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Orbital degeneracy loci II: Gorenstein orbits

Vladimiro Benedetti∗ Sara Angela Filippini† Laurent Manivel‡

Fabio Tanturri§

Abstract

In [BFMT17] we introduced orbital degeneracy loci as generaliza-
tions of degeneracy loci of morphisms between vector bundles. Orbital
degeneracy loci can be constructed from any stable subvariety of a
representation of an algebraic group. In this paper we show that their
canonical bundles can be conveniently controlled in the case where the
affine coordinate ring of the subvariety is Gorenstein. We then study
in a systematic way the subvarieties obtained as orbit closures in rep-
resentations with finitely many orbits, and we determine the canonical
bundles of the corresponding orbital degeneracy loci in the Gorenstein
cases. Applications are given to the construction of low dimensional
varieties with negative or trivial canonical bundle.

1 Introduction

In [BFMT17] we introduced orbital degeneracy loci and studied their first
properties. An orbital degeneracy locus is the locus of points of a manifold
where a given section of a vector bundle degenerates to a fixed subspace
of its total space, defined fiberwise by a G-stable closed subvariety of a
representation of an algebraic group G. This notion generalizes the classical
degeneracy loci of a morphism between two vector bundles, supported on
the points of the manifold in which the morphism has bounded rank.

One of our main motivations to introduce orbital degeneracy loci is to
construct new Fano varieties and new manifolds with trivial canonical bundle
of low dimension, which have been gaining more and more interest in view
of many recent developments in algebraic geometry. In this perspective,

∗Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université, CNRS,
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it is absolutely crucial to control the canonical sheaf, which is a priori far
from obvious; even for classical degeneracy loci this control is easy only
when the bundles have the same rank. In [BFMT17] we considered the
most favorable situation, which occurs when the G-stable subvariety one
is interested in can be desingularized by a crepant Kempf collapsing. This
happens indeed for determinantal loci in square matrices, which is what
allowed to construct, for example, certain interesting Calabi–Yau threefolds
as classical degeneracy loci ([Ber09], [KK10]). In [BFMT17] we exhibited
other crepant Kempf collapsings, and used them to construct dozens of new
interesting Calabi–Yau or Fano manifolds of dimension three and four.

Crepant Kempf collapsings, however, do not always exist and are in
general not easy to find. Moreover, some interesting Calabi–Yau threefolds
have also been constructed as symmetric or skew-symmetric degeneracy loci
([Ton04], [Kan12], [GP01]), although no crepant Kempf collapsing is known
in those contexts. The main purpose of this paper is to give a precise
description of the canonical bundle of an orbital degeneracy locus associated
to a G-stable closed subvariety having Gorenstein affine coordinate ring, a
condition which seems to be the weakest under which a good control of
this canonical bundle is possible. Using the classical Generic Perfection
Theorem, from a free G-equivariant resolution of the affine coordinate ring
we deduce a complex of vector bundles that resolves the structure sheaf of an
orbital degeneracy locus; in the Gorenstein case such a locally free resolution
yields the canonical sheaf, which is exactly what makes symmetric or skew-
symmetric degeneracy loci easier to handle.

The above result leads to considering Gorenstein G-stable subvarieties
of G-varieties. A wide source of interesting examples is provided by the
so-called parabolic representations (or type I theta groups), which are spe-
cial representations coming from Z-gradings of complex simple Lie algebras.
In such representations there exist only finitely many orbits, and the orbit
closures are resolved by (non-necessarily crepant) Kempf collapsings. They
have attracted considerable attention over the years, and huge quantities
of information about them have been accumulated; the Kempf–Lascoux–
Weyman geometric technique [Wey03], for instance, often allows to deter-
mine a free resolution of the orbit closures, and thus to decide whether they
are Gorenstein. The second goal of the paper is to enlarge the list of cases
we can use to construct interesting algebraic varieties as orbital degeneracy
loci: we mostly build upon a series of paper by Kraśkiewicz and Weyman
[KW12, KW13, KW] to study all the Gorenstein parabolic orbit closures
and to characterize the corresponding orbital degeneracy loci together with
their canonical bundle. We use them to exhibit several examples of four-
folds with trivial canonical bundle; a remarkable outcome is the realization
of some 4-dimensional irreducible holomorphic symplectic manifolds as or-
bital degeneracy loci, which can be shown to be Hilbert schemes of points
on K3 surfaces (Remark 4.6).
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The paper is structured as follows: in Section 2, after briefly recalling
the definition of an orbital degeneracy locus associated to a G-stable sub-
variety of a G-representation, we prove Theorem 2.5, which provides under
mild assumptions a locally free resolution of the structure sheaf of an orbital
degeneracy locus. We use this result to characterize the canonical bundle
of the orbital degeneracy locus in the Gorenstein case (Theorem 2.11); we
then describe the relation between crepant Kempf collapsings and Goren-
stein rings. Section 3 includes a reminder on parabolic representations, and
discusses the classical types, while Section 4 studies the parabolic repre-
sentations of exceptional types; for both cases we characterize the orbital
degeneracy loci associated to Gorenstein orbit closures and provide several
examples of fourfolds with trivial canonical bundle.

We remark that all this machinery might very well be used to construct
new interesting subvarieties beside Fano varieties or varieties with trivial
canonical bundle. For instance, some examples of curves of low genus can be
easily realized as orbital degeneracy loci. Our hope is that our constructions
will allow to describe new families of subvarieties having interesting features,
and we plan to do so in our subsequent work.

Acknowledgements. The authors wish to thank Jerzy Weyman for stim-
ulating discussions, and for communicating [KW] to them. This work has
been mostly carried out in the framework of the Labex Archimède (ANR-11-
LABX-033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded
by the ”Investissements d’Avenir” French Government program managed
by the French National Research Agency. The second author is supported
by the Engineering and Physical Sciences Research Council Programme
Grant “Classification, Computation, and Construction: New Methods in
Geometry” (EP/N03189X/1). The fourth author is supported by the Labex
CEMPI (ANR-11-LABX-0007-01).

2 Locally free resolutions of orbital degeneracy

loci

In this section we briefly recall the notion of an orbital degeneracy locus
(ODL for short) DY (s) and we construct an exact complex of locally free
sheaves resolving its sheaf of regular functions ODY (s). This yields a simple
way to describe the canonical bundle of an ODL, when Y is assumed to be
Gorenstein.

We will say that a variety (or a scheme) X is Cohen–Macaulay (respec-
tively, Gorenstein) if OX,x is a Cohen–Macaulay (respectively, Gorenstein)
ring for any x ∈ X. The ground field will always be the complex numbers.
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2.1 ODL and their resolutions of singularities

We present here for completeness a quick overview of the definition and main
properties of the ODL introduced in [BFMT17].

Let G be an algebraic group acting on a variety Z. For any G-principal
bundle E over a manifold X, there is an associated bundle EZ over X with
fiber Z, defined as the quotient of E×Z by the equivalence relation (eg, z) ∼
(e, gz) for any g ∈ G. In particular, if V is a G-module, then EV is a vector
bundle over X, with fiber V ; if Y is a G-stable subvariety of V , EY is a
subfibration of EV over X, with fiber Y .

Definition 2.1 (ODL). Suppose that V is a G-module and Y a G-stable
subvariety of V . Let s be a global section of the vector bundle EV . Then
the Y -degeneracy locus of s, denoted by DY (s), is the scheme defined by the
Cartesian diagram

(1) EY

�

// EV

DY (s)

OO

� � // X

s

OO

Its support is {x ∈ X, s(x) ∈ EY ⊂ EV } = s−1(EY ).

When no confusion may arise, we will simply call DY (s) the ODL asso-
ciated to the section s.

Proposition 2.2 ([BFMT17, Proposition 2.3]). Suppose that EV is globally
generated and let s be a general section. Suppose that DY (s) is contained in
the smooth locus of X. Then Sing(DY (s)) = DSing(Y )(s) and

codimX DY (s) = codimV Y, codimDY (s) Sing(DY (s)) = codimY Sing(Y ).

If moreover Y is normal (respectively, has rational singularities), then also
DY (s) is normal (respectively, has rational singularities).

A nice situation occurs when Y admits a resolution of singularities given
by a Kempf collapsing. This means that there exist a parabolic subgroup
P of G and a P -submodule W ⊂ V such that the associated homogeneous
vector bundle W over the projective variety G/P , which is a subbundle of
the trivial bundle G/P × V , has the following property: the restriction to
W of the projection G/P × V → V is birational and surjective onto Y .

(2) G/P × V

��

W? _oo

((PP
P

P

P

P

pW

��
G/P

V Y? _oo
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Theorem 2.3 ([Kem76]). If G is connected and W is completely reducible,
then Y has rational singularities and Cohen–Macaulay affine coordinate
ring.

The situation illustrated in diagram (2) can be globalized over X as
follows. From the G-principal bundle E over X we construct a variety
FW as the quotient of E × G ×W by the equivalence relation (e, h,w) ∼
(eg−1, ghp−1, pw), for g ∈ G and p ∈ P . The projection p12 over the first two
factors induces a map FW → EG/P which makes FW a vector bundle over
EG/P , with fiber W . Moreover the map (e, h,w) 7→ (e, hw) induces a proper
morphism FW → EV , whose image is EY . This gives a relative version over
X of the morphism pW : W → Y . In particular FW → EY is birational
when pW is birational. Note moreover that FV ≃ θ∗EV , if θ : EG/P → X
is the projection map. The inclusion FW ⊂ FV induces the following short
exact sequence of vector bundles on EG/P :

0 // FW // FV
η // QW // 0 .

Consider now a global section s of the vector bundle EV on X. Pulling it
back to EG/P and modding out by FW , we get a global section s̃ := η ◦θ∗(s)
of QW , whose zero locus maps to the Y -degeneracy locus of s:

θ(Z (s̃)) = DY (s).

The relative version of (2) is illustrated by the following commutative dia-
gram:

(3) FV

��

FW? _oo
p12

''◆◆
◆

◆

◆

◆

��

EG/P

θ

��

Z (s̃)? _oo

θ′

��

EV EY? _oo

''❖❖
❖

❖

❖

❖

❖

❖

X DY (s)? _oo

Proposition 2.4 ([BFMT17, Proposition 2.3]). Suppose that pW :W → Y
is a birational Kempf collapsing, EV is globally generated and s is a general
section. Suppose moreover that DY (s) is contained in the smooth locus of
X. Then the restricted projection θ′ : Z (s̃) −→ DY (s) ⊂ X is a resolution
of singularities.

2.2 Locally free resolutions of ODL

In the settings of the previous section, the advantage of Y being resolved
by a Kempf collapsing (2) is that we can get some information about the
free A-resolution and the syzygies of the ideal IY defining Y , A = Sym(V ∗)
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being the coordinate ring of V . This method is usually referred to as the
Kempf–Lascoux–Weyman method (or simply Weyman’s method) of comput-
ing syzygies via resolutions of singularities. It is developed in full generality
in [Wey03], to which we refer for more background.

The aim of what follows is to show that a relative version of a (G-
equivariant) free resolution of A/IY yields an exact complex of locally free
OX -modules resolving ODY (s). We already recalled that, given a G-principal
bundle E over a variety X, there is an induced functor E− from the category
of G-representations to the category of vector bundles on X. This functor
is exact and monoidal.

Theorem 2.5. With the above notation, suppose that A/IY is a Cohen–
Macaulay ring. Let F• be a G-equivariant graded free A-resolution of mini-
mal length of A/IY . Assume that X is Cohen–Macaulay, and s ∈ H0(X, EV )
is a section such that DY (s) has the expected codimension codimV Y . Then
EF• is a locally free resolution of OEY as OEV -module, and s∗(EF•) is a locally
free resolution of ODY (s).

Proof. Let m be the length of F•. We can write the terms of F• as

(4) Fi =
⊕

j

Vi,j ⊗A(−i− j),

for some G-modules Vi,j ⊂ (V ∗)⊗i+j . By functoriality we obtain a complex
EF• , whose terms are

EFi
=

⊕

j

EVi,j ⊗OX
OEV ,

where EVi,j ⊂ (E∗V )i+j . Since the maps are induced by the maps of F•,
this complex is exact as a complex of OX -modules. When regarded as a
complex of OEV -modules, it remains exact and its terms can be written as
EFi

= ⊕jπ
∗EVi,j , being π : EV → X the natural projection.

We claim that EF• resolves OEY . Indeed, locally on an open subset
U ⊂ X the G-equivariant maps Fi+1 → Fi induce maps (EFi+1

)U ≃ U ×
Fi+1 → U×Fi ≃ (EFi

)U . The cokernel of the last but one map of EF• injects
into OEV , thus it is the ideal sheaf of a subvariety of EV . Since locally on U
the last map defines IY , we get that EF• is a locally free resolution of OEY

of length m.
Pulling the complex EF• back to X via s yields a complex whose i-th

term is ⊕jEVi,j . Since s∗OEY = ODY (s), it remains to prove that s∗EF• is
exact, for which we use the following classical theorem:

Generic Perfection Theorem [EN67]. Let S be a commutative ring and
R be a polynomial ring over S. Let G• be a free R-resolution of a module M
of length m = depth AnnR(M) and assume that M is free as an S-module.
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Let φ : R→ R′ be a ring homomorphism such that m = depth AnnR′(M ⊗R
R′). Then G• ⊗R R

′ is a free R′-resolution of M ⊗R R
′.

In a neighbourhood of any x ∈ X, OEV is a polynomial ring over OX,x
with as many variables as the rank of EV . The localization of EF• at each
point p ∈ EV such that π(p) = x is a free OEV ,p-resolution of OEY ,p of length
pdAA/IY . Let J be the ideal of EY inside OEV ,p. We have m := pdAA/IY =
codimA IY since A/IY is a Cohen–Macaulay ring; by hypotheses, also OX,x
and OEV ,p are Cohen–Macaulay rings, hence

m = codimOEV ,p
J = depth(J,OEV ,p) = depthOEV ,p

(AnnOEV ,p
(OEY ,p)).

For s∗ : OEV ,p → OX,x we have depth AnnOX,x
(OEY ,p ⊗OEV ,p

OX,x) =
codimX DY (s), which is m by hypothesis. The conclusion follows from the
Generic Perfection Theorem.

Remark 2.6. For an empty ODL DY (s), we will conventionally say that
DY (s) has the expected codimension codimV Y . This way, Theorem 2.5
holds even for an empty ODL, and s∗(EF•) is an exact complex of vector
bundles on X. This complex can be used, for concrete examples, to ensure
a posteriori that an ODL is non-empty.

In the same spirit, we will say that the singular locus of DY (s) has a
certain codimension even though it is allowed to be empty.

Corollary 2.7. In the hypotheses of Theorem 2.5, if we further assume
that DY (s) is contained in the smooth locus of X, then DY (s) is Cohen–
Macaulay.

Proof. Locally around y ∈ DY (s), the locally free resolution of ODY (s),y con-
structed in Theorem 2.5 is a free OX,y-resolution of length c = codimA IY .
Since OX,y is a regular local ring, it is sufficient to observe that c equals
codimX DY (s) and conclude by [Eis95, Corollary 19.15].

Example 2.8. Consider two vector spaces Ve and Vf of dimension e, f re-
spectively, let G = GLe × GLf and V be the space of f × e matrices
V ∗
e ⊗ Vf , viewed as the natural G-representation. Suppose e ≥ f and con-

sider Y = Yf−1, the subvariety of matrices of corank at least 1. Such
subvariety is resolved by the total space of the vector bundle Hom(Ve,U)
over Gr(f − 1, Vf ), U being the tautological rank f − 1 subbundle.

Weyman’s method [Wey03, (6.1.6)] yields a G-equivariant graded min-
imal free A-resolution C• of A/IY , best known as the Eagon–Northcott
complex, whose first term is the free module C0 = A and i-th term is

Ci = ∧f+i−1Ve ⊗ ∧
fV ∗

f ⊗ Sym
i−1V ∗

f ⊗A(−f − i+ 1).

Let E be a G-principal bundle over a Cohen–Macaulay variety X and
s ∈ H0(X, EV ); in this case, the ODL DY (s) turns out to be the first degen-
eracy locus of the morphism ϕs : EVe → EVf associated to s. Suppose that
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DY (s) has the expected codimension. Then Theorem 2.5 yields a locally
free resolution of ODY (s) whose i-th term, for i > 0, is the OX-module

s∗(EC•)i = ∧f+i−1EVe ⊗ det E∗Vf ⊗ Sym
i−1E∗Vf .

This is nothing more than the well-known Eagon–Northcott complex for
vector bundles resolving the classical degeneracy locus Dϕs , see e.g. [Laz04,
Theorem B.2.2]).

Example 2.9. Let V6 be a complex vector space of dimension six, G =
GL(V6), V = ∧3V6 and Y the subvariety of partially decomposable tensors,
see [BFMT17, §3]. A G-equivariant resolution of A/IY has been computed
via Weyman’s method in [KW12, §5], as Y corresponds to the closure of the
orbit O2 for the G-representation associated to (E6, α2); it is given by

A← S(23,13)V6
∗ ⊗A(−3)← S(3,24,1)V6

∗ ⊗A(−4)←

← S(4,34,2)V6
∗⊗A(−6)← S(43,33)V6

∗⊗A(−7)← S(56)V6
∗⊗A(−10)← 0.

Let E be a rank 6 vector bundle over a Cohen–Macaulay variety X, let E
be its frame bundle and let s be a global section of EV = ∧3E. Suppose
that DY (s) has the expected codimension five. Then Theorem 2.5 yields a
complex of vector bundles over X resolving ODY (s) given by

OX ← S(13,03)E
∗ ⊗ detE∗ ← S(2,14,0)E

∗ ⊗ detE∗ ←

S(2,14,0)E
∗ ⊗ (detE∗)2 ← S(13,03)E

∗ ⊗ (detE∗)3 ← (detE∗)5 ← 0.

2.3 Twisted degeneracy loci

A slight modification of the definition of ODL leads to the so-called twisted
degeneracy loci, already introduced in [BFMT17, §3.2.2]. As usual, let V
be a G-representation, Y ⊂ V a G-invariant affine subvariety and E a G-
principal bundle over a variety X. Let L be a line bundle over X and
consider s ∈ H0(EV ⊗ L). Then we can define the twisted ODL DY (s) as

EY ⊗ L

�

// EV ⊗ L

DY (s)

OO

� � // X

s

OO

Twisted ODL can be seen as ordinary ODL. Indeed, let us denote by L
the frame bundle of L; then E ′ := E×XL is a G′ := G×GL1-principal bundle
over X. If W is the natural GL1-representation, one has E ′V⊗W = EV ⊗ L.
The subvariety Y ⊗W ⊂ V ⊗W is G′-stable, and the ODL associated to a
section of E ′V⊗W turns out to be the same as the twisted ODL introduced
above.
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Remark 2.10. Suppose that Y is a cone, which is true for instance when
it is resolved by a Kempf collapsing. From the minimal free resolution of Y
we can easily write, by applying Theorem 2.5, a locally free resolution of the
twisted ODL, which will depend on the choice of L. Indeed, if A denotes
the affine coordinate ring of V and the terms of an A-resolution of IY are as
in (4), then there exists a locally free resolution of the twisted ODL whose
terms are ⊕jEVi,j ⊗ L

(i+j).

2.4 The canonical bundle of an ODL in the Gorenstein case

In Theorem 2.5 we showed that a locally free resolution of an ODL can be
constructed from the free A-resolution of the (Cohen–Macaulay) coordinate
ring of Y ⊂ V , where A denotes the coordinate ring of V . When A/IY is
further assumed to be a Gorenstein ring, its minimal A-resolution is self-
dual and its last term is free of rank one, see e.g. [Eis95, Corollary 21.16].
This has a beautiful consequence for the locally free resolution of Theorem
2.5, which leads to the following result.

Theorem 2.11. Let V be a G-representation, A its affine coordinate ring
and Y ⊂ V a G-invariant subvariety with ideal IY of codimension c such
that A/IY is a Gorenstein ring.

Let X be a Cohen–Macaulay variety, E a G-principal bundle on X and s
a section of EV . Suppose that the ODL DY (s) has the expected codimension
c and is contained in the smooth locus of X. Then DY (s) is Gorenstein and
its dualizing sheaf ωDY (s) is the restriction of some line bundle on X.

Proof. Since by Corollary 2.7 the ODL DY (s) is Cohen–Macaulay, its dual-
izing complex is a sheaf, which can be computed as

ωDY (s) = ExtcOX
(ODY (s), ωX),

ωX being the dualizing sheaf of X. Consider a minimal free A-resolution
of A/IY , which is self-dual by hypothesis; Theorem 2.5 yields a self-dual
locally free resolution F• of ODY (s). Since ExtiOX

(ODY (s), ωX) = 0 for all
i < c, ωDY (s) is resolved by F∗

• ⊗ωX . The last term Fc is a line bundle over
X, hence ωDY (s) ≃ F

∗
c ⊗ ωX |DY (s). This implies that ωDY (s) is locally free

of rank one and DY (s) is Gorenstein.

Remark 2.12. Neither X nor the ODL DY (s) are assumed to be normal.
When this is the case the dualizing sheaves ωX , ωDY (s) coincide with the
corresponding canonical sheaves KX , KDY (s), see e.g. [KSS10, §2.3]. They
are not in general locally free of rank one; this happens exactly when the
canonical divisor is Cartier and DY (s) is Gorenstein.

In practice, DY (s) turns out very often to be normal for free. On the one
hand, a Cohen–Macaulay variety with singularities in codimension at least
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two is normal; on the other hand, Proposition 2.2 gives us some sufficient
conditions for the normality of DY (s).

Example 2.13. Let E be a rank six vector bundle over a smooth variety
X and consider a general global section s of the globally generated vector
bundle ∧3E. Let Y ⊂ ∧3V6 be the subvariety of partially decomposable
tensors introduced in Example 2.9, which is normal, has rational singularities
and whose affine coordinate ring is Gorenstein. A locally free resolution of
ODY (s) was provided in Example 2.9, and the last term reads (detE∗)5. By
Theorem 2.11, the canonical bundle of DY (s) is

KDY (s) = (KX ⊗ (detE)5)|DY (s),

which coincides with what was computed in the previous paper [BFMT17]
by means of a crepant Kempf collapsing of Y , see also Remark 2.15 below.

All the results proven so far can be put together in the following propo-
sition, which we will use in order to construct interesting projective varieties
in the next sections.

Proposition 2.14. Let V be a G-representation, A its affine coordinate
ring and Y ⊂ V a G-invariant subvariety resolved by a Kempf collapsing.
Assume that the ideal IY is such that A/IY is a Gorenstein ring, and let
Vλ be the one-dimensional representation appearing in the last term of a
minimal G-equivariant free resolution of A/IY . Let X be a smooth variety,
E a G-principal bundle on X and s a general section of the globally generated
vector bundle EV . Then

• codimX DY (s) = codimV Y ;

• Sing(DY (s)) = DSing(Y )(s) and codim Sing(DY (s)) = codim Sing(Y );

• DY (s) is Gorenstein and ωDY (s) = (KX ⊗ E
∗
Vλ

)|DY (s);

• if Y is normal, then DY (s) is normal;

• if Y has rational singularities, then DY (s) has canonical rational singu-
larities.

Proof. The first two statements and the fourth follow from Proposition 2.2.
The third statement follows from Theorem 2.11. The last statement follows
from 2.2 since Gorenstein rational singularities are canonical, see e.g. [Kol97,
Corollary 11.13].

Remark 2.15. Recall that, under the hypotheses of Proposition 2.4, it is
possible to construct a resolution of singularities θ′ : Z (s̃) → DY (s) as the
zero locus of a vector bundle on what was called EG/P .

In [BFMT17], we introduced crepant Kempf collapsings, i.e. Kempf col-
lapsings W → Y such that detW = KG/P . If Y admits such a resolution
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of singularities, and under the hypotheses of Proposition 2.4, it turns out
[BFMT17, Proposition 2.7, Proposition 2.8] that the canonical bundle of
Z (s̃) is the restriction of the pull-back of a line bundle on X. If DY (s) is
smooth or Y has rational singularities, this implies that the canonical bundle
of DY (s) is the restriction of some line bundle on X, which was computed
through the resolution of singularities by means of the adjunction formula.
Such information was used in [BFMT17] to construct projective varieties
with trivial or negative canonical bundle.

Theorem 2.11 shows that the same happens whenever the G-stable sub-
variety Y ⊂ V has Gorenstein affine coordinate ring: the dualizing sheaf of
DY (s) is the restriction of a line bundle on X, which can be computed from
an equivariant free resolution of the affine coordinate ring of Y .

In Proposition 2.17, we will show that the crepancy of a Kempf collapsing
resolving Y actually implies the Gorenstein property for its affine coordinate
ring, at least when Y has rational singularities. This means that Theorem
2.11, or Proposition 2.14, can be read as generalizations of the methods in
[BFMT17].

2.5 Crepant Kempf collapsings and Gorenstein rings

Recall that a Kempf collapsing of a G-stable subvariety Y of a G-module V
is a resolution of singularities W → Y given by the total space of a vector
bundleW on some generalized flag manifold G/P , defined by a P -submodule
of V .

Definition 2.16. A Kempf collapsing W → Y is said to be crepant if
detW = KG/P .

When a birational Kempf collapsing is crepant, the canonical sheaf KY

is trivial and the induced resolution P(W) → Ȳ of the projectivization of
Y is crepant, see [BFMT17, Proposition 2.7].

Proposition 2.17. Let Y be a G-stable subvariety of a G-module V re-
solved by a crepant Kempf collapsing. Suppose moreover that Y has rational
singularities. Then the affine coordinate ring of Y is Gorenstein.

Proof. Rational singularities are Cohen–Macaulay, hence the singularities of
Y as an affine variety are Cohen–Macaulay and its affine coordinate ring is
Cohen–Macaulay as well. The conclusion follows since the canonical sheaf
KY is trivial by [BFMT17, Proposition 2.7].

Remark 2.18. If a given birational Kempf collapsing is not crepant, we
cannot decide in general whether the closure of the orbit has Gorenstein
affine coordinate ring or not (recall, by the way, that a particular Y may very
well admit some crepant Kempf collapsings and other non-crepant Kempf
collapsings at the same time, see e.g. [BFMT17, Remark 2.14]). Nonetheless,
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having a crepant Kempf collapsing is a sufficient condition which is in general
easier to check.

Conversely, a G-invariant subvariety Y with rational singularities and
Gorenstein affine coordinate ring may very well admit no Kempf collapsing
at all. Indeed, we have the following

Proposition 2.19 ([BFMT17, Proposition 2.7]). Let Y be normal and
suppose that there exists a crepant birational Kempf collapsing W → Y .
Then the resolution of singularities P(W) → Ȳ is crepant and KȲ =
OȲ (− rank(W)).

This gives a strong restriction on the dimension of the base G/P . For
example, the cone Y over Gr(2, 5) has dimension seven, and since Gr(2, 5)
has index five, the base of a crepant Kempf collapsing resolving the singu-
larities of Y should be a surface. But there is no GL5-homogeneous space
of dimension two!

Remark 2.20. For an affine variety Y which is a cone sometimes some
confusion may arise when talking about the affine coordinate ring being
Gorenstein or the projectivization of Y being Gorenstein as a projective
variety. We remark here that the former condition implies the latter, as can
be seen by localizing a minimal graded resolution of the ideal of Y inside the
coordinate ring of V . However, the converse is not always true, as shown by
any smooth projective variety having ideal I with free resolution of length
bigger than the codimension of I.

In the rest of the paper, when no ambiguity arises, we will say that an
affine G-invariant subvariety Y is Gorenstein when its affine coordinate ring
is Gorenstein.

2.6 Constructing new varieties

Our main motivation for the study of ODL is to construct new interesting
varieties, together with their resolutions of singularities and locally free res-
olutions of their structure sheaves. The construction is very general and
could potentially be used in a great variety of situations.

In [BFMT17], crepant Kempf collapsings resolving the affine subvarieties
Y were used to write down the canonical bundle of the ODL associated to
Y in terms only of the starting vector bundle and the ambient variety. This
allowed us to to construct (almost) Fano varieties and Calabi–Yau varieties.
However, crepant Kempf collapsings are in general not easy to find and, for
a given Y , may very well not exist.

The study of the canonical bundle of an ODL that we made in the
Gorenstein case, in particular Proposition 2.14, leads to a more effective
strategy to construct varieties with negative or trivial canonical bundle. In
the next sections we will focus on describing several cases of Gorenstein orbit
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closures, together with the data needed to control the canonical bundle of
the corresponding ODL. In particular, we will look at parabolic orbits, as
they provide many cases of orbit closures for which the Gorenstein property
can be (and indeed has already been) studied in a systematic way.

Our strategy will be the following.

1. For an assigned Gorenstein orbit closure Y inside a G-representation
V , we will consider a G-principal bundle over a variety X and con-
struct EV , the associated vector bundle on X. When G = GLn, such
a G-principal bundle is the frame bundle of a rank n vector bundle on
X, which will be our basic datum. For more complicated groups like
G = Spinn, Sp2n, E6, E7, we will construct G-principal bundles, and the
associated bundle EV , from vector bundles on X with some additional
structures, see Sections 4.1, 4.7, 4.12.

2. For a general section of a globally generated EV , we will compute the
canonical bundle KDY (s) of the corresponding ODL. This computation
can be performed in different ways, depending on the information we
have on the chosen G-invariant Gorenstein subvariety Y . The main piece
of information that is relevant here is the last term A(−N) of a free reso-
lution of A/IY . Here we omit the group action, which will be important
later on. Note that the group G acts by a character; sometimes it has
none, but since Y is always a cone there is a C∗-action that preserves the
whole construction.

Let us first focus on N . When the minimal free resolution of A/IY is not
known, we can guess the value of N thanks to the following tricks:

• let HSY (t) = p(t)/(1− t)dimY be the Hilbert series of Y . For any i, the
coefficient in degree i of p(t) · (1 − t)codimY expresses the alternating
sum of the Betti numbers βAi−j,j(A/IY ). This implies that

N = codimY + deg(p(t));

• in the special case where Y is the cone over a generalized Grassman-
nian G/P for some maximal parabolic subgroup P , we can compute
by means of representation theory the canonical bundle of G/P and
recover N a posteriori, see also Section 3.4.

Then we turn to the relative setting of a G-principal bundle over a variety
X, and an ODL DY (s). By Proposition 2.14 we know that we can write
the canonical bundle of DY (s) as the restriction of a suitable line bundle
over the ambient variety X.

• If we know a crepant resolution of Y , then we have an induced rational
resolution of singularities of DY (s) given by the zero locus of a section of
a suitable vector bundle. The adjunction formula yields the canonical
bundle of both DY (s) and its resolution;
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• if no crepant resolution is known, we can use the fact that the relative
canonical bundle KDY (s)/X is the restriction to DY (s) of L, L∗ being
the last term in the induced locally free resolution of ODY (s) as an
OX -module. This minimal free resolution is a relative version of the
minimal free A-resolution of the ideal of A/IY , whose last term is
A(−N). This implies that L is a factor of ENV ; moreover, the C∗-action
that preserves the cone Y defines, in the relative setting, a line bundle
M on X, and since our whole construction is preserved by this C∗-
action, L must be a power of M . But the determinant of EV , for the
same reason, must also be a power of M , thus we can conclude that L
must be a (rational) power of det(EV ). The two pieces of information:

(a) KDY (s)/X is the restriction of L, a factor of ENV ,

(b) L is a (rational) power of det(EV ),

will always be enough to determine KDY (s) completely.

3. With all the previous data, we know the codimension of DY (s) inside X,
(a bound for) the codimension of its singularities and its canonical bundle
in terms of EV . We can then look for particular choices of X and EV in
order to construct interesting varieties. For the sake of producing explicit
examples and showing the effectiveness of our techniques, we will give
for most of the cases considered a few examples of varieties with trivial
canonical bundle, focusing in particular on four-dimensional ones.

3 Gorenstein parabolic orbits of classical type

Motivated by the previous section, and in particular by Theorem 2.11 and
Proposition 2.14, we are led to look for Gorenstein G-invariant subvarieties
Y inside G-representations. These provide a source of cases which can be
used to produce ODL whose canonical bundle can be controlled.

An interesting source of G-invariant subvarieties is provided by the clo-
sure of parabolic orbits. The last two sections of this paper are mostly
devoted to providing a list of Gorenstein parabolic orbit closures, together
with the additional data we need to control the geometry of the correspond-
ing ODL. After a reminder on parabolic orbits, in this section we will focus
on those that can be constructed from the classical simple Lie algebras.
The next section will be devoted to the exceptional Lie algebras and their
associated Gorenstein orbit closures.

3.1 Parabolic orbits

We recall here some basic facts about parabolic orbits. For more background
we refer to [BFMT17, §2.3] and the references therein.
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Let g be a simple Lie algebra. Suppose that a Cartan subalgebra h has
been chosen and consider the root space decomposition

g = h⊕
⊕

α∈Φ

gα.

Suppose that a set ∆ of simple roots has been fixed. For a given simple root
αi, consider the linear form ℓ on the root lattice such that ℓ(αi) = 1 and
ℓ(αj) = 0 for j 6= i. Then

gk =
⊕

ℓ(α)=k

gα ⊕ δk,0h

is a Z-grading of g. In particular g0 is a Lie subalgebra of g, in fact a reduc-
tive subalgebra whose semisimple part has a Dynkin diagram deduced from
that of g just by suppressing the node corresponding to αi. Moreover, each
gk is a g0-module, which turns out to be irreducible. We will concentrate
on g1, whose lowest weight is αi and which is therefore easy to identify.

Let G0 be the subgroup of G = Aut(g) with Lie algebra g0. A parabolic
orbit is a G0-orbit in g1, obtained from some Z-grading of some simple Lie
algebra g associated to a simple root αi.

In view of constructing ODL, parabolic orbit closures are an interesting
source of examples for the following reasons.

• By [Kac80, Lemma 1.3], there are only finitely many G0-orbits in g1.
Hence, a case by case study is feasible.

• A parabolic orbit closure admits a resolution of singularities given by a
Kempf collapsing; this should be taken with a caveat, as for the excep-
tional group E8 parabolic orbits remain a bit mysterious. By Section 2.1,
this means that an ODL constructed by considering a parabolic orbit clo-
sures admits a resolution of singularities which is the relative version of
a Kempf collapsing over the ambient variety.

• Much information about the equivariant free resolution of the ideal of
a parabolic orbit closure (and therefore about the orbit closure being
Gorenstein) can be deduced by using Weyman’s techniques. In partic-
ular, the free resolutions of some parabolic orbit closures associated to
Z-gradings of classical Lie algebras have been computed in [Wey03]; the
series of papers [KW12, KW13, KW] deals with the case of exceptional
Lie algebras.

In Section 3.2 we will examine the parabolic orbits in spaces of matrices,
for which a complete classification of Gorenstein orbit closures is provided.
In Section 3.3 we deal with mixed parabolic orbits; finally, in Section 3.4,
we study the case of cones over generalized Grassmannians.
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3.2 Orbits in spaces of matrices

In this section we collect some classical facts about orbits in spaces of ma-
trices, which can be mostly deduced from the results in [Wey03].

3.2.1 General matrices

The case of general matrices is well-known, but we briefly discuss it for
completeness. It has already been introduced in Example 2.8, where we
exhibited the Eagon–Northcott complex resolving the ideal of matrices of
corank at least one. Actually, in [Wey03] the equivariant resolutions of
all determinantal varieties Yr of (symmetric, skew-symmetric) matrices of
rank at most r are computed. From the complexes, it is easy to check that
determinantal orbit closures are Gorenstein only for square matrices:

Proposition 3.1 ([Wey03, (6.1.5)]). Let Yr be the determinantal variety of
matrices of rank at most r inside V ∗

e ⊗Vf . Then Yr has rational singularities,
and it is Gorenstein if and only if e = f . In this case, the last term of the
resolution of OYr is

Fc = (detVe)
e−r ⊗ (detV ∗

f )e−r ⊗A(−e(e− r))

In the relative case, by applying Proposition 2.14, we get:

Proposition 3.2. Let Yr be as in Proposition 3.1. Let X be a smooth
variety and E, F two vector bundles of the same rank e on X. Suppose that
E∗⊗F is globally generated, and s is a general section of this bundle. Then
the ODL DYr(s) has canonical rational singularities and

codimX DYr(s) = (e− r)2, codimDYr
Sing(DYr(s)) = 2e− 2r + 1,

KDYr (s)
= (KX ⊗ (detE∗)e−r ⊗ (detF )e−r)|DYr (s)

.

3.2.2 Skew-symmetric matrices

Another class of examples of ODL that is already present in the literature
is Pfaffian varieties, i.e. the degeneracy loci of skew-symmetric morphisms
between vector bundles. Again, we consider a more general situation: we
denote by Ma the space of skew-symmetric (e× e)-matrices. For r even, we
consider the determinantal variety Y a

r of matrices of rank at most r inside
Ma.

Proposition 3.3 ([Wey03, (6.4.1)]). Let Y a
r be the determinantal variety

of matrices of rank at most r inside Ma ∼= ∧2Ve. Then Y a
r has rational

singularities, it is Gorenstein, and the last term of the minimal resolution
of OY a

r
is

Fc = (detV ∗
e )e−r−1 ⊗A(−e(e − r − 1)/2).
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Proposition 3.4. Let Y ar be as in Proposition 3.3. Let X be a smooth
variety and E a vector bundle of rank e on X. Suppose that ∧2E is globally
generated, and s is a general section of this bundle. The ODL DY a

r
(s) has

canonical rational singularities and satisfies:

codimX DY a
r

(s) = (e−r)(e−r−1), codimDY a
r

Sing(DY a
r

(s)) = 4e−4r+2,

KDY a
r
(s) = (KX ⊗ (detE)e−r−1)|DY a

r
(s).

3.2.3 Symmetric matrices

Let us denote by M s the space of symmetric (e× e)-matrices. We consider
the determinantal variety Y s = Y s

r of matrices of rank at most r inside M s.

Proposition 3.5 ([Wey03, (6.3.1)]). Let Y s
r be the determinantal variety

of matrices of rank at most r inside M s ∼= Sym2Ve. Then Y s
r has rational

singularities, and it is Gorenstein if and only if e − r is odd. With this
hypothesis, the last term of the minimal resolution of OY s

r
is

Fc = (detV ∗
e )e−r+1 ⊗A(−e(e − r + 1)/2).

Proposition 3.6. Let Y s
r be as in Proposition 3.5. Let X be a smooth

variety and E a vector bundle of rank e on X. Suppose that Sym2E is
globally generated, and s is a general section of this bundle. If e− r is odd,
then the ODL DY s

r
(s) has canonical rational singularities and satisfies:

codimX DY s
r

(s) = (e−r)(e−r+1), codimDY s
r

Sing(DY s
r

(s)) = 2e−2r+2,

KDY s
r
(s) = (KX ⊗ (detE)e−r+1)|DY s

r
(s).

The subvarieties of square matrices with rank bounded from above are
the parabolic orbits coming from (A2n−1, αn), i.e. from the Z-grading of sl2n
associated to the simple root αn; analogously, the determinantal subvarieties
of symmetric (respectively, skew-symmetric) matrices come from (Cn, αn)
(respectively, (Dn, αn)).

We can, in a few other classical cases, exhibit Gorenstein parabolic orbit
closures, by constructing a crepant resolution of singularities and apply-
ing Proposition 2.17. This will be the subject of the next subsection. A
more thorough study would be required to decide whether there exist other
Gorenstein orbit closures than those we are about to list.

For the exceptional cases, in the series of papers [KW12, KW13, KW]
Gorenstein parabolic orbit closures are completely determined. In Section 4
we will use this information to study the ODL associated to them.
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3.3 Mixed parabolic orbits

Let us consider the parabolic representations given by (Dn, αk) with 2 ≤
k ≤ n − 3, (Bn, αk) with 2 ≤ k ≤ n − 2, and (Cn, αk) with 2 ≤ k ≤ n − 2.
These correspond to the action on Hom(V2, V1) of G0 = GL(V1) × SO(V2)
or GL(V1)× Sp(V2), where V1 has dimension d1 = k, and V2 has dimension
d2 = 2(n−k) (resp. 2(n−k)+1, 2(n−k)) endowed with a symmetric (resp.
symmetric, skew-symmetric) non-degenerate bilinear form q.

The orbits are defined by two integers r, d:

Or,d =

{

ψ ∈ Hom(V2, V1) s.t. rank(ψ) = r
and rank(q| kerψ) = d2 − r − d

}

.

The condition rank(q| kerψ) = d2 − r − d means that the kernel of q| kerψ
is d-dimensional. Since this kernel is (kerψ) ∩ (kerψ)⊥, this means that
there is an isotropic space L of dimension d such that L ⊂ kerψ ⊂ L⊥. The
orthogonal L⊥ has dimension d2 − d and its image I by ψ has dimension
r − d.

This yields a natural Kempf collapsing resolving the singularities of Or,d:
the base is the product SGr(d, V2)× F (r − d, r, V1) of triples (L, I, J) with
L isotropic of dimension d in V2 (and SGr is OGr or IGr), and I ⊂ J ⊂ V1
of dimensions r − d and r; the vector bundle W to be considered on that
base has fiber over (L, I, J) defined by

W(L,I,J) = {ψ ∈ Hom(V2, V1) s.t. ψ(L) = 0, ψ(L⊥) ⊂ I, ψ(V2) ⊂ J}.

Unfortunately, a straightforward computation shows that this Kempf col-
lapsing is never crepant.

However, when d = d2 − r, it is possible to construct a different Kempf
collapsing of Or,d. Indeed, in this case, the points ψ in the orbit satisfy
rank(q| kerψ) = 0, which means that kerψ is isotropic with respect to q. A
resolution of such orbit closure is given by the total space of the bundle
Hom(Q, V1) over SGr(d2 − r, V2). This Kempf collapsing is crepant when
d1 is equal to the index of SGr(d2 − r, V2), which is r − ǫ with ǫ = 1 in
the symmetric case and ǫ = −1 in the skew-symmetric case. Since of course
r ≤ d1, we must restrict to the latter case, and we get a crepant Kempf
collapsing of the closure of Od1−1,d2−d1+1, where d2 ≤ 2d1 − 2.

Proposition 3.7. Let Y = Od1−1,d2−d1+1 ⊂ Hom(V2, V1), where V1 has
dimension d1, and V2 is symplectic of dimension d2 with d1 − 1 ≤ d2 ≤
2d1 − 2. Then:

1. Y is normal, Gorenstein, and has rational singularities;

2. the codimension in Y of its singular locus is equal to three.
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Proof. Let us begin with the second statement. The complement ∂Y of
the open orbit in Y is the image of the locus inside the bundle Hom(Q, V1)
where the rank is not maximal. This locus has codimension two. Moreover a
general point of its image is a morphism ψ ∈ Hom(V2, V1) whose rank is r−1,
and such that q| kerψ has rank two. Then kerψ contains a one dimensional
family of isotropic hyperplanes. This proves that ∂Y has codimension three
in Y , and it must be contained in its singular locus since it is in the image
of the exceptional locus of the Kempf collapsing, which does not contract
any divisor.

In order to prove the first statement, we cannot use Theorem 2.3 since
the homogeneous vector bundleHom(Q, V1) over G := IGr(d2−d1+1, V2) is
not completely reducible. But we can apply Weyman’s geometric technique:
by [Wey03, (5.1.3)], it is sufficient to show that for all j > 0

(5) Hj(G, Sym(Hom(V1,Q))) = 0 and Hj(G,∧jHom(V1,U)) = 0

to deduce that Y is normal and has rational singularities, which by Propo-
sition 2.17 implies the Gorenstein property.

Each Symk(Hom(V1,Q)) can be resolved by a complex whose j-th term
is Symk−j(V ∗

1 ⊗ V2) ⊗ ∧jHom(V1,U) for j ≤ k. By the Cauchy formula,
∧jHom(V1,U) is a sum (with multiplicities) of Schur powers SλU , taken
over partitions λ of size |λ| = j, with λ1 ≤ d1. Therefore, in order to prove
the vanishing conditions (5), we just need to check that Hq(SλU) = 0 for
q ≥ |λ| > 0 and any such partition λ.

To compute the cohomology of SλU over G, we use the Borel–Weil–
Bott Theorem, according to which there is at most one non-zero cohomol-
ogy group, occurring in degree equal to the number of inversions of the
sequence λ∗ + ρ. Here we work inside the weight lattice of the symplec-
tic group, with its usual basis; then ρ = (d, d − 1, . . . , 1) if d2 = 2d, and
λ∗ = (−λs, . . . ,−λ1, 0, . . . , 0) if s = d2 − r, the string of zeros having length
t = d− s. Thus

λ∗ + ρ = (d− λs, . . . , t + 1− λ1, t, . . . , 1).

For the corresponding cohomology groups not to vanish simultaneously,
there must be no positive root α such that (λ∗ + ρ, α) = 0. Inversions
correspond to those positive roots such that (λ∗ + ρ, α) < 0. Recall that the
positive roots are the ǫi − ǫj for i > j, and the ǫi + ǫj for i ≥ j. This gives
rise to two different types of inversions.

The number of inversions of the first type is q1 = ℓt, if ℓ is such that
t + ℓ − λℓ < −t and t + ℓ + 1 − λℓ+1 > t. This means that λℓ > 2t + ℓ
and λℓ+1 ≤ ℓ. The number of inversions of the second type is then equal to
q2 = ℓt+

(ℓ+1
2

)

+ i1 + · · · + iℓ, where

ik = #{j > ℓ, (t + j − λj) + (t+ k − λk) < 0}.
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Note that, necessarily, λk ≥ 2t+ k + 1 + ik. We deduce that

|λ| ≥ (2t + 1)ℓ +

(

ℓ+ 1

2

)

+ i1 + · · ·+ iℓ = ℓ+ q1 + q2 = ℓ+ q.

Moreover, if ℓ = 0, then (λ∗ + ρ, α) consists in positive integers only, and
therefore there is no inversion, so q = 0, and we are done.

In the relative setting, we deduce the following statement:

Proposition 3.8. Let X be a smooth variety with a line bundle L, and two
vector bundles E1, E2 of ranks d1, d2 with d1 − 1 ≤ d2 ≤ 2d1 − 2. Suppose
that E2 is endowed with an everywhere non-degenerate skew-symmetric form
with values in L. If Hom(E2, E1) is globally generated and s is a general
section, then DY (s) has canonical rational singularities and

codimX DY (s) =

(

d2 − d1 + 2

2

)

, codimDY (s) Sing(DY (s)) = 3,

KDY (s) = (KX ⊗ (detE1 ⊗ detE∗
2)d2−d1+1 ⊗ L(d2−d1+1

2 ))|DY (s).

For example, if d1 = 3 and d2 = 4, one could take E2 and L to be
trivial vector bundles; then we obtain a fourfold with trivial canonical bundle
(singular along a curve) for each of the following choices for X and E1:

X = Gr(2, 6) ∩Q, E1 = U∗ ⊕O(1),

X = Gr(2, 6) ∩Q, E1 = OX ⊕ 2O(1),

X = Gr(3, 6) ∩H1 ∩H2, E1 = OX ⊕ 2O(1),

X = Gr(3, 6) ∩Q1 ∩Q2, E1 = U∗,

X = Gr(3, 6) ∩ C ∩H, E1 = U∗.

Here we denoted by H (and H1,H2) a hyperplane, by Q (and Q1, Q2) a
quadric, by C a cubic. All these loci admit a desingularization with trivial
canonical bundle and Euler characteristic equal to two.

3.3.1 (D4, α2)

Starting from (Dn, αn−2) (the root corresponding to the triple node of the
Dynkin diagram), we get the representation of G = GL(V1) × GL(V2) ×
GL(V3) in V1 ⊗ V2 ⊗ V3, where dim(V1) = dim(V2) = 2, dim(V3) = n − 2.
We identify the representation with Hom(V ∗

1 ⊗ V
∗
2 , V3). It is then easy to

see that two morphisms are in the same orbit if and only if they have same
rank and the same position of the kernel (if non-trivial) with respect to the
Segre variety P(V ∗

1 ) × P(V ∗
2 ) ⊂ P(V ∗

1 ⊗ V ∗
2 ). If n − 2 ≥ 4 there are 10

different orbits (if n− 2 = 1, 2, 3 there are respectively 3, 7, 9 orbits). Each
of them is easy to desingularize, but we could find a crepant resolution only
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for n = 4, for the minimal non-trivial orbit Y given by the cone Y over
P(V1)×P(V2)×P(V3) = P1×P1×P1. The resolution is by the total space
of O(−1,−1) ⊗ V3 over P(V1) × P(V2). By Theorem 2.3, Y has rational
singularities. We deduce:

Proposition 3.9. Let X be a smooth variety with three rank two vector
bundles E1, E2, E3. Suppose that E1 ⊗ E2 ⊗ E3 is globally generated, and
let s be a general section. Then DY (s) has canonical rational singularities,
and

codimX DY (s) = 4, codimDY (s) Sing(DY (s)) = 4,

KDY (s) = (KX ⊗ (detE1)3 ⊗ (detE2)
3 ⊗ (detE3)

3)|DY (s).

As an application, one could take X = Gr(2, 6) and E1 = E2 = U∗,
E3 = 2OX , where U∗ is the dual tautological bundle. One would get a
family of fourfolds with trivial canonical bundle, and c4(U

∗ ⊗ U∗)2 = 32
isolated singularities, whose resolution is of Calabi–Yau type.

3.4 Cones over generalized Grassmannians

Apart from parabolic spaces, many other closed G-stable subvarieties of a
G-module can be considered in order to construct ODL. For instance, quiver
representations are considered in [Ben17]; some of their orbit closures admit
crepant resolutions and are Gorenstein.

The cone Y over a generalized Grassmannian G/P , where P is a max-
imal parabolic subgroup of the simple Lie group G associated to a simple
root αi and G/P is embedded in P(Vωi

), also appears to be Gorenstein in
many cases. This is notably true when G/P is an ordinary Grassmannian
[Wey03, (7.3.6)], and also (by a case by case inspection) for all the extremal
parabolic cases (i.e. Y is the closure of the minimal non-trivial parabolic or-
bit coming from (∆, α), when α corresponds to an end of the simple Dynkin
diagram ∆).

The above observations lead to the following

Question 3.10. Is it true that the cone over a generalized Grassmannian
G/P , embedded in the projectivization P(V ) of the corresponding fundamen-
tal representation V , is always Gorenstein?

Example 3.11. Let (∆, α) = (Cn, αn). The minimal non-trivial parabolic or-
bit closure is the cone over P(Vn) embedded in P(Sym2Vn) via the Veronese
embedding, and it is not Gorenstein. However, even though P(Vn) is a gen-
eralized Grassmannian, this case does not give a counterexample to Question
3.10, as it appears here as a parabolic orbit inside the projectivization of a
representation which is not the corresponding fundamental representation.

The case (G2, α2) shares the same behavior, as it gives rise to the cone
over a rational normal curve in P3.
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We remark that if the cone over G/P is Gorenstein, and if the last term
of its minimal resolution is A(−N), then the canonical bundle of G/P is
OG/P (− dimV +N). This gives

(6) N = dimV − ιG/P ,

where ιG/P denotes the index of G/P .

For cones over Grassmannians, which always have rational singularities
by [Wey03, (7.1.2)], we get the following statement:

Proposition 3.12. Let E be a rank e vector bundle on a smooth variety
X. Suppose that ∧kE is globally generated, and let s be a general section.
For Y the cone over the Grassmannian Gr(k, e) ⊂ P(∧kCe), we have that
DY (s) has canonical rational singularities and

codimX DY (s) =

(

e

k

)

−k(e−k)−1, codimDY (s) Sing(DY (s)) = k(e−k)+1,

KDY (s) =
(

KX ⊗ det(E)(
e−1

k−1)−k
)

|DY (s)
.

4 Gorenstein parabolic orbits of exceptional type

In the series of papers [KW12, KW13, KW], Gorenstein parabolic orbit
closures coming from exceptional Lie groups are thoroughly investigated.
In this section, building on these results, we study the ODL associated to
these orbit closures. Each parabolic representation is studied in a different
subsection according to Table 1, in which we listed for completeness all
Gorenstein orbit closures which are not hypersurfaces. They all turn out to
have rational singularities.

4.1 A reminder on spin structures

Among the most interesting parabolic representations coming from the ex-
ceptional Lie algebras, one can find the spin modules of Spinn for n ≤ 14.
In this section, we collect a few classical facts about spin modules that will
be needed later.

We start with a vector space V of dimension n, endowed with a non-
degenerate quadratic form. We suppose that n = 2e is even, and that V has
been split into the direct sum of two maximal isotropic subspaces E and F ;
the quadratic form then restricts to a duality between E and F . We leave
to the reader the modifications that are required to treat the case where n
is odd.

The half-spin representations can be defined as

S+(E) =
⊕

k≥0

∧2kE, S−(E) =
⊕

k≥0

∧2k+1E.
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Table 1: Gorenstein orbits in parabolic representations

(D,α) G V
Cones

over G/P
Other
orbits

Section

(E6, α1) Spin10 Vω5
Y5 4.2

(E6, α2) GL6 ∧3C6 Y10 Y5 4.3

(E7, α1) Spin12 Vω6
Y16 Y7 4.4

(E7, α3) GL2 ×GL6 C2 ⊗ ∧2C6 Y4, Y10 4.5

(E7, α6) GL2 × Spin10 C2 ⊗ Vω5
Y8, Y13 4.6

(E7, α7) E6 Vω6
Y10 4.7

(E8, α1) Spin14 Vω7
Y42 Y5, Y10, Y14, Y29 4.8

(E8, α2) GL8 ∧3C8 Y40 Y4, Y25 4.9

(E8, α6) GL3 × Spin10 C3 ⊗ Vω5
Y9 4.10

(E8, α7) GL2 × E6 C2 ⊗ Vω1
Y4, Y7, Y25 4.11

(E8, α8) E7 Vω7
Y28 Y11 4.12

(F4, α1) Sp6 Vω3
Y7 4.13

Recall that the wedge product by elements of E, and the contraction by
elements of F ≃ E∗, allow to define an action of V on the exterior algebra
of E, that extends to the Clifford algebra of V . This restricts to maps

(7) V ⊗ S±(E)→ S∓(E),

and to an action of Spin(V ) on the half-spin modules. Moreover S+(E)
and S−(E) are self-dual when the dimension of E is even, and dual to one
another when the dimension of E is odd.

A useful observation is that on the orthogonal Grassmannian OGr(k, V ),
where k ≤ e−2, there exist two homogeneous vector bundles T+, T− of rank
2e−k−1, called half-spin bundles: they are subbundles respectively of the
trivial vector bundles with fiber S+(E) and S−(E). They are constructed as
follows: suppose that k is even (the odd case is similar). An isotropic space
P ∈ OGr(k, V ) defines (up to scalar) morphisms η+(P ) : S+(E) → S+(E)
and η−(P ) : S−(E)→ S−(E), induced by the action of the Clifford algebra
of V on S+(E) and S−(E). Then

(T+)P = Im η+(P ) ⊂ S+(E), (T−)P = Im η−(P ) ⊂ S−(E).

Over OGr(e, V ), one of the half-spin bundles is a line bundle; as is well-
known, this line bundle is the square root of the Plücker line bundle re-
stricted from Gr(e, V ): we denote it T+ = O(−1

2).
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In general, for k ≤ e− 2, we have the following formula:

det(T±) = O(−2e−k−2).

This can be derived from the fact that, if we denote by π : OF(k, e, V ) →
OGr(k, V ) the natural projection from the orthogonal flag variety, and Uk ⊂
Ue ⊂ V ⊗OOF(k,e,V ) the tautological bundles over OF(k, e, V ), we have:

gr(π∗T+) ∼= O(
1

2
)⊗ det(Uk)⊗

⊕

h≥0

∧2h(Ue/Uk)

for k even (and similarly for π∗T− and k odd).

For the relative version of these constructions, we need a split quadratic
vector bundle V on a variety X. That means that V is endowed with an
everywhere non-degenerate quadratic form, that we allow to take values in
a line bundle L. Moreover, we suppose that V is split into the sum of two
isotropic subbundles, and we write this decomposition as V = E⊕ (E∗⊗L).
The associated Lie algebra bundle is

so(V ) = ∧2V ⊗ L∗ = (∧2E ⊗ L∗)⊕ (E∗ ⊗ E)⊕ (∧2E∗ ⊗ L).

The half-spin representations can be defined as vector bundles as:

S+(E,L) :=
⊕

k≥0

(∧2kE ⊗ L−k+e+), S−(E,L) :=
⊕

k≥0

(∧2k+1E ⊗ L−k+e−),

where e+ = ⌊ e2⌋ and e− = ⌊e−1
2 ⌋. The Lie algebra bundle so(V ) acts natu-

rally by exterior product (by elements of E) and contraction (by elements
of E∗).

4.2 (E6, α1)

The action of Spin10 on a half-spin representation ∆+ = Vω5
has only one

proper orbit closure, the cone Y over the spinor variety S10. The ideal sheaf
of this orbit closure has a beautiful minimal resolution [RS00, KW12]:

(8) A← Vω1
⊗A(−2)← Vω5

⊗A(−3)←

← Vω4
⊗A(−5)← Vω1

⊗A(−6)← A(−8)← 0.

In particular Y is Gorenstein although its natural resolution (by the total
space of O(−1) over S10) is not crepant.

In the relative setting, suppose we have a vector bundle E of rank five on
X and a line bundle L. Then the rank ten vector bundle V = E⊕ (E∗ ⊗L)
has a natural L-valued non-degenerate quadratic form, and the associated
spin bundles are

S+(E,L) = L2⊕(∧2E⊗L)⊕∧4E, S−(E,L) = (E⊗L2)⊕(∧3E⊗L)⊕∧5E.
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As the maps in (8) are induced by the natural maps (7), the relative version
of (8) yields a complex whose maps are induced by the natural maps

V ⊗ S+(E,L) −→ S−(E,L), V ⊗ S−(E,L) −→ S+(E,L)⊗ L

and by the equalities S+(E,L) = S−(E,L)∗ ⊗ L2 ⊗ detE and V = V ∗ ⊗ L.
For instance, the first map in (8) has relative version induced by

(9) V ⊗ S+(E,L)→ S−(E,L) = S+(E,L)∗ ⊗ L2 ⊗ detE,

which restricts to a map Sym2S+(E,L) ⊗ V ⊗ L−2 ⊗ det(E∗) → OX (see
the complex (10) below).

As a consequence, if S+(E,L) is globally generated and s is a general
section, then the ODL DY (s) has a resolution given by

(10) OX ← V ∗ ⊗ L−1(detE∗)← S+(E,L)⊗ L−3(detE∗)2 ←

← S−(E,L) ⊗ L−5(detE∗)3 ← V ⊗ L−5(detE∗)3 ← L−6(detE∗)4 ← 0.

We deduce:

Proposition 4.1. Let E,L be respectively a rank five vector bundle and
a line bundle on a smooth variety X. Suppose that the associated spinor
bundle S+(E,L) is globally generated, and let s be a general section. For
Y the cone over the spinor variety S10, we have that DY (s) has canonical
rational singularities and

codimX DY (s) = 5, codimDY (s) Sing(DY (s)) = 11,

KDY (s) = (KX ⊗ L
6 ⊗ (detE)4)|DY (s).

A Chern classes computation based on (10) yields the following formula
for the class of DY (s) in terms of the Chern classes ei, l of E and L:

[DY (s)] = e31e2 − e
2
1e3 + e1e4 − e5 + 2e41l + 2e21e2l + 2e4l + 8e31l

2+

+ 2e1e2l
2 + 2e3l

2 + 12e21l
3 + 2e2l

3 + 8e1l
4 + 2l5.

Proposition 4.1 above can be applied to construct new smooth fourfolds
with trivial canonical bundle. Letting L = OX , we need a nine-dimensional
variety X and a rank five vector bundle E, generated by global sections,
such that K−1

X = (detE)4. Examples of such pairs are

X = P3 ×P3 ×P3, E = p∗1O(1)⊕ p∗2O(1) ⊕ p∗3O(1)⊕ 2OX ,

X = P3 ×P3 ×P3, E = p∗1Q1 ⊕ p
∗
2O(1)⊕ p∗3O(1),

X = Gr(2, 4) × IGr(2, 5), E = p∗1Q1 ⊕ p
∗
2Q2,

X = I2Gr(3, 8), E = Q.

Here I2Gr(3, 8) denotes a bisymplectic Grassmannian, namely a subvariety
of Gr(3, 8) parametrizing three-planes that are isotropic with respect to a
pair of general skew-symmetric forms. The four loci are of Calabi–Yau type.
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4.3 (E6, α2)

The action of GL6 on ∧3V6 has three proper orbit closures Y1, Y5, Y10 of
codimension respectively one (a degree 4 hypersurface), five, ten. The or-
bit closure Y5 is the subvariety of partially decomposable tensors, already
studied in [BFMT17] (see also Examples 2.9 and 2.13). The orbit closure
Y10 is the cone over Gr(3, V6), whose study leads to a particular case of
Proposition 3.12.

4.4 (E7, α1)

The action of Spin12 on a half-spin representation ∆+ = Vω6
has only three

proper orbit closures, the sixteen-dimensional cone Y16 over the spinor va-
riety S12, an invariant quartic hypersurface Y1, and the singular locus Y7 of
this hypersurface, which has codimension seven in ∆+. Remarkably, they
are all Gorenstein [KW13, §2].

The minimal resolution of Y7 is [KW13]

A← Vω6
⊗A(−3)← Vω2

⊗A(−4)← V2ω1
⊗A(−6)←

← V2ω1
⊗A(−8)← Vω2

⊗A(−10)← Vω6
⊗A(−11)← A(−14)← 0.

In the relative setting, we need a vector bundle E of rank six and a
line bundle L on a variety X. Then the rank twelve vector bundle V =
E ⊕ (E∗ ⊗ L) has a natural L-valued non-degenerate quadratic form, and
the associated spin bundles are

S+(E,L) = L3 ⊕ (∧2E ⊗ L2)⊕ (∧4E ⊗ L)⊕ ∧6E,

S−(E,L) = (E ⊗ L2)⊕ (∧3E ⊗ L)⊕ ∧5E.

There are natural maps V ⊗S−(E,L)→ S+(E,L) and V ⊗S+(E,L)→
S−(E,L)⊗L. Moreover we have S+(E,L) = S+(E,L)∗ ⊗L3 ⊗ (detE) and
S−(E,L) = S−(E,L)∗ ⊗ L2 ⊗ (detE). The Lie algebra action is so(V ) ⊗
S±(E,L)→ S±(E,L), where so(V ) = ∧2V ⊗ L∗. This induces a map

Sym2S+(E,L)→ so(V )⊗ L3 ⊗ (detE),

and using the Killing form on so(V ) we get an induced quartic map

Sym4S+(E,L)→ L6 ⊗ (detE)2.

When X is a point, this is the quartic invariant that defines the hypersurface
Y1, whose singular locus is Y7.

From those maps we can derive the relative version of the complex above,
as done in Section 4.2. Suppose that S+(E,L) is globally generated and s
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is a general section. Then the ODL DY7(s) has a resolution by a complex

OX ← S+(E,L)⊗ L−6(detE∗)2 ← so(V )⊗ L−6(detE∗)2 ←

← Sym2V ⊗ L−10(detE∗)3 ← Sym2V ⊗ L−13(detE∗)4 ←

so(V )⊗L−15(detE∗)5 ← S+(E,L)⊗L−18(detE∗)6 ← L−21(detE∗)7 ← 0.

We deduce:

Proposition 4.2. Let E,L be respectively a rank six vector bundle and a
line bundle on a smooth variety X. Suppose that the associated spinor bundle
S+(E,L) is globally generated, and let s be a general section. Then DY7(s)
has canonical rational singularities and

codimX DY7(s) = 7, codimDY7
(s) Sing(DY7(s)) = 9,

KDY7
(s) = (KX ⊗ L

21 ⊗ (detE)7)|DY7
(s).

This can be applied to construct new smooth fourfolds with trivial canon-
ical bundle. Letting L = OX , we need an eleven-dimensional variety X
and a rank six vector bundle E, generated by global sections, such that
K−1
X = (detE)7. An example of such a pair, which gives a locus of Calabi–

Yau type, is X = IGr(2, 8), E = Q.

Let us now consider Y16, which is the cone over the spinor variety S12.
In order to determine the last term A(−N) of the minimal free resolution of
A/IY16 , where A = Sym(∆∗

+), we observe that the index of S12 is 10, hence
by (6) N = 22.

In the relative setting, the relative canonical bundle of the associated
ODL must be of the form Lα(detE)β for some integers α and β to be
determined. Since N = 22, this line bundle must be a factor of S+(E,L)22,
which implies that α + 3β = 66. Moreover the determinant of S+(E,L) is
L48(detE)16, so α = 3β. Hence β = 11 and α = 33. We get:

Proposition 4.3. Let E,L be respectively a rank six vector bundle and a
line bundle on a smooth variety X. Suppose that the associated spinor bundle
S+(E,L) is globally generated, and let s be a general section. Then DY16(s)
has canonical rational singularities and

codimX DY16(s) = 16, codimDY16
(s) Sing(DY16(s)) = 16,

KDY16
(s) = (KX ⊗ L

33 ⊗ (detE)11)|DY16
(s).

4.5 (E7, α3)

This case corresponds to the action of GL(V2)×GL(V6) on V2⊗∧
2V6, where

V2 and V6 are vector spaces of dimension two and six, respectively. Following
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[KW13] there are two orbit closures that are Gorenstein, of codimension four
and ten; we denote them by Y4 and Y10. It turns out that both admit crepant
resolutions, given by the total spaces of the vector bundles E4 = V2⊗(U∧V6)
on Gr(2, V6), and E10 = V2 ⊗∧

2U on Gr(4, V6), whose respective ranks are
18 and 12. In fact those orbits are projectively dual to one another and
the two vector bundles are orthogonal (once we identify V6 with its dual,
see also Remark 4.12). We deduce by [BFMT17, Proposition 2.7] that the
projectivizations of Y4 and Y10 have canonical bundles

KP(Y4) = OP(Y4)(−18), KP(Y10) = OP(Y10)(−12).

Lemma 4.4. The singular loci of Y4 and Y10 have codimension three and
five, respectively.

Proof. Consider the resolution π4 of Y4 by the total space of E4. If θ ∈
V2 ⊗∧

2V6 has two preimages (U, θ) and (U ′, θ), with U ∩ U ′ non-zero, then
θ belongs to

V2 ⊗ ((U ∧ V6) ∩ (U ′ ∧ V6)) = V2 ⊗ (U1 ∧ V6 + ∧2U3),

where U1 = U∩U ′ and U3 = U+U ′. We deduce that the locus over which π4
is not an isomorphism is the image Y7 of the (birational) Kempf collapsing
of the bundle V2 ⊗ (U1 ∧ V6 + ∧2U3) over F(1, 3, V6). The total space of
this bundle has dimension 2 × 6 + 11 = 23. Morever the fiber of π4 over a
general point of Y7 is a projective line P(U3/U1), which implies that Y7 is
the singular locus of Y4.

The case of Y10 is similar.

Proposition 4.5. Let E,F be two vector bundles of rank two and six re-
spectively on a smooth variety X, such that E ⊗ ∧2F is generated by global
sections. If s is a general section, the ODL DY4(s) and DY10(s) have codi-
mension four and ten respectively, they have canonical rational singularities
of codimension three and five respectively, and

KDY4
(s) = (KX ⊗ (detE)6 ⊗ (detF )4)|DY4

(s),

KDY10
(s) = (KX ⊗ (detE)9 ⊗ (detF )6)|DY10

(s).

In order to construct smooth fourfolds with trivial canonical bundle from
Y10, we would need a variety X of dimension 14. Then we could choose as
E a trivial vector bundle and ask for a rank six vector bundle F such that
K−1
X = (detF )6. Examples of such pairs are

X = Gr(3, 6) ×P5, F = p∗1Q⊕ p
∗
2O(1)⊕ 2OX ,

X = Gr(2, 6) ×Q6, F = p∗1Q⊕ p
∗
2O(1)⊕OX ,

X = Gr(4, 8) ∩H1 ∩H2, F = Q|X ⊕ 2OX ,

X = IGr(4, 9), F = Q⊕OX or F = U∗ ⊕ 2OX ;

the associated loci are all of Calabi–Yau type.
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Remark 4.6. From Y4 we can construct a family of fourfolds Z starting
from X = Gr(2, 6), E = U∗, and F trivial. A direct computation shows
that DY7(s) for a general section s is empty, and Z turns out to be an
irreducible holomorphic symplectic variety (IHS). Similarly, from Y10, with
X = Gr(2, 9), E = U∗, and F trivial, we get a family of varieties Z ′ which
are IHS. In fact, the two families consist in Hilbert schemes of length two
subschemes of a general K3 surface of degree fourteen.

In order to understand why, notice that, for Z, the section s defining
the ODL belongs to Hom(C6,∧2V6); in general this map is injective and its
image defines a P5 inside P(∧2V6). Let C be the intersection of this P5

with the Pfaffian cubic in P(∧2V6). A point U of X = Gr(2, V6) belongs
to Z if there is a two-dimensional subspace V of V6 such that the image of
U by s is contained in V ∧ V6. But this exactly means that the Pfaffian
cubic contains s(U). From this observation one easily concludes that the
ODL Z coincides with the Fano variety of lines in C. By [BD85], this Fano
variety is isomorphic to the Hilbert scheme of length two subschemes of the
orthogonal K3 surface of degree fourteen.

The case of Z ′ is similar, since the section s′ defines a P8 inside P(∧2V6)∗,
whose orthogonal is again a P5 inside P(∧2V6).

4.6 (E7, α6)

This case corresponds to the action of GL(V2)× Spin10 on V2 ⊗∆+, where
V2 is a two-dimensional vector space and ∆+ is one of the half-spin repre-
sentations of Spin10. Following [KW13], the two orbit closures Y8 and Y13,
of codimension eight and thirteen, are Gorenstein. Moreover the boundary
of Y8 is the codimension one orbit closure Y9. Since Y8 is normal, its sin-
gularities must be contained in the boundary of Y9, which is Y13 ∪ Y15. In
particular the singular locus of Y8 has codimension at least five.

The singularities of Y8 and Y13 are resolved, respectively, by the total
space of the vector bundle E8 = V2⊗S+ on Q8, and by the total space of the
vector bundle E13 = V2 ⊗ T+ on OGr(3, 10), where S+ denotes the rank 8
spinor bundle on Q8, and T+ the rank two half-spin bundle on OGr(3, 10).
The first one is crepant while the second is not.

In the relative setting, suppose we are given vector bundles E,F,L of
respective ranks five, two and one, on a variety X. As in section 4.1, we
consider the quadratic bundle V = E ⊕ (E∗ ⊗ L) and the associated spinor
bundles S±(E,L). Over the quadric bundle OGr(1, V ), there exist spinor
bundles T± of rank eight, which are subbundles of the pullbacks π∗S±(E,L)
via the projection π : OGr(1, V )→ X.

Suppose that S+(E,L) is globally generated, and that s is a general
section of V2 ⊗ S+(E,L). According to [BFMT17, Proposition 2.3], the
Y8-degeneracy locus DY8(s) has a desingularization Z (s̃) ⊂ OGr(1, V ) ob-
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tained as the zero locus of

s̃ ∈ H0(OGr(1, V ), π∗F ⊗ (π∗S+(E,L)/T+)).

The determinant of S+(E,L) = L2 ⊕ (∧2E ⊗ L) ⊕ ∧4E is (detE)8 ⊗ L12.
In order to compute the determinant of T+, we may restrict to the locus of
lines ℓ contained in E. The image of the Clifford product by ℓ yields the
subbundle with fiber

T+,ℓ = (ℓ ∧ E ⊗ L)⊕ (ℓ ∧ (∧3E)) = (ℓ⊗ E/ℓ⊗ L)⊕ (ℓ⊗ ∧3(E/ℓ)).

This yields detT+ = π∗((detE)4 ⊗ L4) ⊗ ℓ4. Moreover the relative tan-
gent bundle is TOGr(1,V )/X = Hom(ℓ, ℓ⊥/ℓ). Since ℓ⊥/ℓ inherits the L-
valued non-degenerate quadratic form, its determinant is π∗L4, and therefore
KOGr(1,V )/X = ℓ8 ⊗ π∗L−4. Finally, from the adjunction formula

KZ (s̃) = (KOGr(1,V )/X ⊗ π
∗KX ⊗ det(π∗F ⊗ (π∗S+(E,L)/T+)))|Z (s̃)

and the previous computations, we get

Proposition 4.7. Let E,F,L be three vector bundles of rank five, two, and
one respectively on a smooth variety X, such that F ⊗S+(E,L) is generated
by global sections. If s is a general section, the ODL DY8(s) has codimension
eight, it has canonical rational singularities of codimension at least five and

KDY8
(s) = (KX ⊗ det(F )8 ⊗ det(E)8 ⊗ L12)|DY8

(s).

As for Y13, the twist N of the last term A(−N) of its free resolution can
be computed as N = c+ d, where c is the codimension of the orbit closure,
and d is the degree of the numerator of the Hilbert series of the coordinate
ring, see Section 2.6; we obtain that N = 20.

In the relative setting, the relative canonical bundle KDY13
(s)/X must be

of the form det(F )α ⊗ det(E)β ⊗ Lγ . Being a (rational) power of det(F ⊗
S+(E,L)), it must be such that α = β = 2γ/3. Moreover it must be a factor
of the 20-th tensor power of F ⊗ S+(E,L), hence α = 10. We get:

Proposition 4.8. Let E,F,L be three vector bundles of rank five, two, and
one respectively on a smooth variety X, such that F ⊗S+(E,L) is generated
by global sections. If s is a general section, the ODL DY13(s) has codimension
thirteen, it has canonical rational singularities of codimension at least seven
and

KDY13
(s) = (KX ⊗ det(F )10 ⊗ det(E)10 ⊗ L15)|DY13

(s).
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4.7 (E7, α7)

This corresponds to the action of E6 on Vω1
, the minimal representation of

dimension 27. The non-trivial orbit closures are the cubic hypersurface Y1,
and the cone Y10 over the Cayley plane E6/P1, which is also Gorenstein.
Since the Cayley plane has index 12, the last term in the minimal resolution
of its ideal sheaf is O(−15).

The twenty-seven-dimensional representation of E6 can be constructed
from three vector spaces V1, V2, V3 of dimension three (see e.g. [Man06]).
Suppose that generators of detV1, detV2, detV3 have been chosen. Then
there is a natural Z3-graded Lie algebra structure on

e6 = sl(V1)× sl(V2)× sl(V3)⊕ (V1 ⊗ V2 ⊗ V3)⊕ (V ∗
1 ⊗ V

∗
2 ⊗ V

∗
3 )

and a natural action of this Lie algebra on the graded module

V = Hom(V1, V2)⊕Hom(V2, V3)⊕Hom(V3, V1).

The invariant cubic I3 can then simply be expressed as

I3(x1, x2, x3) = det(x1) + det(x2) + det(x3)− c trace(x3 ◦ x2 ◦ x1),

for some constant c.
In the relative setting, suppose given on a variety X three vector bundles

E1, E2, E3 of rank three and line bundles L,L1, L2, L3 such that
(11)
detE1 = L⊗L−1

2 ⊗L3, detE2 = L1⊗L⊗L
−1
3 , detE3 = L−1

1 ⊗L2⊗L.

In particular (detE1) ⊗ (detE2) ⊗ (detE3) = L3. Then there is a natural
Lie algebra structure on the vector bundle

e6 = sl(E1)× sl(E2)× sl(E3)⊕ (E1 ⊗E2 ⊗E3 ⊗ L
∗)⊕ (E∗

1 ⊗E
∗
2 ⊗E

∗
3 ⊗L),

and a natural structure of module over this bundle of Lie algebras on the
vector bundle

(12) V = Hom(E1, E2 ⊗ L3)⊕Hom(E2, E3 ⊗ L1)⊕Hom(E3, E1 ⊗ L2).

Note that the invariant cubic takes its values in L1L2L3.
Since N = 15, dimVω1

= 27 and detV = (L1L2L3)
9, we get the following

Proposition 4.9. Let E1, E2, E3 and L,L1, L2, L3 be vector bundles of ranks
respectively three and one on a smooth variety X, such that (11) holds.
If V defined in (12) is globally generated and s is a general section, the
ODL DY10(s) has codimension ten, it has canonical rational singularities of
codimension sixteen, and its canonical bundle is

KDY10
(s) = (KX ⊗ (L1 ⊗ L2 ⊗ L3)

5)|DY10
(s).
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4.8 (E8, α1)

This case corresponds to the action of Spin14 on the half-spin representation
∆+ = Vω7

. This is the biggest among the parabolic spaces of exceptional
type. According to [KW], six among the eight proper orbit closures are
Gorenstein: Y1, Y5, Y10, Y14, Y29, and Y42. The codimension of their singu-
larities can be bounded from below by looking at the dimension of all the
orbits.

The orbit closure Y5 is the singular locus of the invariant octic hyper-
surface Y1. It has a pure minimal resolution [KW]

A← Vω7
⊗A(−7)← Vω2

⊗A(−8)←

← Vω2
⊗A(−12)← Vω6

⊗A(−13)← A(−20)← 0.

The two extreme maps in this complex are constructed from the invariant
octic Sym8∆+ → C. Since Vω2

is the adjoint representation, the next two
maps are induced by the Lie algebra action Vω2

⊗∆+ → ∆+. Finally, the
middle arrow can be defined from a map Sym4∆+ → so14.

In the relative setting, we need a rank seven vector bundle E and a line
bundle L over a variety X. The quadratic vector bundle V = E ⊕ (E∗ ⊗L)
has two associated spin bundles

S+(E,L) = L3 ⊕ (∧2E ⊗ L2)⊕ (∧4E ⊗ L)⊕ ∧6E,

S−(E,L) = (E ⊗ L3)⊕ (∧3E ⊗ L2)⊕ (∧5E ⊗ L)⊕ ∧7E.

The invariant octic becomes a morphism

Sym8(S+(E,L))→ L10 ⊗ det(E)4,

and the relative version of the previous complex can be computed as in
Section 4.2:

OX ← S+(E,L)⊗ L−10(detE∗)4 ←

← so(V )⊗ L−10(detE∗)4 ← so(V )⊗ L−15(detE∗)6 ←

← S+(E,L)∗ ⊗ L−15(detE∗)6 ← L−25(detE∗)10 ← 0.

Proposition 4.10. Let E,L be two vector bundles of rank seven and one
respectively on a smooth variety X, such that S+(E,L) is generated by global
sections. If s is a general section, then the ODL DY5(s) has codimension five,
it has canonical rational singularities of codimension five, and its canonical
bundle is

KDY5
(s) = (KX ⊗ L

25 ⊗ (detE)10)|DY5
(s).

To obtain a smooth fourfold with trivial canonical bundle one can take
X = P9, L = OX , E = O(1) ⊕ 6OX , which gives an ODL of Calabi–Yau
type.
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Using the last term A(−N) of the resolution of the remaining orbit
closures, one can recover the canonical bundle of the respective ODL, as
already done in Section 4.4. The last term is A(−28) for Y10, A(−32) for
Y14, A(−44) for Y29, A(−52) for Y42.

Proposition 4.11. Let L be a line bundle, and E a vector bundle of rank
seven on a smooth variety X. Suppose that S+(E,L) is generated by global
sections and let s be a general section. Then:

• the ODL DY10(s) has codimension ten, it has canonical rational singular-
ities of codimension at least four, and its canonical bundle is

KDY10
(s) = (KX ⊗ L

35 ⊗ (detE)14)|DY10
(s);

• the ODL DY14(s) has codimension fourteen, it has canonical rational sin-
gularities of codimension at least six, and its canonical bundle is

KDY14
(s) = (KX ⊗ L

40 ⊗ (detE)16)|DY14
(s);

• the ODL DY29(s) has codimension twenty-nine, it has canonical rational
singularities of codimension at least thirteen, and its canonical bundle is

KDY29
(s) = (KX ⊗ L

55 ⊗ (detE)22)|DY29
(s);

• the ODL DY42(s) has codimension forty-two, it has canonical rational
singularities of codimension twenty-two, and its canonical bundle is

KDY42
(s) = (KX ⊗ L

65 ⊗ (detE)26)|DY42
(s).

4.9 (E8, α2)

This case corresponds to the action of GL(V8) on ∧3V8, where V8 is an
eight-dimensional vector space. The four orbit closures Y1, Y4, Y25, Y40 are
Gorenstein. The first one is the degree sixteen invariant hypersurface, while
the last one is the cone over the Grassmannian Gr(3, 8), whose study leads
to a particular case of Proposition 3.12; moreover Y25 is its tangent variety.
As such, Y25 is resolved by the total space of the rank sixteen vector bundle
E25 = ∧2U3 ∧ V8 over G = Gr(3, 8). A straightforward computation shows
that det(E25) = OG(−8) = KG, so that the resolution is crepant.

Remark 4.12. Suppose that the total space of a homogeneous vector bun-
dle W over some G/P , which is a subbundle of the trivial bundle V =
G/P × V , defines a crepant resolution of Y ⊂ V . This means that the pro-
jection to V is birational and that KG/P = detW. Then the vector bundle

W⊥ = (V/W)∗ is a subbundle of V∗ = G/P × V ∗, and verifies the crepancy
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condition KG/P = detW⊥. Its image Y ⊥ ⊂ V ∗ therefore also admits a

crepant resolution, in case the projection from W⊥ is again birational.
For example, applying this construction to E25, and replacing V8 by its

dual, we get the total space of the rank 40 vector bundle E1 = ∧2U ∧ V8
over Gr(5, 8), whose total space gives a crepant resolution of singularities
of the hypersurface Y1.

Lemma 4.13. The singular locus of Y25 is Y31.

Proof. We know from [KW] that there are only three non-trivial orbits of
codimension bigger than 25: Y28, Y31, and Y40. Moreover Y28 is not contained
in Y25, because any point in Y25 belongs to ∧3V6 for some codimension two
subspace V6 ⊂ V8, while this is not the case for the general point of Y28.
Since Y40 is obviously contained in Y31, we just need to prove that Y31 is
contained in the singular locus of Y25.

Consider the crepant resolution π25 of Y25 by the total space of E25.
Let θ = e123 + e145 ∈ ∧

3V8 be a representative of the open orbit in Y31.
Then U1(θ) = 〈e1〉 and U5(θ) = 〈e1, e2, e3, e4, e5〉 are uniquely defined by θ.
Moreover θ belongs to ∧2U5(θ) ∧ U1(θ) ≃ ∧2(U5(θ)/U1(θ))⊗ U1(θ), so that
θ defines, up to constant, a non-degenerate skew-symmetric two-form ω on
U5(θ)/U1(θ). It is then straightforward to check that θ belongs to ∧2U3∧V8
if and only if U1(θ) ⊂ U3 ⊂ U5(θ) and U3/U1(θ) is isotropic with respect
to ω. In particular, the fiber of π25 over a general point of Y31 is a three-
dimensional Grassmannian quadric. This implies that Y31 is contained in,
hence equal to, the singular locus of Y25.

Proposition 4.14. Let E be a rank eight vector bundle on a smooth variety
X, such that ∧3E is generated by global sections. If s is a general section,
then the ODL DY25(s) has codimension twenty-five, it has canonical rational
singularities of codimension six, and its canonical bundle is

KDY25
(s) = (KX ⊗ (detE)15)|DY25

(s).

The codimension four orbit closure Y4 has a (non-crepant) desingulariza-
tion given by the total space over the flag manifold F(2, 5, V8) of the rank 31
vector bundle E4 = ∧3U5+U2∧U5∧V8, where U2 and U5 are the tautological
vector bundles. It has a remarkable minimal resolution [KW]

A← S44444442V
∗
8 ⊗A(−10)← S55554444V

∗
8 ⊗A(−12)←

← S75555555V
∗
8 ⊗A(−14)← A(−24)← 0.

Remark 4.15. Consider the rank 32 vector bundle E′
4 = ∧2U4 ∧ V8 +∧3U6

over the twenty-dimensional flag manifold F(4, 6, V8). A straightforward
computation shows that det(E′

4) = KF(4,6,V8). We claim that the total space
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of E′
4 maps surjectively to Y4. Indeed, according to [KW] a representative

of the open orbit in Y4 is

θ = e157 + ae123 + be124 + ce356 + de456 + fe378 + ge478,

for generic coefficients a, b, c, d, f, g. Then θ belongs to ∧2U4∧V8 +∧3U6 for
U4 = 〈e1, e3, e4, e7〉 and U6 = 〈e1, e3, e4, e5, e6, e7〉. But one could also choose
U4 = 〈e1, e3, e4, e5〉 and U6 = 〈e1, e3, e4, e5, e7, e8〉 or U4 = 〈e3, e4, e5, e7〉 and
U6 = 〈e1, e2, e3, e4, e5, e7〉. So the projection map from the total space of
E′

4 to Y4 is not birational (in which case we would have obtained a crepant
resolution of Y4), but only generically finite, probably of degree three. The
same phenomenon can be observed for the dual resolution of Y ⊥

4 = Y12.

In the relative setting, the last term of the complex that resolves the
structure sheaf of the ODL DY4(s) is a one-dimensional sub-GL(E)-module
of (∧3E∗)24, so it must be (detE∗)9. Thus we have:

Proposition 4.16. Let E be a rank eight vector bundle on a smooth variety
X, such that ∧3E is generated by global sections. If s is a general sec-
tion, then the ODL DY4(s) has codimension four, it has canonical rational
singularities of codimension at least two, and its canonical bundle is

KDY4
(s) = (KX ⊗ (detE)9)|DY4

(s).

Let X = P8 and E = O(1)⊕7O; we obtain a (possibly singular) fourfold
with trivial canonical bundle, which has Euler characteristic equal to two.

4.10 (E8, α6)

This corresponds to the action of GL(U3) × Spin10 on U3 ⊗ ∆+, where
U3 is three-dimensional. Following [KW], the two orbit closures Y1, Y9 of
codimension one (a degree twelve hypersurface) and nine are Gorenstein.
The last term of the resolution of the ideal of Y9 is A(−24). Therefore, with
the same arguments as in Section 4.6, we obtain:

Proposition 4.17. Let E,F,L be three vector bundles of rank five, three,
and one respectively on a smooth variety X, such that F ⊗ S+(E,L) is
generated by global sections. If s is a general section, the ODL DY9(s) has
codimension nine, it has canonical rational singularities of codimension at
least two and

KDY9
(s) = (KX ⊗ det(F )8 ⊗ det(E)12 ⊗ L18)|DY9

(s).

4.11 (E8, α7)

This corresponds to the action of GL(U2) × E6 on U2 ⊗ Vω1
, where U2 is

two-dimensional and Vω1
is the minimal representation of E6, of dimension
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27 (see Section 4.7). Following [KW], the orbit closures Y1, Y4, Y7, Y25 of
codimension one (a hypersurface of degree twelve), four, seven, and twenty-
five are Gorenstein. The last three have singularities in codimension at least
three, two, three respectively.

The minimal resolution of Y4 is [KW]

A← S30U
∗
2 ⊗A(−3)← (S33U

∗
2 ⊕ S51U

∗
2 )⊗A(−6)←

← S63U
∗
2 ⊗A(−9)← S66U

∗
2 ⊗A(−12)← 0.

Since only the trivial representation of E6 appears in this complex, it is
entirely built from the four-dimensional degree three covariant S30U2⊗ I3 ⊂
Sym3U2⊗Sym

3Vω1
⊂ Sym3(U2⊗Vω1

), where I3 ∈ Sym
3Vω1

is the invariant
cubic. In fact it is defined by the Koszul complex that resolves the ideal of
this covariant. Geometrically, the open orbit in Y4 parametrizes injective
maps from U∗

2 to Vω1
whose image is contained in the cubic hypersurface.

Moreover the singular locus of Y4 has at least codimension three, since this
is the minimal codimension of an orbit of smaller dimension.

In the relative setting, we use the same model for Vω1
as we did for

(E7, α7). We recall that it was constructed, on the variety X, from three
vector bundles E1, E2, E3 of rank three, and line bundles L,L1, L2, L3. We
also need a vector bundle F of rank two. The relative version of the cubic
covariant I3 takes its values in L1L2L3, so that for a general section s of
F ⊗ V , supposed as usual to be globally generated, the ODL DY4(s) is
resolved by the complex

OX ← S30F
∗ ⊗ (L1L2L3)

−1 ← (S33F
∗ ⊕ S51F

∗)⊗ (L1L2L3)−2 ←

← S63F
∗ ⊗ (L1L2L3)

−3 ← S66F
∗ ⊗ (L1L2L3)

−4 ← 0.

Proposition 4.18. Let F be a rank two vector bundle on a smooth variety
X and assume that E1, E2, E3 and L,L1, L2, L3 are vector bundles of ranks
respectively three, one on X such that (11) holds. If F ⊗ V is globally
generated and for a global section s, the ODL DY4(s) has codimension four,
it has canonical rational singularities of codimension at least three and its
canonical bundle is

KDY4
(s) = (KX ⊗ (detF )6 ⊗ (L1 ⊗ L2 ⊗ L3)

4)|DY4
(s).

Since all representations of dimension one inside V N are of the form
det(F )N/2(L1L2L3)

α for a certain integer α, and as det(V ) = det(F )27 ⊗
(L1L2L3)

18, we can compute the canonical bundle of the ODL in the relative
setting. Indeed, as the last term of the resolution is A(−18) for Y7 and
A(−36) for Y25, we get:

Proposition 4.19. Let F be a rank two vector bundle on a smooth variety
X and assume that E1, E2, E3 and L,L1, L2, L3 are vector bundles of ranks
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respectively three, one on X such that (11) holds. Let V be as in (12). If
F ⊗ V is globally generated and for a global section s, the ODL DY7(s) and
DY25(s) have codimension seven, twenty-five respectively, they have canoni-
cal rational singularities of codimension at least two, three respectively and
their canonical bundles are

KDY7
(s) = (KX ⊗ (detF )9 ⊗ (L1 ⊗ L2 ⊗ L3)

6)|DY7
(s),

KDY25
(s) = (KX ⊗ (detF )18 ⊗ (L1 ⊗ L2 ⊗ L3)

12)|DY25
(s).

4.12 (E8, α8)

This corresponds to the action of the exceptional group E7 on its minimal
representation Vω7

of dimension 56. This exceptional representation can be
conveniently described from sl8 and its natural representation V8 (see e.g.
[Man06]):

e7 = sl8 ⊕∧
4V8, Vω7

= ∧2V8 ⊕ ∧
6V8.

There are three proper orbit closures in Vω7
: the cone Y28 over the Hermitian

symmetric space E7/P7, a quartic hypersurface Y1, and its singular locus Y11.
Remarkably, they are all Gorenstein [KW].

The intermediate orbit closure Y11 has a resolution of singularities given
by an irreducible rank twelve homogeneous vector bundle over the adjoint
variety E7/P1, see [LM01, Theorem 7.3]. This resolution is not crepant, but
by Theorem 2.3 Y11 is normal and has rational singularities. In [KW] the
following minimal resolution is conjectured:

A← Vω7
⊗A(−3)← Vω1

⊗A(−4)← Vω2
⊗A(−7)←

← Vω6
⊗A(−8)← V2ω7

⊗A(−10)← V2ω7
⊗A(−12)← Vω6

⊗A(−14)←

← Vω2
⊗A(−15)← Vω1

⊗A(−18)← Vω7
⊗A(−19)← A(−22)← 0.

By [KW], the numerator of the Hilbert series is monic. We deduce in
particular that Y11 is Gorenstein.

In the relative setting, we need a rank eight vector bundle E on a variety
X, and a line bundle L such that L2 = detE. Then there is a natural Lie
algebra structure of type E7 on the bundle sl(E)⊕(∧4E⊗L∗), and a natural
E7-module structure on the rank 56 vector bundle V = ∧2E ⊕ (∧2E∗ ⊗ L).

Since the last term of the resolution of Y28 is A(−38), we obtain the
following

Proposition 4.20. Let E be a rank eight vector bundle on a smooth variety
X, and let L be a line bundle on X such that L2 = detE. If V is globally
generated and for a global section s, the ODL DY11(s) and DY28(s) have
codimension eleven, twenty-eight respectively, they have canonical rational
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singularities of codimension at least seventeen, twenty-eight respectively, and
their canonical bundles are

KDY11
(s) = (KX ⊗ L

11)|DY11
(s),

KDY28
(s) = (KX ⊗ L

19)|DY28
(s).

Note that the conditions that ∧2E and ∧2E∗ ⊗ L are both globally
generated are, in a sense, opposed, but not contradictory. For example, for
a rank two vector bundle F on X, let E = 4F and L = (detF )2. Then ∧2E
and ∧2E∗ ⊗ L are both globally generated as soon as F is. Of course one
could also twist V by another line bundle M , at the price of an extra factor
M22 in KDY11

(s), see Section 2.3.

4.13 (F4, α1)

This case is very similar to the case of (E6, α2): it corresponds to the action
of Sp6×C∗ on the fourteen dimensional representation Vω3

of Sp6, on which
C∗ acts by homotheties. The non-trivial Gorenstein orbit closures are a
quartic hypersurface Y1 and the cone Y7 over the Lagrangian Grassmannian
IGr(3, 6). Since the index of the latter is four, the last term in the minimal
resolution of its ideal is O(−10). Indeed the minimal resolution computed
in [KW12] is

A← V2ω1
⊗A(−2)← Vω1+ω2

⊗A(−3)←

← Vω1+ω3
⊗A(−4)← Vω1+ω3

⊗A(−6)← Vω1+ω2
⊗A(−7)←

← V2ω1
⊗A(−8)← A(−10)← 0.

In the relative setting, we need a rank six vector bundle E with an
everywhere non-degenerate skew-symmetric form ∧2E → L. Note that this
implies that detE = L3. Then the vector bundle ker(∧3E → E ⊗ L) has
determinant L21, and we deduce the following

Proposition 4.21. Let E be a rank six vector bundle on a smooth variety
X, with an everywhere non-degenerate skew-symmetric form ∧2E → L.
Let ∧〈3〉E denote the kernel of the induced map from ∧3E to E ⊗ L. If
∧〈3〉E is globally generated and s is a general section, the ODL DY7(s) has
codimension seven, it has canonical rational singularities of codimension
seven, and its canonical bundle is

KDY7
(s) = (KX ⊗ L

15)|DY7
(s).
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[Ber09] Marie-Amélie Bertin. Examples of Calabi-Yau 3-folds of P7 with
ρ = 1. Canad. J. Math., 61(5):1050–1072, 2009.

[BFMT17] Vladimiro Benedetti, Sara Angela Filippini, Laurent Manivel,
and Fabio Tanturri. Orbital degeneracy loci and applications.
2017. Preprint ArXiv: 1704.01436v1.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995. With
a view toward algebraic geometry.

[EN67] John A. Eagon and Douglas G. Northcott. Generically acyclic
complexes and generically perfect ideals. Proc. Roy. Soc. Ser.
A, 299:147–172, 1967.

[GP01] Mark Gross and Sorin Popescu. Calabi-Yau threefolds and mod-
uli of abelian surfaces. I. Compositio Math., 127(2):169–228,
2001.

[Kac80] Victor G. Kac. Some remarks on nilpotent orbits. J. Algebra,
64(1):190–213, 1980.

[Kan12] Atsushi Kanazawa. Pfaffian Calabi-Yau threefolds and mirror
symmetry. Commun. Number Theory Phys., 6(3):661–696, 2012.

[Kem76] George R. Kempf. On the collapsing of homogeneous bundles.
Invent. Math., 37(3):229–239, 1976.

[KK10] Micha l Kapustka and Grzegorz Kapustka. A cascade of determi-
nantal Calabi-Yau threefolds. Math. Nachr., 283(12):1795–1809,
2010.

[Kol97] János Kollár. Singularities of pairs. In Algebraic geometry—
Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages
221–287. Amer. Math. Soc., Providence, RI, 1997.
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