott C. Olson. 2014. Faster Command
Selection on Tablets with FastTap. In Proc. of CHI.
ACM, 2617–2626.
http://doi.acm.org/10.1145/2556288.2557136

13. Paul Holleis, Friederike Otto, Heinrich Hussmann, and
Albrecht Schmidt. 2007. Keystroke-level Model for
Advanced Mobile Phone Interaction. In Proc. of CHI.
ACM, 1505–1514.
http://doi.acm.org/10.1145/1240624.1240851

14. H. V. Jagadish, Johannes Gehrke, Alexandros
Labrinidis, Yannis Papakonstantinou, Jignesh M. Patel,
Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big
Data and Its Technical Challenges. (2014), 86–94.
http://doi.acm.org/10.1145/2611567

15. Bonnie E John. 2010. Reducing the variability between
novice modelers: Results of a tool for human
performance modeling produced through
human-centered design. In Proc. of BRIMS. Springer,
22–25.

16. Gordon Kurtenbach and William Buxton. 1991. Issues
in Combining Marking and Direct Manipulation
Techniques. In Proc. of UIST. ACM, 137–144.
http://doi.acm.org/10.1145/120782.120797

17. James A. Landay and Brad A. Myers. 1995. Interactive
Sketching for the Early Stages of User Interface Design.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 43–50. DOI:
http://dx.doi.org/10.1145/223904.223910

18. Ahreum Lee, Kiburm Song, Hokyoung Blake Ryu, Jieun
Kim, and Gyuhyun Kwon. 2015. Fingerstroke time
estimates for touchscreen-based mobile gaming
interaction. In Human Movement Science Journal.
Elsevier, 211–224.
http://dx.doi.org/10.1016/j.humov.2015.09.003

19. Hui Li, Ying Liu, Jun Liu, Xia Wang, Yujiang Li, and
Pei-Luen Patrick Rau. 2010b. Extended KLM for
Mobile Phone Interaction: A User Study Result. In
Proc. of CHI EA. ACM, 3517–3522.
http://doi.acm.org/10.1145/1753846.1754011

20. Yang Li, Xiang Cao, Katherine Everitt, Morgan Dixon,
and James A. Landay. 2010a. FrameWire: A Tool for
Automatically Extracting Interaction Logic from Paper
Prototyping Tests. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’10). ACM, New York, NY, USA, 503–512. DOI:
http://dx.doi.org/10.1145/1753326.1753401

http://doi.acm.org/10.1145/1979742.1979667
http://dx.doi.org/10.1007/1-84628-062-1_18
http://dl.acm.org/citation.cfm?id=2470654.2466180&coll=DL&dl=ACM&CFID=244634215&CFTOKEN=16005854
http://dl.acm.org/citation.cfm?id=2470654.2466180&coll=DL&dl=ACM&CFID=244634215&CFTOKEN=16005854
http://dl.acm.org/citation.cfm?id=2470654.2466180&coll=DL&dl=ACM&CFID=244634215&CFTOKEN=16005854
http://doi.acm.org/10.1145/358886.358895
http://doi.acm.org/10.1145/2723372.2749431
http://dx.doi.org/10.1016/j.ijhcs.2011.11.002
http://doi.acm.org/10.1145/1240624.1240726
http://dx.doi.org/10.1145/2858036.2858194
http://dx.doi.org/10.1016/j.ijhcs.2016.11.002
http://dx.doi.org/10.1007/978-3-319-22723-8_18
http://doi.acm.org/10.1145/2556288.2557136
http://doi.acm.org/10.1145/1240624.1240851
http://doi.acm.org/10.1145/2611567
http://doi.acm.org/10.1145/120782.120797
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1016/j.humov.2015.09.003
http://doi.acm.org/10.1145/1753846.1754011
http://dx.doi.org/10.1145/1753326.1753401

21. Wendy E. Mackay. 2002. Which Interaction Technique
Works when?: Floating Palettes, Marking Menus and
Toolglasses Support Different Task Strategies. In
Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI ’02). ACM, New York, NY, USA,
203–208. DOI:
http://dx.doi.org/10.1145/1556262.1556294

22. I Scott MacKenzie. 1989. A note on the
information-theoretic basis for Fitts’ law. Journal of
motor behavior 21, 3 (1989), 323–330.

23. I. Scott MacKenzie. 1992. Fitts’ Law As a Research and
Design Tool in Human-computer Interaction.
Hum.-Comput. Interact. 7, 1 (March 1992), 91–139.
DOI:
http://dx.doi.org/10.1207/s15327051hci0701_3

24. I Scott MacKenzie. 2013. A Note on the Validity of the
Shannon Formulation for Fitts’ Index of Difficulty. Open
Journal of Applied Sciences 3, 06 (2013), 360.

25. Mark Micire, Martin Schedlbauer, and Holly Yanco.
2007. Horizontal selection: An evaluation of a digital
tabletop input device. In Proc. AMCIS (2007), 164.
http://robotics.cs.uml.edu/fileadmin/content/
publications/2007/MJM.AMCIS.2007.MTU.final.pdf

26. Brad A. Myers, Richard G. McDaniel, and David S.
Kosbie. 1993. Marquise: Creating Complete User
Interfaces by Demonstration. In Proceedings of the
INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems (CHI ’93). ACM, New

York, NY, USA, 293–300. DOI:
http://dx.doi.org/10.1145/169059.169225

27. Nihan Ocak and Kursat Cagiltay. 2016. Comparison of
Cognitive Modeling and User Performance Analysis for
Touch Screen Mobile Interface Design. In International
Journal of Human–Computer Interaction. Taylor and
Francis, 1–9.
http://dx.doi.org/10.1080/10447318.2016.1274160

28. Manuela Quaresma. 2012. Assessment of visual demand
of typical data entry tasks in automotive navigation
systems for iPhone. In Work journal, Vol. 41. IOS Press,
6139–6144.
http://doi.org/10.3233/WOR-2012-1074-6139

29. Andrew D. Rice and Jonathan W. Lartigue. 2014.
Touch-level Model (TLM): Evolving KLM-GOMS for
Touchscreen and Mobile Devices. In Proc. of ACM SE.
ACM, Article 53, 6 pages. DOI:
http://dx.doi.org/10.1145/2638404.2638532

30. Andrew Sears and Ben Shneiderman. 1991. High
Precision Touchscreens: Design Strategies and
Comparisons with a Mouse. Int. J. Man-Mach. Stud. 34,
4 (April 1991), 593–613. DOI:
http://dx.doi.org/10.1016/0020-7373(91)90037-8

31. Jian Zhao, R. William Soukoreff, and Ravin
Balakrishnan. 2015. Exploring and modeling unimanual
object manipulation on multi-touch displays.
International Journal of Human-Computer Studies 78, 0
(2015), 68 – 80. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2015.02.011

http://dx.doi.org/10.1145/1556262.1556294
http://dx.doi.org/10.1207/s15327051hci0701_3
http://robotics.cs.uml.edu/fileadmin/content/publications/2007/MJM.AMCIS.2007.MTU.final.pdf
http://robotics.cs.uml.edu/fileadmin/content/publications/2007/MJM.AMCIS.2007.MTU.final.pdf
http://dx.doi.org/10.1145/169059.169225
http://dx.doi.org/10.1080/10447318.2016.1274160
http://doi.org/10.3233/WOR-2012-1074-6139
http://dx.doi.org/10.1145/2638404.2638532
http://dx.doi.org/10.1016/0020-7373(91)90037-8
http://dx.doi.org/10.1016/j.ijhcs.2015.02.011

	Introduction
	Related Work
	Extending the Keystroke Level Model
	Modelling from low level actions to user strategies
	Modelling touch interaction

	Gathering Touch Times: the Touch-Action DB
	Models used for touch tasks

	Validation of the TouchDB Corpus
	Participants
	Design
	Results
	Pointing
	Dragging
	Summary

	The Storyboard Empirical Modelling tool
	Operators and rules
	Case study

	StEM evaluation
	Prediction accuracy for task scenarios
	Results

	Comparison to predictions from CogTool and FLM
	Replicating a published comparison of touch techniques

	Discussion
	Limitations and further work

	Conclusion
	REFERENCES

